Complement Activation Products in Patients with Chronic Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant and Procedure
2.2. Measurement of Complement Cascade Components
2.3. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Differences in Complement Activation Products
3.3. Complement Activation Products, Psychopathology and Global Functioning
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simeone, J.C.; Ward, A.J.; Rotella, P.; Collins, J.; Windisch, R. An Evaluation of Variation in Published Estimates of Schizophrenia Prevalence from 1990-2013: A Systematic Literature Review. BMC Psychiatry 2015, 15, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DSM-5. Available online: https://www.psychiatry.org/psychiatrists/practice/dsm (accessed on 12 March 2022).
- Nasrallah, H.A.; Weinberger, D.R. The Neurology of Schizophrenia; Elsevier: Amsterdam, The Netherlands, 1986; 416p. [Google Scholar]
- Murray, R.M.; Lewis, S.W.; Lecturer, L. Is Schizophrenia a Neurodevelopmental Disorder? Br. Med. J. Clin. Res. Ed. 1987, 295, 681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fudenberg, H.H.; Whitten, H.D.; Merler, E.; Farmati, O. Is Schizophrenia an Immunologic Receptor Disorder? Med. Hypotheses 1983, 12, 85–93. [Google Scholar] [CrossRef]
- Stevens, J.R. Pathophysiology of Schizophrenia. Clin. Neuropharmacol. 1983, 6, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Cullen, A.E.; Holmes, S.; Pollak, T.A.; Blackman, G.; Joyce, D.W.; Kempton, M.J.; Murray, R.M.; McGuire, P.; Mondelli, V. Associations Between Non-Neurological Autoimmune Disorders and Psychosis: A Meta-Analysis. Biol. Psychiatry 2019, 85, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Khandaker, G.M.; Zimbron, J.; Dalman, C.; Lewis, G.; Jones, P.B. Childhood Infection and Adult Schizophrenia: A Meta-Analysis of Population-Based Studies. Schizophr. Res. 2012, 139, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta-Analysis of Cytokine Alterations in Schizophrenia: Clinical Status and Antipsychotic Effects. Biol. Psychiatry 2011, 70, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Upthegrove, R.; Manzanares-Teson, N.; Barnes, N.M. Cytokine Function in Medication-Naive First Episode Psychosis: A Systematic Review and Meta-Analysis. Schizophr. Res. 2014, 155, 101–108. [Google Scholar] [CrossRef]
- Fernandes, B.S.; Steiner, J.; Bernstein, H.G.; Dodd, S.; Pasco, J.A.; Dean, O.M.; Nardin, P.; Gonçalves, C.A.; Berk, M. C-Reactive Protein Is Increased in Schizophrenia but Is Not Altered by Antipsychotics: Meta-Analysis and Implications. Mol. Psychiatry 2016, 21, 554–564. [Google Scholar] [CrossRef]
- Orlovska-Waast, S.; Köhler-Forsberg, O.; Brix, S.W.; Nordentoft, M.; Kondziella, D.; Krogh, J.; Benros, M.E. Cerebrospinal Fluid Markers of Inflammation and Infections in Schizophrenia and Affective Disorders: A Systematic Review and Meta-Analysis. Mol. Psychiatry 2019, 24, 869–887. [Google Scholar] [CrossRef] [Green Version]
- Howes, O.D.; McCutcheon, R. Inflammation and the Neural Diathesis-Stress Hypothesis of Schizophrenia: A Reconceptualization. Transl. Psychiatry 2017, 7, e1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janeway, C.A., Jr.; Travers, P.; Walport, M.; Shlomchik, M.J. Immunobiology; Garland Science: New York, NY, USA, 2001; pp. 1–10. [Google Scholar]
- Hajishengallis, G.; Reis, E.S.; Mastellos, D.C.; Ricklin, D.; Lambris, J.D. Novel Mechanisms and Functions of Complement. Nat. Immunol. 2017, 18, 1288–1298. [Google Scholar] [CrossRef] [PubMed]
- Dalakas, M.C.; Alexopoulos, H.; Spaeth, P.J. Complement in Neurological Disorders and Emerging Complement-Targeted Therapeutics. Nat. Rev. Neurol. 2020, 16, 601–617. [Google Scholar] [CrossRef] [PubMed]
- Gasque, P. Complement: A Unique Innate Immune Sensor for Danger Signals. Mol. Immunol. 2004, 41, 1089–1098. [Google Scholar] [CrossRef]
