Early vs. Late Readmission following Percutaneous Coronary Intervention: Predictors and Impact on Long-Term Outcomes
Abstract
:1. Introduction
2. Methods
3. Ethics and Informed Consent
4. Data Collection
5. Statistics
6. Results
7. Predictors of Unplanned Readmission
8. Predictors of Early vs. Late Unplanned Readmission
9. Long-Term Outcomes
10. Impact of Early vs. Late Readmission on Long-Term Outcomes
11. Discussion
12. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC); the European Association for Cardio-Thoracic Surgery (EACTS). Guidelines on myocardial revascularization. Eur. Heart J. 2010, 31, 2501–2555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuntz, M.; Palak, A. Recent trends in percutaneous coronary intervention volume in the United States. Value Health 2016, 19, A641. [Google Scholar] [CrossRef]
- Australian Commission on Safety and Quality in Health Care. Exploring Healthcare Variation in Australia: Analyses Resulting from an OECD Study 2014; Australian Commission on Safety and Quality in Health Care: Sydney, Australia, 2014; ISBN Print: 978-1-921983-67-2; ISBN Online: 978-1-921983-68-9.
- Tripathi, A.; Abbott, J.D.; Fonarow, G.C.; Khan, A.R.; Barry, N.G.; Ikram, S.; Coram, R.; Mathew, V.; Kirtane, A.J.; Nallamothu, B.K.; et al. Thirty-Day Readmission Rate and Costs after Percutaneous Coronary Intervention in the United States: A National Readmission Database Analysis. Circ. Cardiovasc. Interv. 2017, 10, e005925. [Google Scholar] [CrossRef]
- Kwok, C.S.; Rao, S.V.; Potts, J.E.; Kontopantelis, E.; Rashid, M.; Kinnaird, T.; Curzen, N.; Nolan, J.; Bagur, R.; Mamas, M.A. Burden of 30-Day Readmissions After Percutaneous Coronary Intervention in 833,344 Patients in the United States: Predictors, Causes, and Cost Insights From the Nationwide Readmission Database. JACC Interv. 2018, 11, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Kwok, C.S.; Hulme, W.; Olier, I.; Holroyd, E.; Mamas, M.A. Review of early hospitalisation after percutaneous coronary intervention. Int. J. Cardiol. 2017, 227, 370–377. [Google Scholar] [CrossRef]
- Yost, G.W.; Puher, S.L.; Graham, J.; Scott, T.D.; Skelding, K.A.; Berger, P.B.; Blankenship, J.C. Readmission in the 30 days after percutaneous coronary intervention. JACC Cardiovasc. Interv. 2013, 6, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Moretti, C.; D’Ascenzo, F.; Omede, P.; Sciuto, F.; Presutti, D.G.; Di Cuia, M.; Colaci, C.; Giusto, F.; Ballocca, F.; Cerrato, E.; et al. Thirty-day readmission rates after PCI in a metropolitan center in Europe: Incidence and impact on prognosis. J. Cardiovasc. Med. 2015, 16, 238–245. [Google Scholar] [CrossRef]
- Kwok, C.S.; Khan, M.A.; Rao, S.V.; Kinnaird, T.; Sperrin, M.; Buchan, I.; de Belder, M.A.; Ludman, P.F.; Nolan, J.; Loke, Y.K.; et al. Access and non-access site bleeding after percutaneous coronary intervention and risk of subsequent mortality and major adverse cardiovascular events: Systematic review and meta-analysis. Circ. Cardiovasc. Interv. 2015, 8, e001645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patient Protection and Affordable Care Act; Public Law No. 111-148; U.S. Government Publishing Office: Washington, DC, USA, 2010.
- Robinson, P. Hospital Readmissions and the 30-Day Threshold, 2010. ACHKS Market Intelligence Report 2010. Available online: http://www.chks.co.uk/userfiles/files/CHKS%20Report%20Hospital%20readmissions.pdf (accessed on 1 August 2021).
