Cardiovascular Magnetic Resonance Demonstrates Myocardial Inflammation of Differing Etiologies and Acuities in Patients with Genetic and Inflammatory Myopathies
Abstract
:1. Introduction
- (1)
- To examine if CMR can identify inflammatory or fibrotic loci in patients with myopathies and atypical cardiac symptoms with otherwise normal routine clinical and echocardiographic evaluation.
- (2)
- To assess if CMR findings could provide insights regarding the origin of myocardial abnormalities in patients with myopathies.
- (3)
- To compare the tissue characteristics of the myocardium in patients with genetic and inflammatory myopathies.
2. Methods
2.1. Study Participants
2.2. CMR Protocol
2.3. Biventricular Function Analysis
2.4. T2 Imaging for Oedema
2.5. T1 Imaging for Inflammation/Fibrosis
2.6. Post-Processing Analyses
2.7. CMR Data Analysis
2.8. Evaluation of Myocardial Inflammation
2.9. Statistical Analysis
3. Results
3.1. Comparison of Patients with Genetic Myopathies to Matched Healthy Controls
3.2. Comparison of Patients with Inflammatory Myopathies to Matched Healthy Controls
3.3. Comparison of Patients with Genetic and Inflammatory Myopathies
4. Discussion
Potential Clinical and Therapeutic Implications
- (1)
- The presence of abnormalities in myocardial tissue characterization indices, despite the relatively preserved biventricular structure and function in patients with both genetic and inflammatory myopathies, supports the notion that disease onset may be evident even in the absence of decrements in LVEF.
- (2)
- Whether the early initiation of renin-angiotensin system inhibitors and/or β-adrenoreceptor antagonists could modulate myocardial inflammation and prevent evolution to heart failure in these patients should be investigated.
- (3)
- Gene therapy for genetic myopathies can potentially exacerbate myocardial inflammation (24). CMR could function as a screening tool before the initiation of gene therapy in these cases, but additional research is required to demonstrate where this would lead to added benefits.
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morrison, B.M. Neuromuscular Diseases. Semin. Neurol. 2016, 36, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Mathis, S.; Tazir, M.; Magy, L.; Duval, F.; Le Masson, G.; Duchesne, M.; Couratier, P.; Ghorab, K.; Solé, G.; Lacoste, I.; et al. History and current difficulties in classifying inherited myopathies and muscular dystrophies. J. Neurol. Sci. 2018, 384, 50–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selva-O’Callaghan, A.; Pinal-Fernandez, I.; Trallero-Araguás, E.; Milisenda, J.C.; Grau-Junyent, J.M.; Mammen, A.L. Classification and management of adult inflammatory myopathies. Lancet Neurol. 2018, 17, 816–828. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J. Current Classification and Management of Inflammatory Myopathies. J. Neuromuscul. Dis. 2018, 5, 109–129. [Google Scholar] [CrossRef]
- Mavrogeni, S.; Sfikakis, P.P.; Dimitroulas, T.; Kolovou, G.; Kitas, G.D. Cardiac and Muscular Involvement in Idiopathic Inflammatory Myopathies: Noninvasive Diagnostic Assessment and the Role of Cardiovascular and Skeletal Magnetic Resonance Imaging. Inflamm. Allergy-Drug Targets 2014, 13, 206–216. [Google Scholar] [CrossRef]