- Wu, F.; Zou, Q.; Ding, X.; Shi, D.; Zhu, X.; Hu, W.; Liu, L.; Zhou, H. Complement Component C3a Plays a Critical Role in Endothelial Activation and Leukocyte Recruitment into the Brain. J. Neuroinflamm. 2016, 13, 23. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, S.D.; Parikh, N.U.; Woodruff, T.M.; Jarvis, J.N.; Lopez, M.; Hennon, T.; Cunningham, P.; Quigg, R.J.; Schwartz, S.A.; Alexander, J.J. C5a Alters Blood–Brain Barrier Integrity in a Human In Vitro Model of Systemic Lupus Erythematosus. Immunology 2015, 146, 130–143. [Google Scholar] [CrossRef] [Green Version]
- Frydecka, D.; Misiak, B.; Pawlak-Adamska, E.; Karabon, L.; Tomkiewicz, A.; Sedlaczek, P.; Kiejna, A.; Beszłej, J.A. Interleukin-6: The Missing Element of the Neurocognitive Deterioration in Schizophrenia? The Focus on Genetic Underpinnings, Cognitive Impairment and Clinical Manifestation. Eur. Arch. Psychiatry Clin. Neurosci. 2015, 265, 449–459. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.J.; Goldsmith, D.R. Evaluating the Hypothesis That Schizophrenia Is an Inflammatory Disorder. Focus 2020, 18, 391–401. [Google Scholar] [CrossRef]
- Stokowska, A.; Atkins, A.L.; Morán, J.; Pekny, T.; Bulmer, L.; Pascoe, M.C.; Barnum, S.R.; Wetsel, R.A.; Nilsson, J.A.; Dragunow, M.; et al. Complement Peptide C3a Stimulates Neural Plasticity after Experimental Brain Ischaemia. Brain 2017, 140, 353–369. [Google Scholar] [CrossRef]
- Shinjyo, N.; Ståhlberg, A.; Dragunow, M.; Pekny, M.; Pekna, M. Complement-Derived Anaphylatoxin C3a Regulates in Vitro Differentiation and Migration of Neural Progenitor Cells. Stem Cells 2009, 27, 2824–2832. [Google Scholar] [CrossRef]
- Gorelik, A.; Sapir, T.; Haffner-Krausz, R.; Olender, T.; Woodruff, T.M.; Reiner, O. Developmental Activities of the Complement Pathway in Migrating Neurons. Nat. Commun. 2017, 8, 15096. [Google Scholar] [CrossRef] [Green Version]
- Cardozo, P.L.; de Lima, I.B.Q.; Maciel, E.M.A.; Silva, N.C.; Dobransky, T.; Ribeiro, F.M. Synaptic Elimination in Neurological Disorders. Curr. Neuropharmacol. 2019, 17, 1071. [Google Scholar] [CrossRef]
- Buller, K.M.; Carty, M.L.; Reinebrant, H.E.; Wixey, J.A. Minocycline: A Neuroprotective Agent for Hypoxic-Ischemic Brain Injury in the Neonate? J. Neurosci. Res. 2009, 87, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Schafer, D.P.; Lehrman, E.K.; Kautzman, A.G.; Koyama, R.; Mardinly, A.R.; Yamasaki, R.; Ransohoff, R.M.; Greenberg, M.E.; Barres, B.A.; Stevens, B. Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner. Neuron 2012, 74, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, C.; Hou, W.; Li, G.; Mao, F.; Li, S.; Lin, X.; Jiang, D.; Xu, Y.; Tian, H.; Wang, W.; et al. The Genomics of Schizophrenia: Shortcomings and Solutions. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 93, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.J.; Pouget, J.G.; Zai, C.C.; Kennedy, J.L. The Complement System in Schizophrenia: Where Are We Now and What’s next? Mol. Psychiatry 2019, 25, 114–130. [Google Scholar] [CrossRef] [PubMed]
- Sekar, A.; Bialas, A.R.; de Rivera, H.; Davis, A.; Hammond, T.R.; Kamitaki, N.; Tooley, K.; Presumey, J.; Baum, M.; van Doren, V.; et al. Schizophrenia Risk from Complex Variation of Complement Component 4. Nature 2016, 530, 177–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, B.; Allen, N.J.; Vazquez, L.E.; Howell, G.R.; Christopherson, K.S.; Nouri, N.; Micheva, K.D.; Mehalow, A.K.; Huberman, A.D.; Stafford, B.; et al. The Classical Complement Cascade Mediates CNS Synapse Elimination. Cell 2007, 131, 1164–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cropley, V.; Laskaris, L.; Zalesky, A.; Weickert, C.S.; di Biase, M.; Chana, G.; Baune, B.; Bousman, C.; Nelson, B.; McGorry, P.D.; et al. O1.6. Increased Complement Factors C3 And C4 In Schizophrenia and the Early Stages of Psychosis: Implications for Clinical Symptomatology and Cortical Thickness. Schizophr. Bull. 2018, 44, S74. [Google Scholar] [CrossRef] [Green Version]