- Tanguturi, V.K.; Temin, E.; Yeh, R.W.; Thompson, R.W.; Rao, S.K.; Mallick, A.; Cavallo, E.; Ferris, T.G.; Wasfy, J.H. Clinical Interventions to Reduce Preventable Hospital Readmission After Percutaneous Coronary Intervention. Circ. Cardiovasc. Qual. Outcomes 2016, 9, 600–604. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Dinh, D.; Lucas, M.; Duffy, S.J.; Brennan, A.L.; Liew, D.; Cox, N.; Nadurata, V.; Reid, C.M.; Lefkovits, J.; et al. Incidence and Predictors of Unplanned Hospital Readmission after Percutaneous Coronary Intervention. J. Clin. Med. 2020, 9, 3242. [Google Scholar] [CrossRef]
- Eccleston, D.; Horrigan, M.; Rafter, T.; Holt, G.; Worthley, S.G.; Sage, P.; Whelan, A.; Reid, C.; Thompson, P.L. Improving Guideline Compliance in Australia With a National Percutaneous Coronary Intervention Outcomes Registry. Heart Lung Circ. 2017, 26, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- EQ-5DTM. Available online: http://www.euroqol.org/ (accessed on 21 February 2022).
- Morisky, D.; Ang, A.; Krousel-Wood, M.; Ward, H. Predictive Validity of A Medication Adherence Measure in an Outpatient Setting. J. Clin. Hypertens. 2008, 10, 348–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, L. The National E-Health Transition Authority (NEHTA). Health Inf. Manag. 2005, 34, 19–20. [Google Scholar] [CrossRef]
- Kwok, C.S.; Shah, B.; Al-Suwaidi, J.; Fischman, D.L.; Holmvang, L.; Alraies, C.; Bagur, R.; Nagaraja, V.; Rashid, M.; Mohamed, M.; et al. Timing and Causes of Unplanned Readmissions After Percutaneous Coronary Intervention: Insights From the Nationwide Readmission Database. JACC Cardiovasc. Interv. 2019, 12, 734–748. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.N.; Bendix, K.; Antonsen, L.; Veien, K.T.; Mæng, M.; Junker, A.; Christiansen, E.H.; Kahlert, J.; Terkelsen, C.J.; Christensen, L.B.; et al. One-year rehospitalisation after percutaneous coronary intervention: A retrospective analysis. EuroIntervention 2018, 14, 926–934. [Google Scholar] [CrossRef] [Green Version]
- Kwok, C.W.; Narain, A.; Pacha, H.M.; Lo, T.S.; Holroyd, E.W.; Alraies, M.C.; Nolan, J.; Mamas, M.A. Readmissions to Hospital After Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis of Factors Associated with Readmissions. Cardiovasc. Revascularization Med. 2020, 21, 375–391. [Google Scholar] [CrossRef]
