Methods for the Inclusion of Real-World Evidence in a Rare Events Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design Overview
2.2. Illustrative Example Dataset
2.3. Methods for Incorporating RWE in a Rare Events Meta-Analysis of RCTs
2.3.1. The Naïve Data Synthesis
2.3.2. The Design-Adjusted Synthesis
2.3.3. The Use of Real-World Evidence as Prior Information
2.3.4. The Three-Level Hierarchical Model
2.4. Implementation and Model Fit
3. Results
3.1. Effectiveness of PPV23 Vaccination against IPD in Elderly Patients
3.2. Risk of DKA among Users Receiving SGLT-2 Inhibitors Versus Active Comparators
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zabor, E.C.; Kaizer, A.M.; Hobbs, B.P. Randomized Controlled Trials. Chest 2020, 158, S79–S87. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Li, L.; Lin, L.; Chu, H.; Thabane, L.; Zou, K.; Sun, X. Exclusion of studies with no events in both arms in meta-analysis impacted the conclusions. J. Clin. Epidemiol. 2020, 123, 91–99. [Google Scholar] [CrossRef]
- Hodkinson, A.; Kontopantelis, E. Applications of simple and accessible methods for meta-analysis involving rare events: A simulation study. Stat. Methods Med. Res. 2021, 30, 1589–1608. [Google Scholar] [CrossRef]
- Jia, P.; Lin, L.; Kwong, J.; Xu, C. Many meta-analyses of rare events in the Cochrane Database of Systematic Reviews were underpowered. J. Clin. Epidemiol. 2020, 131, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Sherman, R.E.; Anderson, S.A.; Dal Pan, G.J.; Gray, G.W.; Gross, T.; Hunter, N.L.; LaVange, L.; Marinac-Dabic, D.; Marks, P.W.; Robb, M.A.; et al. Real-World Evidence—What Is It and What Can It Tell Us? N. Engl. J. Med. 2016, 375, 2293–2297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Tan, J.; Tang, L.; Guo, J.J.; Li, X. Real world evidence: Experience and lessons from China. BMJ 2018, 360, j5262. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.P.; Wing, K.; Evans, S.J.; Bhaskaran, K.; Smeeth, L.; Douglas, I.J. Use of real-world evidence in postmarketing medicines regulation in the European Union: A systematic assessment of European Medicines Agency referrals 2013–2017. BMJ Open 2019, 9, e028133. [Google Scholar] [CrossRef]
- Bolislis, W.R.; Fay, M.; Kühler, T.C. Use of Real-world Data for New Drug Applications and Line Extensions. Clin. Ther. 2020, 42, 926–938. [Google Scholar] [CrossRef]
- Wu, J.; Wang, C.; Toh, S.; Pisa, F.E.; Bauer, L. Use of real-world evidence in regulatory decisions for rare diseases in the United States-Current status and future directions. Pharm. Drug Saf. 2020, 29, 1213–1218. [Google Scholar] [CrossRef]
- Douros, A.; Lix, L.M.; Fralick, M.; Dell’Aniello, S.; Shah, B.R.; Ronksley, P.E.; Tremblay, É.; Hu, N.; Alessi-Severini, S.; Fisher, A.; et al. Sodium-Glucose Cotransporter-2 Inhibitors and the Risk for Diabetic Ketoacidosis: A Multicenter Cohort Study. Ann. Intern. Med. 2020, 173, 417–425. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Deng, K.; Liu, J.; Vandvik, P.O.; Zhao, P.; Zhang, L.; Shen, J.; Bala, M.M.; Sohani, Z.N.; et al. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: Systematic review and meta-analysis of randomised and observational studies. BMJ 2016, 352, i610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutton, B.; Joseph, L.; Fergusson, D.; Mazer, C.D.; Shapiro, S.; Tinmouth, A. Risks of harms using antifibrinolytics in cardiac surgery: Systematic review and network meta-analysis of randomised and observational studies. BMJ 2012, 345, e5798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuello-Garcia, C.A.; Santesso, N.; Morgan, R.L.; Verbeek, J.; Thayer, K.; Ansari, M.T.; Meerpohl, J.; Schwingshackl, L.; Katikireddi, S.V.; Brozek, J.L.; et al. GRADE Guidance 24. Optimizing the integration of randomized and non-randomized studies of interventions in evidence syntheses and health guidelines. J. Clin. Epidemiol. 2022, 142, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.A.; Hussein, H.; Martina, R.; Dequen-O’Byrne, P.; Abrams, K.R.; Bujkiewicz, S. Methods for the inclusion of real-world evidence in network meta-analysis. BMC Med. Res. Methodol. 2021, 21, 207. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; He, W.; Wang, H.; Wu, M. Key considerations in the design of real-world studies. Contemp. Clin. Trials. 2020, 96, 106091. [Google Scholar] [CrossRef]
- Zhang, K.; Arora, P.; Sati, N.; Béliveau, A.; Troke, N.; Veroniki, A.A.; Rodrigues, M.; Rios, P.; Zarin, W.; Tricco, A.C. Characteristics and methods of incorporating randomized and nonrandomized evidence in network meta-analyses: A scoping review. J. Clin. Epidemiol. 2019, 113, 1–10. [Google Scholar] [CrossRef]
- Sarri, G.; Patorno, E.; Yuan, H.; Guo, J.J.; Bennett, D.; Wen, X.; Zullo, A.R.; Largent, J.; Panaccio, M.; Gokhale, M.; et al. Framework for the synthesis of non-randomised studies and randomised controlled trials: A guidance on conducting a systematic review and meta-analysis for healthcare decision making. BMJ Evid. Based Med. 2020, 27, 109–119. [Google Scholar] [CrossRef]
- Verde, P.E.; Ohmann, C. Combining randomized and non-randomized evidence in clinical research: A review of methods and applications. Res. Synth Methods 2015, 6, 45–62. [Google Scholar] [CrossRef]
- Verde, P.E. A bias-corrected meta-analysis model for combining, studies of different types and quality. Biom. J. 2021, 63, 406–422. [Google Scholar] [CrossRef]
- Efthimiou, O.; Mavridis, D.; Debray, T.P.; Samara, M.; Belger, M.; Siontis, G.C.; Leucht, S.; Salanti, G. GetReal Work Package 4. Combining randomized and non-randomized evidence in network meta-analysis. Stat. Med. 2017, 36, 1210–1226. [Google Scholar] [CrossRef]
- Alkabbani, W.; Pelletier, R.; Gamble, J.M. Sodium/Glucose Cotransporter 2 Inhibitors and the Risk of Diabetic Ketoacidosis: An Example of Complementary Evidence for Rare Adverse Events. Am. J. Epidemiol. 2021, 190, 1572–1581. [Google Scholar] [CrossRef]
- Falkenhorst, G.; Remschmidt, C.; Harder, T.; Hummers-Pradier, E.; Wichmann, O.; Bogdan, C. Effectiveness of the 23-Valent Pneumococcal Polysaccharide Vaccine (PPV23) against Pneumococcal Disease in the Elderly: Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0169368. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P.; Ga, S.W. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 10 February 2023).