- Kucharska-Mazur, J.; Tarnowski, M.; Dołegowska, B.; Budkowska, M.; Pedziwiatr, D.; Jabłoński, M.; Pełka-Wysiecka, J.; Kazimierczak, A.; Ratajczak, M.Z.; Samochowiec, J. Novel Evidence for Enhanced Stem Cell Trafficking in Antipsychotic-Naïve Subjects during Their First Psychotic Episode. J. Psychiatr. Res. 2014, 49, 18–24. [Google Scholar] [CrossRef]
- Föcking, M.; Sabherwal, S.; Cates, H.M.; Scaife, C.; Dicker, P.; Hryniewiecka, M.; Wynne, K.; Rutten, B.P.F.; Lewis, G.; Cannon, M.; et al. Complement Pathway Changes at Age 12 Are Associated with Psychotic Experiences at Age 18 in a Longitudinal Population-Based Study: Evidence for a Role of Stress. Mol. Psychiatry 2021, 26, 524–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannon, M.; Jones, P.B.; Murray, R.M. Obstetric Complications and Schizophrenia: Historical and Meta-Analytic Review. Am. J. Psychiatry 2002, 159, 1080–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannon, T.D.; Chung, Y.; He, G.; Sun, D.; Jacobson, A.; van Erp, T.G.M.; McEwen, S.; Addington, J.; Bearden, C.E.; Cadenhead, K.; et al. Progressive Reduction in Cortical Thickness as Psychosis Develops: A Multisite Longitudinal Neuroimaging Study of Youth at Elevated Clinical Risk. Biol. Psychiatry 2015, 77, 147–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glantz, L.A.; Lewis, D.A. Decreased Dendritic Spine Density on Prefrontal Cortical Pyramidal Neurons in Schizophrenia. Arch. Gen. Psychiatry 2000, 57, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allswede, D.M.; Zheutlin, A.B.; Chung, Y.; Anderson, K.; Hultman, C.M.; Ingvar, M.; Cannon, T.D. Complement Gene Expression Correlates with Superior Frontal Cortical Thickness in Humans. Neuropsychopharmacology 2018, 43, 525–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, T.; Hattori, K.; Miyakawa, T.; Watanabe, K.; Hidese, S.; Sasayama, D.; Ota, M.; Teraishi, T.; Hori, H.; Yoshida, S.; et al. Increased Cerebrospinal Fluid Complement C5 Levels in Major Depressive Disorder and Schizophrenia. Biochem. Biophys. Res. Commun. 2018, 497, 683–688. [Google Scholar] [CrossRef]
- Drzyzga, Ł.; Obuchowicz, E.; Marcinowska, A.; Herman, Z.S. Cytokines in Schizophrenia and the Effects of Antipsychotic Drugs. Brain Behav. Immun. 2006, 20, 532–545. [Google Scholar] [CrossRef]
- Pollmächer, T.; Haack, M.; Schuld, A.; Kraus, T.; Hinze-Selch, D. Effects of Antipsychotic Drugs on Cytokine Networks. J. Psychiatr. Res. 2000, 34, 369–382. [Google Scholar] [CrossRef]
- Boyajyan, A.; Khoyetsyan, A.; Chavushyan, A. Alternative Complement Pathway in Schizophrenia. Neurochem. Res. 2010, 35, 894–898. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Cai, J.; Chen, M.; Song, L. Complement 3 and Metabolic Syndrome Induced by Clozapine: A Cross-Sectional Study and Retrospective Cohort Analysis. Pharmacogenom. J. 2017, 17, 92–97. [Google Scholar] [CrossRef]
- Idonije, O.B.; Akinlade, K.S.; Ihenyen, O.; Arinola, O.G. Complement Factors in Newly Diagnosed Nigerian Schizoprenic Patients and Those on Antipsychotic Therapy. Niger. J. Physiol. Sci. 2012, 27, 19–21. [Google Scholar] [PubMed]
- Li, Y.; Zhou, K.; Zhang, Z.; Sun, L.; Yang, J.; Zhang, M.; Ji, B.; Tang, K.; Wei, Z.; He, G.; et al. Label-Free Quantitative Proteomic Analysis Reveals Dysfunction of Complement Pathway in Peripheral Blood of Schizophrenia Patients: Evidence for the Immune Hypothesis of Schizophrenia. Mol. Biosyst. 2012, 8, 2664–2671. [Google Scholar] [CrossRef] [PubMed]
- The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines. Available online: https://apps.who.int/iris/handle/10665/37958 (accessed on 1 October 2022).