- Khawaja, F.J.; Shah, N.D.; Lennon, R.J.; Slusser, J.P.; Alkatib, A.A.; Rihal, C.S.; Gersh, B.J.; Montori, V.M.; Holmes, D.R.; Bell, M.R.; et al. Factors Associated With 30-Day Readmission Rates After Percutaneous Coronary Intervention. Arch Intern Med. 2012, 172, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Généreux, P.; Giustino, G.; Witzenbichler, B.; Weisz, G.; Stuckey, T.D.; Rinaldi, M.J.; Neumann, F.J.; Metzger, D.C.; Henry, T.D.; Cox, D.A.; et al. Incidence, Predictors, and Impact of Post-Discharge Bleeding After Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2015, 66, 1036–1045. [Google Scholar] [CrossRef] [Green Version]
- Masoudi, F.A.; Ponirakis, A.; de Lemos, J.A.; Jollis, J.G.; Kremers, M.; Messenger, J.C.; Moore, J.W.M.; Moussa, I.; Oetgen, W.J.; Varosy, P.D.; et al. Trends in U.S. Cardiovascular Care: 2016 Report From 4 ACC National Cardiovascular Data Registries. J. Am. Coll. Cardiol. 2017, 69, 1427–1450. [Google Scholar] [CrossRef]
- Taylor, J. SWEDEHEART: Sweden’s new online cardiac registry, the first of its kind. Eur. Heart J. 2009, 30, 2165–2173. [Google Scholar]
- Biswas, S.; Dinh, D.; Duffy, S.J.; Brennan, A.; Liew, D.; Chan, W.; Cox, N.; Reid, C.M.; Lefkovits, J.; Stub, D. Characteristics and outcomes of unsuccessful percutaneous coronary intervention. Catheter Cardiovasc Interv. 2022, 99, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Stromberg, A.; Martensson, J.; Fridlund, B.; Levin, L.A.; Karlsson, J.E.; Dahlstrom, U. Nurse-led heart failure clinics improve survival and self-care behaviour in patients with heart failure: Results from a prospective, randomised trial. Eur. Heart J. 2003, 24, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Kwok, C.S.; Rao, S.V.; Gilchrist, I.; Martinez, S.C.; Al Ayoubi, F.; Potts, J.; Rashid, M.; Kontopantelis, E.; Myint, P.K.; Mamas, M.A. Relation Between Age and Unplanned Readmissions After Percutaneous Coronary Intervention (Findings from the Nationwide Readmission Database). Am. J. Cardiol. 2018, 122, 220–228. [Google Scholar] [CrossRef]
- Wu, C.; Camacho, F.T.; King, I.I.I.S.B.; Walford, G.; Holmes, D.R., Jr.; Stamato, N.J.; Berger, P.B.; Sharma, S.B.; Curtis, J.P.; Venditti, F.J.; et al. Risk Stratification for Long-Term Mortality After Percutaneous Coronary Intervention. Circ. Cardiovasc. Interv. 2014, 7, 80–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moretti, C.; Meynet, I.; D’Ascenzo, F.; Omede, P.; Barbero, U.; Quadri, G.; Ballocca, F.; Zoccai, G.B.; Gaita, F. Sixty-day readmission rate after percutaneous coronary intervention: Predictors and impact on long-term outcomes. Eur. Heart J. Qual. Care Clin. Outcomes 2015, 1, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Eccleston, D.; Morton, A.; Chowdhury, E.; Sage, P.; Conradie, A.; Rafter, T.; Delacroix, S.; Duong, M.; Chandrasekhar, J. Do Rural-Urban Disparities in Patient Characteristics Predict Outcomes After Percutaneous Coronary Intervention? Results From a Large Australian Registry. Heart Lung Circ. 2021, 30, S299–S300. [Google Scholar] [CrossRef]