- Mavrogeni, S.I.; Markousis-Mavrogenis, G.; Papavasiliou, A.; Papadopoulos, G.; Kolovou, G. Cardiac Involvement in Duchenne Muscular Dystrophy and Related Dystrophinopathies. Methods Mol. Biol. 2018, 1687, 31–42. [Google Scholar] [CrossRef]
- Podolec, P.; Kopeć, G.; Rubiś, P.; Stępniewski, J.; Podolec, J.; Komar, M.; Tomkiewicz-Pająk, L.; Leśniak-Sobelga, A.; Kabłak-Ziembicka, A.; Matusik, P.T. Clinical Classification of Rare Cardiovascular Diseases and Disorders: 2018 Update. J. Rare Cardiovasc. Dis. 2018, 3, 230. [Google Scholar] [CrossRef]
- Mavrogeni, S.; Douskou, M.; Manoussakis, M.N. Contrast-Enhanced CMR Imaging Reveals Myocardial Involvement in Idiopathic Inflammatory Myopathy Without Cardiac Manifestations. JACC Cardiovasc. Imaging 2011, 4, 1324–1325. [Google Scholar] [CrossRef] [Green Version]
- Garg, P.; Assadi, H.; Jones, R.; Bin Chan, W.; Metherall, P.; Thomas, R.; van der Geest, R.; Swift, A.J.; Al-Mohammad, A. Left ventricular fibrosis and hypertrophy are associated with mortality in heart failure with preserved ejection fraction. Sci. Rep. 2021, 11, 617. [Google Scholar] [CrossRef]
- Karamitsos, T.D.; Francis, J.M.; Myerson, S.; Selvanayagam, J.B.; Neubauer, S. The Role of Cardiovascular Magnetic Resonance Imaging in Heart Failure. J. Am. Coll. Cardiol. 2009, 54, 1407–1424. [Google Scholar] [CrossRef] [Green Version]
- Raman, S.V.; Simonetti, O.P. The CMR Examination in Heart Failure. Hear. Fail. Clin. 2009, 5, 283–300. [Google Scholar] [CrossRef] [PubMed]
- Aljizeeri, A.; Sulaiman, A.; Alhulaimi, N.; AlSaileek, A.; Al-Mallah, M.H. Cardiac magnetic resonance imaging in heart failure: Where the alphabet begins! Hear. Fail. Rev. 2017, 22, 385–399. [Google Scholar] [CrossRef] [PubMed]
- Mavrogeni, S.I.; Kitas, G.D.; Dimitroulas, T.; Sfikakis, P.P.; Seo, P.; Gabriel, S.; Patel, A.R.; Gargani, L.; Bombardieri, S.; Matucci-Cerinic, M.; et al. Cardiovascular magnetic resonance in rheumatology: Current status and recommendations for use. Int. J. Cardiol. 2016, 217, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Verhaert, D.; Richards, K.; Rafael-Fortney, J.A.; Raman, S.V. Cardiac Involvement in Patients With Muscular Dystrophies. Circ. Cardiovasc. Imaging 2011, 4, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, H.; Kellman, P.; LaRocca, G.; Arai, A.E.; Hansen, M.S. High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions. J. Cardiovasc. Magn. Reson. 2013, 15, 102. [Google Scholar] [CrossRef] [Green Version]
- Kellman, P.; Chefd’Hotel, C.; Lorenz, C.H.; Mancini, C.; Arai, A.E.; McVeigh, E.R. High spatial and temporal resolution cardiac cine MRI from retrospective reconstruction of data acquired in real time using motion correction and resorting. Magn. Reson. Med. 2009, 62, 1557–1564. [Google Scholar] [CrossRef] [Green Version]
- Mavrogeni, S.; Markousis-Mavrogenis, G.; Koutsogeorgopoulou, L.; Dimitroulas, T.; Bratis, K.; Kitas, G.D.; Sfikakis, P.; Tektonidou, M.; Karabela, G.; Stavropoulos, E.; et al. Cardiovascular magnetic resonance imaging pattern at the time of diagnosis of treatment naïve patients with connective tissue diseases. Int. J. Cardiol. 2017, 236, 151–156. [Google Scholar] [CrossRef]