- Sheehan, D.v.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The Development and Validation of a Structured Diagnostic Psychiatric Interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59 (Suppl. S20), 22–33. [Google Scholar]
- Shafer, A.; Dazzi, F. Meta-Analysis of the Positive and Negative Syndrome Scale (PANSS) Factor Structure. J. Psychiatr. Res 2019, 115, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.C.W. Global Assessment of Functioning: A Modified Scale. Psychosomatics 1995, 36, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Leucht, S.; Samara, M.; Heres, S.; Davis, J.M. Dose Equivalents for Antipsychotic Drugs: The DDD Method. Schizophr. Bull. 2016, 42, S90–S94. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F., Jr.; Anderson, R.E.; Babin, B.J.; Black, W.C. Multivariate Data Analysis: A Global Perspective, 7th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2010; ISBN 9780135153093. [Google Scholar]
- Wendt, H.W. Dealing with a Common Problem in Social Science: A Simplified Rank-biserial Coefficient of Correlation Based on the U Statistic. Eur. J. Soc. Psychol. 1972, 2, 463–465. [Google Scholar] [CrossRef]
- Mongan, D.; Sabherwal, S.; Susai, S.R.; Föcking, M.; Cannon, M.; Cotter, D.R. Peripheral Complement Proteins in Schizophrenia: A Systematic Review and Meta-Analysis of Serological Studies. Schizophr. Res. 2020, 222, 58–72. [Google Scholar] [CrossRef]
- Heurich, M.; Föcking, M.; Mongan, D.; Cagney, G.; Cotter, D.R. Dysregulation of Complement and Coagulation Pathways: Emerging Mechanisms in the Development of Psychosis. Mol. Psychiatry 2022, 27, 127–140. [Google Scholar] [CrossRef]
- Ali, F.T.; Abd El-Azeem, E.M.; Hamed, M.A.; Ali, M.A.M.; Abd Al-Kader, N.M.; Hassan, E.A. Redox Dysregulation, Immuno-Inflammatory Alterations and Genetic Variants of BDNF and MMP-9 in Schizophrenia: Pathophysiological and Phenotypic Implications. Schizophr. Res. 2017, 188, 98–109. [Google Scholar] [CrossRef]
- Ramsey, J.M.; Schwarz, E.; Guest, P.C.; van Beveren, N.J.M.; Leweke, F.M.; Rothermundt, M.; Bogerts, B.; Steiner, J.; Bahn, S. Distinct Molecular Phenotypes in Male and Female Schizophrenia Patients. PLoS ONE 2013, 8, e78729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sória, L.d.S.; Gubert, C.d.M.; Ceresér, K.M.; Gama, C.S.; Kapczinski, F. Increased Serum Levels of C3 and C4 in Patients with Schizophrenia Compared to Eutymic Patients with Bipolar Disorder and Healthy. Rev. Bras. Psiquiatr. 2012, 34, 119–120. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.T.; Tsoi, W.F.; Saha, N. Acute Phase Proteins in Male Chinese Schizophrenic Patients in Singapore. Schizophr. Res. 1996, 22, 165–171. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Li, N.; Wang, F.; Xiang, H.; Zhang, Z.; Su, Y.; Huang, Y.; Zhang, S.; Zhao, G.; et al. Plasma Levels of Th17-Related Cytokines and Complement C3 Correlated with Aggressive Behavior in Patients with Schizophrenia. Psychiatry Res. 2016, 246, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Cazzullo, C.L.; Saresella, M.; Roda, K.; Calvo, M.G.; Bertrando, P.; Doria, S.; Clerici, M.; Salvaggio, A.; Ferrante, P. Increased Levels of CD8+ and CD4+45RA+ Lymphocytes in