- Murali-Krishnan, R.; Iqbal, J.; Rowe, R.; Hatem, E.; Parviz, Y.; Richardson, J.; Sultan, A.; Gunn, J. Impact of frailty on outcomes after percutaneous coronary intervention: A prospective cohort study. Open Heart 2015, 2, e000294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Unplanned Readmission ≤30 Days | Unplanned Readmission 31 Days–1 Year | |||||
---|---|---|---|---|---|---|
Characteristics | No | Yes | p-Value | No | Yes | p-Value |
N (%) | 16,237 | 403 | 12,806 | 1071 | ||
Age, yr, mean (±SD) | 68.8 (10.5) | 69.7 (11.5) | 0.10 | 68.5 (10.5) | 69.3 (10.6) | 0.02 |
Male | 12,383 (76.3%) | 291 (72.2%) | 0.045 | 9842 (76.9%) | 782 (73.0%) | 0.004 |
Diabetes | 4007 (24.7%) | 88 (21.8%) | 0.18 | 3071 (24.0%) | 297 (27.7%) | 0.005 |
Hypertension | 11,683 (72.0%) | 315 (78.2%) | 0.01 | 9225 (72.0%) | 835 (78.0%) | <0.001 |
Hypercholesterolaemia 1 | 13,083 (80.6%) | 332 (82.4%) | 0.36 | 10,405 (81.3%) | 899 (83.9%) | 0.06 |
CAD family history | 5738 (35.3%) | 125 (31.0%) | 0.06 | 4671 (36.5%) | 394 (36.8%) | 0.91 |
Smoking ever | 8282 (51.0%) | 212 (52.6%) | 0.87 | 6730 (52.6%) | 568 (53.0%) | 0.79 |
BMI, kg/m2, mean (±SD) | 29.0 (5.0) | 28.7 (5.2) | 0.29 | 28.9 (5.0) | 28.9 (4.7) | 0.76 |
Heart failure | 1079 (6.6%) | 48 (11.9%) | <0.001 | 831 (6.5%) | 103 (9.6%) | <0.001 |
Prior MI | 3533 (21.8%) | 106 (26.3%) | 0.04 | 2789 (21.8%) | 285 (26.6%) | <0.001 |
Prior PCI | 5271 (32.5%) | 140 (34.7%) | 0.30 | 4106 (32.1%) | 410 (38.3%) | <0.001 |
PVD | 1161 (7.2%) | 37 (9.2%) | 0.14 | 913 (7.1%) | 109 (10.2%) | <0.001 |
Prior stroke/TIA | 1036 (6.4%) | 32 (7.9%) | 0.24 | 819 (6.4%) | 112 (10.5%) | <0.001 |
Prior CABG | 1678 (10.3%) | 61 (15.1%) | 0.002 | 1315 (10.3%) | 201 (18.8%) | <0.001 |
Prior AF | 1791 (14.2%) | 70 (22.2%) | <0.001 | 1282 (13.1%) | 180 (22.8%) | <0.001 |
Renal failure 2 | 828 (5.8%) | 36 (10.1%) | <0.001 | 623 (5.5%) | 69 (7.2%) | 0.02 |
Clinical presentation | <0.001 | <0.001 | ||||
STEMI | 1113 (6.9%) | 30 (7.4%) | 912 (7.1%) | 51 (4.8%) | ||
NSTEMI | 3452 (21.3%) | 128 (31.8%) | 2720 (21.2%) | 218 (20.4%) | ||
UAP | 2479 (15.3%) | 72 (17.9%) | 1998 (15.6%) | 232 (21.7%) | ||
Elective | 8394 (51.7%) | 160 (39.7%) | 6765 (52.8%) | 537 (50.1%) | ||
Cardiogenic shock | 58 (0.4%) | 1 (0.2%) | 0.72 | 44 (0.3%) | 2 (0.2%) | 0.39 |
Unplanned Readmission ≤30 Days | Unplanned Readmission 31 Days–1 Year | |||||
---|---|---|---|---|---|---|
Characteristics | No | Yes | p-Value | No | Yes | p-Value |
N (%) | 16,237 | 403 | 12,806 | 1071 | ||
Lesion access site | 0.54 | <0.001 | ||||
Brachial | 48 (0.3%) | 0 (0.0%) | 40 (0.3%) | 3 (0.3%) | ||