- von Knobelsdorff-Brenkenhoff, F.; Prothmann, M.; A Dieringer, M.; Wassmuth, R.; Greiser, A.; Schwenke, C.; Niendorf, T.; Schulz-Menger, J. Myocardial T1 and T2 mapping at 3 T: Reference values, influencing factors and implications. J. Cardiovasc. Magn. Reson. 2013, 15, 53. [Google Scholar] [CrossRef] [Green Version]
- Messroghli, D.R.; Radjenovic, A.; Kozerke, S.; Higgins, D.M.; Sivananthan, M.U.; Ridgway, J.P. Modified Look-Locker inversion recovery (MOLLI) for high-resolutionT1 mapping of the heart. Magn. Reson. Med. 2004, 52, 141–146. [Google Scholar] [CrossRef]
- Mavrogeni, S.; Pepe, A.; Nijveldt, R.; Ntusi, N.; Sierra-Galan, L.M.; Bratis, K.; Wei, J.; Mukherjee, M.; Markousis-Mavrogenis, G.; Gargani, L.; et al. Cardiovascular magnetic resonance in autoimmune rheumatic diseases: A clinical consensus document by the European Association of Cardiovascular Imaging. Eur. Hear. J.-Cardiovasc. Imaging 2022, 23, e308–e322. [Google Scholar] [CrossRef]
- Cerqueira, M.D.; Weissman, N.J.; Dilsizian, V.; Jacobs, A.K.; Kaul, S.; Laskey, W.K.; Pennell, D.J.; Rumberger, J.A.; Ryan, T.; Verani, M.S. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002, 105, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jerosch-Herold, M.; Kwong, R.Y. Cardiac T 1 Imaging. Top. Magn. Reson. Imaging 2014, 23, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedrich, M.G.; Sechtem, U.; Schulz-Menger, J.; Holmvang, G.; Alakija, P.; Cooper, L.T.; White, J.A.; Abdel-Aty, H.; Gutberlet, M.; Prasad, S.; et al. Cardiovascular Magnetic Resonance in Myocarditis: A JACC White Paper. J. Am. Coll. Cardiol. 2009, 53, 1475–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, V.M.; Schulz-Menger, J.; Holmvang, G.; Kramer, C.M.; Carbone, I.; Sechtem, U.; Kindermann, I.; Gutberlet, M.; Cooper, L.T.; Liu, P.; et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation. J. Am. Coll. Cardiol. 2018, 72, 3158–3176. [Google Scholar] [CrossRef]
- Iftikhar, M.; Frey, J.; Shohan, M.; Malek, S.; Mousa, S.A. Current and emerging therapies for Duchenne muscular dystrophy and spinal muscular atrophy. Pharmacol. Ther. 2020, 220, 107719. [Google Scholar] [CrossRef]
- McGrath, E.R.; Doughty, C.T.; Amato, A.A. Autoimmune Myopathies: Updates on Evaluation and Treatment. Neurotherapeutics 2018, 15, 976–994. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Q.; Cao, J.; Li, X.; Lin, L.; Chen, W.; Wang, Y.-N.; Jin, Z.-Y. Cardiovascular Magnetic Resonance Mapping and Strain Assessment for the Diagnosis of Cardiac Involvement in Idiopathic Inflammatory Myopathy Patients With Preserved Left Ventricular Ejection Fraction. J. Thorac. Imaging 2021, 36, 254–261. [Google Scholar] [CrossRef]
- Soslow, J.H.; Damon, S.M.; Crum, K.; Parra, D.; E Arai, A.; Damon, B.M.; Markham, L.W. Myocardial T1 and T2 Mapping in Duchenne muscular dystrophy: Characterization of late gadolinium Eenhancement. J. Cardiovasc. Magn. Reson. 2016, 18, P279. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, L.J.; Kellman, P.; McCarter, R.J.; Cross, R.R.; Hansen, M.S.; Spurney, C.F. Native T1 values identify myocardial changes and stratify disease severity in patients with Duchenne muscular dystrophy. J. Cardiovasc. Magn. Reson. 2016, 18, 72. [Google Scholar] [CrossRef] [Green Version]