Schizophrenic Patients. Schizophr. Res. 1998, 31, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, E.; Guest, P.C.; Rahmoune, H.; Harris, L.W.; Wang, L.; Leweke, F.M.; Rothermundt, M.; Bogerts, B.; Koethe, D.; Kranaster, L.; et al. Identification of a Biological Signature for Schizophrenia in Serum. Mol. Psychiatry 2012, 17, 494–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, W.; Zhao, M.; Li, H.; Peng, F.; Wang, F.; Li, N.; Xiang, H.; Su, Y.; Huang, Y.; Zhang, S.; et al. Higher Plasma S100B Concentrations in Schizophrenia Patients, and Dependently Associated with Inflammatory Markers. Sci. Rep. 2016, 6, 27584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laskaris, L.; Zalesky, A.; Weickert, C.S.; di Biase, M.A.; Chana, G.; Baune, B.T.; Bousman, C.; Nelson, B.; McGorry, P.; Everall, I.; et al. Investigation of Peripheral Complement Factors across Stages of Psychosis. Schizophr. Res. 2019, 204, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Waszczuk, K.; Kucharska-Mazur, J.; Tyburski, E.; Rek-Owodziń, K.; Plichta, P.; Rudkowski, K.; Podwalski, P.; Grąźlewski, T.; Mak, M.; Misiak, B.; et al. Psychopathology and Stem Cell Mobilization in Ultra-High Risk of Psychosis and First-Episode Psychosis Patients. Int. J. Environ. Res. Public Health 2022, 19, 6001. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, M.Z.; Pedziwiatr, D.; Cymer, M.; Kucia, M.; Kucharska-Mazur, J.; Samochowiec, J. Sterile Inflammation of Brain, Due to Activation of Innate Immunity, as a Culprit in Psychiatric Disorders. Front. Psychiatry 2018, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Kucharska-Mazur, J.; Ratajczak, M.Z.; Samochowiec, J. Stem Cells in Psychiatry. Adv. Exp. Med. Biol. 2019, 1201, 159–174. [Google Scholar] [CrossRef]
- Mayilyan, K.R.; Weinberger, D.R.; Sim, R.B. The Complement System in Schizophrenia. Drug News Perspect. 2008, 21, 200–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morera, A.L.; Henry, M.; García-Hernández, A.; Fernandez-López, L. Acute Phase Proteins as Biological Markers of Negative Psychopathology in Paranoid Schizophrenia. Actas Esp. Psiquiatr. 2007, 35, 249–252. [Google Scholar] [PubMed]
- Robertson, D.A.; Hargreaves, A.; Kelleher, E.B.; Morris, D.; Gill, M.; Corvin, A.; Donohoe, G. Social Dysfunction in Schizophrenia: An Investigation of the GAF Scale’s Sensitivity to Deficits in Social Cognition. Schizophr. Res. 2013, 146, 363–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Schizophrenia Patients (n = 62) | Healthy Controls (n = 25) | t/Z/χ2 | p/p-Corrected | d/rU |
---|---|---|---|---|---|
Age: M (SD) | 39.54 (6.78) | 34.08 (8.08) | 3.11 a | 0.003/0.008 | 0.67 d |
Years of education: M (SD) | 13.28 (2.79) | 14.60 (2.47) | −1.99 b | 0.046/0.046 | 0.28 e |
Sex: female/male | 24/38 | 13/12 | 1.29 c | 0.257/- | - |
BMI: M (SD) | 28.01 (4.76) | 24.97 (3.59) | −2.71 b | 0.007/0.014 | 0.46 e |
Antipsychotic medications: | |||||
Atypical: n (%) | 43 (69.40) | - | - | - | - |
Atypical and typical: n (%) | 16 (25.80) | - | - | - | - |
Typical: n (%) | 2 (3.20) | - | - | - | - |
No medications: n (%) | 1 (1.60) | - | - | - | - |
Chlorpromazine equivalent (mg): M (SD) | 686.19 (298.76) | Min-Max = 0.00–1500.00 | |||