Radial | 7177 (44.2%) | 178 (44.2%) | 5125 (40.0%) | 341 (31.8%) | ||
Femoral | 8824 (54.3%) | 222 (55.1%) | 7580 (59.2%) | 720 (67.2%) | ||
Lesion type | 0.10 | <0.001 | ||||
De novo | 13,496 (83.1%) | 332 (82.4%) | 10,914 (85.2%) | 891 (83.2%) | ||
In stent restenosis | 748 (4.6%) | 29 (7.2%) | 579 (4.5%) | 88 (8.2%) | ||
Restenosis | 90 (0.6%) | 3 (0.7%) | 50 (0.4%) | 6 (0.6%) | ||
Other | 1903 (11.7%) | 39 (9.6%) | 1263 (9.7%) | 86 (8.0%) | ||
ACC/AHA morphology | 0.85 | 0.88 | ||||
A | 1834 (14.1) | 50 (15.2%) | 1452 (13.4%) | 118 (12.9%) | ||
B1 | 4528 (34.7%) | 113 (34.2%) | 3846 (35.6%) | 323 (35.3%) | ||
B2/C | 6685 (51.2%) | 167 (50.6%) | 5511 (50.9%) | 472 (51.6%) | ||
Target vessel | 0.12 | <0.001 | ||||
RCA | 4312 (26.6%) | 107 (26.6%) | 3480 (27.2%) | 248 (23.2%) | ||
LMCA | 227 (1.4%) | 8 (2.0%) | 171 (1.3%) | 17 (1.6%) | ||
LAD | 6025 (37.1%) | 127 (31.5%) | 4796 (37.5%) | 385 (35.9%) | ||
LCx | 2960 (18.2%) | 84 (20.8%) | 2346 (18.3%) | 205 (19.1%) | ||
Bypass | 400 (2.5%) | 14 (3.5%) | 312 (2.4%) | 61 (5.7%) | ||
Other | 2313 (14.2%) | 63 (15.6%) | 1701 (13.3%) | 155 (14.5%) | ||
Total occlusion | 664 (4.6%) | 19 (5.1%) | 0.61 | 532 (4.5%) | 53 (5.3%) | 0.29 |
Multivessel disease | 7258 (44.7%) | 202 (50.1%) | 0.03 | 5633 (44.0%) | 499 (46.6%) | 0.12 |
Bifurcation lesion | 1449 (10.0%) | 43 (11.7%) | 0.29 | 1139 (9.8%) | 105 (10.5%) | 0.45 |
Stent length, mm (mean ± SD) | 19.2 (6.7) | 18.5 (6.7) | 0.04 | 19.1 (6.6) | 18.8 (6.4) | 0.26 |
Stent diam., mm (mean ± SD) | 3.0 (0.5) | 3.0 (0.5) | 0.54 | 3.0 (0.5) | 2.9 (0.5) | <0.001 |
Major bleeding (BARC 3–5) | 50 (0.3%) | 2 (0.5%) | 0.50 | 47 (0.4%) | 0 (0.0%) | 0.047 |
Unplanned Readmission ≤30 Days | Unplanned Readmission 31 Days–1 Year | |||||
---|---|---|---|---|---|---|
Characteristics | No | Yes | p-Value | No | Yes | p-Value |
N (%) | 16,237 | 403 | 12,806 | 1071 | ||
Aspirin | 15,437 (96.5%) | 382 (96.7%) | 0.88 | 12,326 (97.1%) | 1021 (96.0%) | 0.06 |
P2Y12 * | 14,498 (90.5%) | 369 (92.9%) | 0.11 | 11,653 (91.7%) | 990 (93.2%) | 0.08 |
Statin | 14,647 (93.1%) | 354 (91.0%) | 0.18 | 11,796 (93.6%) | 973 (92.1%) | 0.15 |
Statin contra-indicated | 112 (0.7%) | 5 (1.2%) | 86 (0.7%) | 8 (0.7%) | ||
Beta-blocker | 8983 (55.3%) | 219 (54.3%) | 0.55 | 7270 (56.8%) | 607 (56.7%) | 0.99 |
ACEI/ARB | 10,625 (65.4%) | 268 (66.5%) | 0.48 | 8567 (66.9%) | 714 (66.7%) | 0.72 |
Characteristic | Unplanned Readmission ≤30 Days | Unplanned Readmission 31 Days–1 Year | ||||
---|---|---|---|---|---|---|
Odds Ratio | 95% CI | p-Value | Odds Ratio | 95% CI | p-Value | |
Clinical | ||||||
Age (years) | 1.00 | 0.98–1.01 | 0.55 | 0.99 | 0.98–1.0 | 0.046 |