- Khoo, T.; Stokes, M.B.; Teo, K.; Proudman, S.; Basnayake, S.; Sanders, P.; Limaye, V. Cardiac involvement in idiopathic inflammatory myopathies detected by cardiac magnetic resonance imaging. Clin. Rheumatol. 2019, 38, 3471–3476. [Google Scholar] [CrossRef]
Variable | Matched Healthy Controls | Genetic Myopathy | p-Value |
---|---|---|---|
Group Size | 21 | 23 | N/A |
Demographics | |||
Age (Years) | 13.00 (11.00, 15.00) | 12.00 (10.50, 15.00) | 0.878 |
Female Sex (%) | 10 (47.6) | 5 (21.7) | 0.136 |
Laboratory Indices | |||
Creatine Kinase (mg/L) (n < 120) | N/A | 4200.00 (2750.00, 5200.00) | N/A |
Troponin-I (ng/L) (n < 0.04) | 0.00 (0.00, 0.03) | ||
Disease Type (%) | N/A | N/A | |
ANO5 Muscle Disease | 1 (4.3) | ||
BMD | 7 (30.4) | ||
DMD | 8 (34.8) | ||
DMD carrier | 1 (4.3) | ||
Friedreich Ataxia | 3 (13.0) | ||
McLeod Syndrome | 1 (4.3) | ||
Uknown Myopathy | 2 (8.7) | ||
Ventricular Structure and Function | |||
LVEDVi (mL/m2) | 67.49 (61.93, 71.32) | 64.96 (54.79, 74.77) | 0.488 |
LVESVi (mL/m2) | 25.00 (23.03, 29.23) | 25.33 (22.11, 31.25) | 0.879 |
LVEF (%) | 62.50 (59.23, 62.96) | 60.27 (54.36, 63.25) | 0.245 |
LVMi (g/m2) | 37.76 (33.28, 43.90) | 42.55 (35.08, 65.24) | 0.084 |
RVEDVi (mL/m2) | 60.37 (56.30, 69.03) | 58.87 (44.80, 79.05) | 0.445 |
RVESVi (mL/m2) | 23.96 (21.97, 29.81) | 27.49 (19.81, 34.18) | 0.698 |
RVEF (%) | 59.79 (57.45, 61.54) | 52.46 (48.53, 62.40) | 0.062 |
T1-Based Indices | |||
EGE | 3.10 (2.80, 3.60) | 3.00 (2.00, 4.00) | 0.832 |
LGE (% of LV mass) | 0.00 (0.00, 0.00) | 6.00 (3.00, 8.00) | <0.001 * |
Native T1 Mapping (ms) | 1170.00 (1158.00, 1182.00) | 1250.00 (1190.00, 1293.50) | 0.001 * |
Post-contrast T1 Mapping (ms) | 500.00 (493.00, 523.00) | 536.00 (478.50, 551.50) | 0.078 |
ECV (%) | 23.00 (23.00, 25.00) | 28.00 (26.50, 30.00) | <0.001 * |
LGE Localization | N/A | N/A | |
Anterior | 2 (8.7) | ||
Inferior | 23 (100) | ||
Interventricular Septum | 23 (100) | ||
Lateral | 16 (69.9) | ||
T2-Based Indices | |||
T2 ratio | 1.65 (1.50, 1.68) | 1.50 (1.20, 1.80) | 0.646 |
T2 Mapping (ms) | 40.00 (37.00, 43.00) | 46.00 (43.00, 48.00) | <0.001 * |
Cut-off Points for Normal Values | |||
EGE > 4 (%) | 0 (0.0) | 5 (21.7) | 0.073 |
LGE > 0% (%) | 0 (0.0) | 19 (82.6) | <0.001 * |
Native T1 Mapping > 1250 ms (%) | 0 (0.0) | 10 (43.5) | 0.002 * |
ECV > 28% (%) | 0 (0.0) | 11 (47.8) | 0.001 * |
T2 ratio > 2 (%) | 0 (0.0) | 2 (8.7) | 0.51 |
T2 Mapping > 50 ms (%) | 0 (0.0) | 2 (8.7) | 0.51 |
Updated Lake Louise Criteria | |||
T1 Criterion Positive (%) | 0 (0.0) | 22 (95.7) | <0.001 * |
T2 Criterion Positive (%) | 0 (0.0) | 3 (13.0) | 0.265 |
Both Criteria Positive (%) | 0 (0.0) | 3 (13.0) | 0.265 |
Variable | Matched Healthy Controls | Inflammatory Myopathy | p-Value |
---|---|---|---|
Group Size | 20 | 28 | N/A |
Demographics | |||
Age (Years) | 60.50 (56.25, 68.00) | 60.50 (55.00, 65.00) | 0.66 |
Female sex (%) | 9 (45.0) | 13 (46.4) | 0.999 |