Duration of illness: M (SD) | 15.32 (5.50) | Min-Max = 10–28 | |||
Exacerbation: M (SD) | 6.26 (3.70) | Min-Max = 1–24 | |||
Global functioning in GAF: M (SD) | 55.64 (14.70) | Min-Max = 25–88 | |||
Positive Symptoms in PANSS: M (SD) | 7.89 (3.89) | Min-Max = 5–22 | |||
Negative Symptoms in PANSS: M (SD) | 17.45 (6.43) | Min-Max = 7–34 | |||
Cognitive/Disorganization in PANSS: M (SD) | 12.23 (3.95) | Min-Max = 8–27 | |||
Depression/anxiety in PANSS: M (SD) | 8.66 (3.41) | Min-Max = 5–18 | |||
Hostility in PANSS: M (SD) | 4.74 (2.10) | Min-Max = 4–19 | |||
Psychopathology in PANSS: M (SD) | 53.10 (13.10) | Min-Max = 31–109 |
Schizophrenia Patients (n = 62) | Healthy Controls (n = 25) | Z | p/p-Corrected | rU | |
---|---|---|---|---|---|
C3a [ng/mL]: M (SD) | 724.98 (663.80) | 226.22 (100.70) | −4.44 a | 0.000/0.000 | 0.61 b |
C5a [ng/mL]: M (SD) | 6.06 (2.91) | 4.39 (2.00) | −2.58 a | 0.010/0.020 | 0.35 b |
C5b-9 [ng/mL]: M (SD) | 454.71 (264.19) | 343.74 (153.67) | −1.97 a | 0.049/0.049 | 0.27 b |
Variable | Positive Symptoms in PANSS | Negative Symptoms in PANSS | Cognitive/ Disorganization in PANSS | Depression/ Anxiety in PANSS | Hostility in PANSS | Psychopathology in PANSS | Global Functioning in GAF | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rho | p-Corrected | rho | p-Corrected | rho | p-Corrected | rho | p-Corrected | rho | p-Corrected | rho | p-Corrected | rho | p-Corrected | |
C3a | 0.01 | 1.000 | −0.21 | 0.768 | −0.09 | 1.000 | −0.10 | 1.000 | 0.10 | 1.000 | −0.17 | 1.000 | 0.46 | 0.000 |
C5a | −0.02 | 1.000 | −0.09 | 1.000 | −0.06 | 1.000 | −0.20 | 1.000 | 0.07 | 1.000 | −0.11 | 1.000 | 0.19 | 0.828 |
C5b−9 | −0.07 | 1.000 | −0.33 | 0.081 | −0.10 | 1.000 | 0.01 | 1.000 | 0.23 | 0.621 | −0.17 | 1.000 | 0.41 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudkowski, K.; Waszczuk, K.; Tyburski, E.; Rek-Owodziń, K.; Plichta, P.; Podwalski, P.; Bielecki, M.; Mak, M.; Michalczyk, A.; Tarnowski, M.; et al. Complement Activation Products in Patients with Chronic Schizophrenia. J. Clin. Med. 2023, 12, 1577. https://doi.org/10.3390/jcm12041577
Rudkowski K, Waszczuk K, Tyburski E, Rek-Owodziń K, Plichta P, Podwalski P, Bielecki M, Mak M, Michalczyk A, Tarnowski M, et al. Complement Activation Products in Patients with Chronic Schizophrenia. Journal of Clinical Medicine. 2023; 12(4):1577. https://doi.org/10.3390/jcm12041577
Chicago/Turabian StyleRudkowski, Krzysztof, Katarzyna Waszczuk, Ernest Tyburski, Katarzyna Rek-Owodziń, Piotr Plichta, Piotr Podwalski, Maksymilian Bielecki, Monika Mak, Anna Michalczyk, Maciej Tarnowski, and et al. 2023. "Complement Activation Products in Patients with Chronic Schizophrenia" Journal of Clinical Medicine 12, no. 4: 1577. https://doi.org/10.3390/jcm12041577
APA StyleRudkowski, K., Waszczuk, K., Tyburski, E., Rek-Owodziń, K., Plichta, P., Podwalski, P., Bielecki, M., Mak, M., Michalczyk, A., Tarnowski, M., Sielatycka, K., Budkowska, M., Łuczkowska, K., Dołęgowska, B., Ratajczak, M. Z., Samochowiec, J., Kucharska-Mazur, J., & Sagan, L. (2023). Complement Activation Products in Patients with Chronic Schizophrenia. Journal of Clinical Medicine, 12(4), 1577. https://doi.org/10.3390/jcm12041577