Male | 0.70 | 0.54–0.96) | 0.03 | 0.80 | 0.64–0.98 | 0.03 |
Diabetes mellitus | - | - | - | 0.94 | 0.76–1.16 | 0.58 |
Hypertension | 1.13 | 0.80–1.60 | 0.47 | 1.22 | 0.97–1.52 | 0.09 |
Hypercholesterolemia | - | - | - | 1.11 | 0.84–1.46 | 0.47 |
Heart failure | 1.37 | 0.82–2.20 | 0.20 | 1.08 | 0.77–1.50 | 0.67 |
Previous MI | 0.99 | 0.70–1.40 | 0.95 | 0.93 | 0.74–1.18 | 0.56 |
Previous PCI | - | - | - | 0.97 | 0.78–1.21 | 0.79 |
Peripheral vascular disease | - | - | - | 1.37 | 1.01–1.85 | 0.04 |
Previous CABG | 1.31 | 0.84–2.03 | 0.24 | 1.83 | 1.36–2.46 | <0.001 |
Atrial fibrillation | 1.74 | 1.33–2.49 | 0.002 | 1.91 | 1.51–2.40 | <0.001 |
Renal impairment | 1.54 | 0.95–2.5 | 0.08 | 1.30 | 0.92–1.84 | 0.13 |
Presentation | ||||||
NSTEMI | 1.18 | 0.67–2.10 | 0.57 | 1.23 | 0.80–1.90 | 0.35 |
UAP | 1.23 | 0.67–2.25 | 0.50 | 1.61 | 1.03–2.50 | 0.03 |
Elective | 0.69 | 0.39–1.21 | 0.20 | 1.13 | 0.74–1.71 | 0.58 |
Procedural | ||||||
In-stent restenosis | 1.29 | 0.70–2.37 | 0.42 | 1.55 | 1.06–2.27 | 0.03 |
LAD | - | - | - | 1.29 | 1.03–1.61 | 0.03 |
Bypass | - | - | - | 1.97 | 1.22–3.18 | 0.01 |
Multivessel disease | 1.33 | 1.0–1.76 | 0.05 | |||
Stent diameter (per unit) | - | - | - | 0.77 | 0.63–0.93 | 0.01 |
Aspirin use at discharge | - | - | - | 0.70 | 0.41–1.20 | 0.20 |
P2Y12 inhib. at discharge | - | - | - | 0.50 | 0.27–0.93 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eccleston, D.; Duong, M.-N.; Chowdhury, E.; Schwarz, N.; Reid, C.; Liew, D.; Conradie, A.; Worthley, S.G. Early vs. Late Readmission following Percutaneous Coronary Intervention: Predictors and Impact on Long-Term Outcomes. J. Clin. Med. 2023, 12, 1684. https://doi.org/10.3390/jcm12041684
Eccleston D, Duong M-N, Chowdhury E, Schwarz N, Reid C, Liew D, Conradie A, Worthley SG. Early vs. Late Readmission following Percutaneous Coronary Intervention: Predictors and Impact on Long-Term Outcomes. Journal of Clinical Medicine. 2023; 12(4):1684. https://doi.org/10.3390/jcm12041684
Chicago/Turabian StyleEccleston, David, My-Ngan Duong, Enayet Chowdhury, Nisha Schwarz, Christopher Reid, Danny Liew, Andre Conradie, and Stephen G. Worthley. 2023. "Early vs. Late Readmission following Percutaneous Coronary Intervention: Predictors and Impact on Long-Term Outcomes" Journal of Clinical Medicine 12, no. 4: 1684. https://doi.org/10.3390/jcm12041684
APA StyleEccleston, D., Duong, M.-N., Chowdhury, E., Schwarz, N., Reid, C., Liew, D., Conradie, A., & Worthley, S. G. (2023). Early vs. Late Readmission following Percutaneous Coronary Intervention: Predictors and Impact on Long-Term Outcomes. Journal of Clinical Medicine, 12(4), 1684. https://doi.org/10.3390/jcm12041684