Laboratory Indices | N/A | N/A | |
Creatine Kinase (mg/L) (n < 120) | 975.00 (780.00, 1225.00) | ||
Troponin-I (ng/L) (n < 0.04) | 0.04 (0.02, 0.06) | ||
Disease Type (%) | N/A | N/A | |
Dermatomyositis | 10 (35.7) | ||
Inclusion Body Myositis | 3 (10.7) | ||
Myasthenia Gravis | 2 (7.1) | ||
Polymyalgia Rheumatica | 3 (10.7) | ||
Polymyositis | 10 (35.7) | ||
Ventricular Structure and Function | |||
LVEDVi (mL/m2) | 65.75 (59.28, 72.36) | 74.85 (63.56, 82.64) | 0.054 |
LVESVi (mL/m2) | 28.13 (25.23, 31.73) | 25.01 (18.53, 28.99) | 0.090 |
LVEF (%) | 58.40 (54.13, 60.20) | 68.16 (61.15, 71.86) | <0.001 * |
LVMi (g/m2) | 57.47 (54.80, 65.17) | 51.98 (48.57, 55.16) | 0.001 * |
RVEDVi (mL/m2) | 53.22 (50.92, 61.47) | 67.97 (56.06, 77.26) | 0.007 * |
RVESVi (mL/m2) | 23.26 (20.45, 25.84) | 24.72 (23.41, 32.28) | 0.149 |
RVEF (%) | 57.89 (53.96, 59.39) | 58.01 (54.51, 65.30) | 0.477 |
T1-Based Indices | |||
EGE | 2.00 (1.20, 2.08) | 8.00 (5.50, 10.00) | <0.001 * |
LGE (% of LV mass) | 0.00 (0.00, 0.00) | 6.00 (0.00, 9.00) | <0.001 * |
Native T1 Mapping (ms) | 1165.00 (1154.75, 1167.00) | 1300.00 (1288.00, 1305.00) | <0.001 * |
Post-contrast T1 Mapping (ms) | 490.00 (480.00, 516.25) | 530.00 (499.00, 548.50) | 0.005 * |
ECV (%) | 24.50 (23.75, 26.00) | 30.00 (29.00, 31.00) | <0.001 * |
LGE Localization | N/A | N/A | |
Anterior | 2 (7.1) | ||
Inferior | 28 (100) | ||
Interventricular Septum | 3 (10.7) | ||
Lateral | 20 (71.4) | ||
T2-Based Indices | |||
T2 ratio | 1.30 (1.20, 1.50) | 2.80 (2.50, 3.20) | <0.001 * |
T2 Mapping (ms) | 45.00 (40.00, 47.25) | 58.00 (55.00, 61.25) | <0.001 * |
Cut-off Points for Normal Values | |||
EGE > 4 (%) | 0 (0.0) | 22 (81.5) | <0.001 * |
LGE > 0% (%) | 0 (0.0) | 19 (67.9) | <0.001 * |
Native T1 Mapping > 1250 ms (%) | 0 (0.0) | 26 (92.9) | <0.001 * |
ECV > 28% (%) | 0 (0.0) | 22 (78.6) | <0.001 * |
T2 ratio > 2 (%) | 0 (0.0) | 24 (85.7) | <0.001 * |
T2 Mapping > 50 ms (%) | 0 (0.0) | 27 (96.4) | <0.001 * |
Updated Lake Louise Criteria | |||
T1 Criterion Positive (%) | 0 (0.0) | 28 (100.0) | <0.001 * |
T2 Criterion Positive (%) | 0 (0.0) | 27 (96.4) | <0.001 * |
Both Criteria Positive (%) | 0 (0.0) | 27 (96.4) | <0.001 * |
Variable | Genetic Myopathy | Inflammatory Myopathy | p-Value |
---|---|---|---|
Group Size | 23 | 28 | N/A |
Demographics | |||
Age (Years) | 12.00 (10.50, 15.00) | 60.50 (55.00, 65.00) | <0.001 * |
Female Sex (%) | 5 (21.7) | 13 (46.4) | 0.123 |
Laboratory Indices | |||
Creatine Kinase (mg/L) (n < 120) | 4200.00 (2750.00, 5200.00) | 975.00 (780.00, 1225.00) | <0.001 * |
Troponin-I (ng/L) (n < 0.04) | 0.00 (0.00, 0.03) | 0.04 (0.02, 0.06) | 0.001 * |
Ventricular Structure and Function | |||
LVEDVi (mL/m2) | 64.96 (54.79, 74.77) | 74.85 (63.56, 82.64) | 0.085 |
LVESVi (mL/m2) | 25.33 (22.11, 31.25) | 25.01 (18.53, 28.99) | 0.394 |
LVEF (%) | 60.27 (54.36, 63.25) | 68.16 (61.15, 71.86) | <0.001 * |
LVMi (g/m2) | 42.55 (35.08, 65.24) | 51.98 (48.57, 55.16) | 0.135 |
RVEDVi (mL/m2) | 58.87 (44.80, 79.05) | 67.97 (56.06, 77.26) | 0.198 |
RVESVi (mL/m2) | 27.49 (19.81, 34.18) | 24.72 (23.41, 32.28) | 0.835 |
RVEF (%) | 52.46 (48.53, 62.40) | 58.01 (54.51, 65.30) | 0.066 |
T1-Based Indices | |||
EGE | 3.00 (2.00, 4.00) | 8.00 (5.50, 10.00) | <0.001 * |
LGE (% of LV mass) | 6.00 (3.00, 8.00) | 6.00 (0.00, 9.00) | 0.924 |
Native T1 Mapping (ms) | 1250.00 (1190.00, 1293.50) | 1300.00 (1288.00, 1305.00) | 0.004 * |
Post-contrast T1 Mapping (ms) | 536.00 (478.50, 551.50) | 530.00 (499.00, 548.50) | 0.805 |
ECV (%) | 28.00 (26.50, 30.00) | 30.00 (29.00, 31.00) | 0.128 |
LGE Localization | |||
Anterior | 2 (8.7) | 2 (7.1) | 0.999 |
Inferior | 23 (100) | 28 (100) | 0.999 |
Interventricular Septum | 0 (0) | 3 (10.7) | 0.308 |
Lateral | 16 (69.6) | 20 (71.4) | 0.999 |
T2-Based Indices | |||
T2 ratio | 1.50 (1.20, 1.80) | 2.80 (2.50, 3.20) | <0.001 * |
T2 Mapping (ms) | 46.00 (43.00, 48.00) | 58.00 (55.00, 61.25) | <0.001 * |
Cut-off Points for Normal Values | |||
EGE > 4 (%) | 5 (21.7) | 22 (81.5) | <0.001 * |
LGE > 0% (%) | 19 (82.6) | 19 (67.9) | 0.379 |
Native T1 Mapping > 1250 ms (%) | 10 (43.5) | 26 (92.9) | <0.001 * |
ECV > 28% (%) | 11 (47.8) | 22 (78.6) | 0.046 * |
T2 ratio > 2 (%) | 2 (8.7) | 24 (85.7) | <0.001 * |
T2 Mapping > 50 ms (%) | 2 (8.7) | 27 (96.4) | <0.001 * |
Updated Lake Louise Criteria | |||
T1 Criterion Positive (%) | 22 (95.7) | 28 (100.0) | 0.921 |
T2 Criterion Positive (%) | 3 (13.0) | 27 (96.4) | <0.001 * |
Both Criteria Positive (%) | 3 (13.0) | 27 (96.4) | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markousis-Mavrogenis, G.; Belegrinos, A.; Giannakopoulou, A.; Papavasiliou, A.; Koulouri, V.; Marketos, N.; Patsilinakou, E.; Lazarioti, F.; Bacopoulou, F.; Mavragani, C.P.; et al. Cardiovascular Magnetic Resonance Demonstrates Myocardial Inflammation of Differing Etiologies and Acuities in Patients with Genetic and Inflammatory Myopathies. J. Clin. Med. 2023, 12, 1575. https://doi.org/10.3390/jcm12041575
Markousis-Mavrogenis G, Belegrinos A, Giannakopoulou A, Papavasiliou A, Koulouri V, Marketos N, Patsilinakou E, Lazarioti F, Bacopoulou F, Mavragani CP, et al. Cardiovascular Magnetic Resonance Demonstrates Myocardial Inflammation of Differing Etiologies and Acuities in Patients with Genetic and Inflammatory Myopathies. Journal of Clinical Medicine. 2023; 12(4):1575. https://doi.org/10.3390/jcm12041575
Chicago/Turabian StyleMarkousis-Mavrogenis, George, Antonios Belegrinos, Aikaterini Giannakopoulou, Antigoni Papavasiliou, Vasiliki Koulouri, Nikolaos Marketos, Eleftheria Patsilinakou, Fotini Lazarioti, Flora Bacopoulou, Clio P. Mavragani, and et al. 2023. "Cardiovascular Magnetic Resonance Demonstrates Myocardial Inflammation of Differing Etiologies and Acuities in Patients with Genetic and Inflammatory Myopathies" Journal of Clinical Medicine 12, no. 4: 1575. https://doi.org/10.3390/jcm12041575
APA StyleMarkousis-Mavrogenis, G., Belegrinos, A., Giannakopoulou, A., Papavasiliou, A., Koulouri, V., Marketos, N., Patsilinakou, E., Lazarioti, F., Bacopoulou, F., Mavragani, C. P., Chrousos, G. P., & Mavrogeni, S. I. (2023). Cardiovascular Magnetic Resonance Demonstrates Myocardial Inflammation of Differing Etiologies and Acuities in Patients with Genetic and Inflammatory Myopathies. Journal of Clinical Medicine, 12(4), 1575. https://doi.org/10.3390/jcm12041575