- Honkanen, P.O.; Keistinen, T.; Miettinen, L.; Herva, E.; Sankilampi, U.; Läärä, E.; Leinonen, M.; Kivelä, S.L.; Mäkelä, P.H. Incremental effectiveness of pneumococcal vaccine on simultaneously administered influenza vaccine in preventing pneumonia and pneumococcal pneumonia among persons aged 65 years or older. Vaccine 1999, 17, 2493–2500. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, T.; Taguchi, O.; Niederman, M.S.; Morser, J.; Kobayashi, H.; Kobayashi, T.; D’Alessandro-Gabazza, C.; Nakayama, S.; Nishikubo, K.; Noguchi, T.; et al. Efficacy of 23-valent pneumococcal vaccine in preventing pneumonia and improving survival in nursing home residents: Double blind, randomised and placebo controlled trial. BMJ 2010, 340, c1004. [Google Scholar] [CrossRef] [Green Version]
- Ortqvist, A.; Hedlund, J.; Burman, L.A.; Elbel, E.; Höfer, M.; Leinonen, M.; Lindblad, I.; Sundelöf, B.; Kalin, M. Randomised trial of 23-valent pneumococcal capsular polysaccharide vaccine in prevention of pneumonia in middle-aged and elderly people. Swedish Pneumococcal Vaccination Study Group. Lancet 1998, 351, 399–403. [Google Scholar] [CrossRef]
- Hechter, R.C.; Chao, C.; Jacobsen, S.J.; Slezak, J.M.; Quinn, V.P.; Van Den Eeden, S.K.; Tseng, H.F. Clinical effectiveness of pneumococcal polysaccharide vaccine in men: California Men’s Health Study. Vaccine 2012, 30, 5625–5630. [Google Scholar] [CrossRef]
- Jackson, L.A.; Neuzil, K.M.; Yu, O.; Benson, P.; Barlow, W.E.; Adams, A.L.; Hanson, C.A.; Mahoney, L.D.; Shay, D.K.; Thompson, W.W. Effectiveness of pneumococcal polysaccharide vaccine in older adults. N. Engl. J. Med. 2003, 348, 1747–1755. [Google Scholar] [CrossRef] [Green Version]
- Ochoa-Gondar, O.; Vila-Corcoles, A.; Rodriguez-Blanco, T.; Gomez-Bertomeu, F.; Figuerola-Massana, E.; Raga-Luria, X.; Hospital-Guardiola, I. Effectiveness of the 23-valent pneumococcal polysaccharide vaccine against community-acquired pneumonia in the general population aged ≥ 60 years: 3 years of follow-up in the CAPAMIS study. Clin. Infect Dis. 2014, 58, 909–917. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Hsieh, M.J.; Chang, C.J.; Wen, Y.W.; Hu, H.C.; Chao, Y.N.; Huang, Y.C.; Yang, C.T.; Huang, C.C. The 23-valent pneumococcal polysaccharide vaccine is effective in elderly adults over 75 years old--Taiwan’s PPV vaccination program. Vaccine 2015, 33, 2897–2902. [Google Scholar] [CrossRef]
- Vila-Córcoles, A.; Ochoa-Gondar, O.; Hospital, I.; Ansa, X.; Vilanova, A.; Rodríguez, T.; Llor, C.; EVAN Study Group. Protective effects of the 23-valent pneumococcal polysaccharide vaccine in the elderly population: The EVAN-65 study. Clin. Infect Dis. 2006, 43, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, A.; Salleras, L.; Fedson, D.S.; Izquierdo, C.; Ruiz, L.; Ciruela, P.; Fenoll, A.; Casal, J. Effectiveness of pneumococcal vaccination for elderly people in Catalonia, Spain: A case-control study. Clin. Infect Dis. 2005, 40, 1250–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leventer-Roberts, M.; Feldman, B.S.; Brufman, I.; Cohen-Stavi, C.J.; Hoshen, M.; Balicer, R.D. Effectiveness of 23-valent pneumococcal polysaccharide vaccine against invasive disease and hospital-treated pneumonia among people aged ≥ 65 years: A retrospective case-control study. Clin. Infect Dis. 2015, 60, 1472–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vila-Corcoles, A.; Salsench, E.; Rodriguez-Blanco, T.; Ochoa-Gondar, O.; de Diego, C.; Valdivieso, A.; Hospital, I.; Gomez-Bertomeu, F.; Raga, X. Clinical effectiveness of 23-valent pneumococcal polysaccharide vaccine against pneumonia in middle-aged and older adults: A matched case-control study. Vaccine 2009, 27, 1504–1510. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Desai, M.; Ryan, P.B.; DeFalco, F.J.; Schuemie, M.J.; Stang, P.E.; Berlin, J.A.; Yuan, Z. Incidence of diabetic ketoacidosis among patients with type 2 diabetes mellitus treated with SGLT2 inhibitors and other antihyperglycemic agents. Diabetes Res. Clin. Pract. 2017, 128, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Lavalle-González, F.J.; Januszewicz, A.; Davidson, J.; Tong, C.; Qiu, R.; Canovatchel, W.; Meininger, G. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: A randomised trial. Diabetologia 2013, 56, 2582–2592. [Google Scholar] [CrossRef] [Green Version]
- Roden, M.; Merker, L.; Christiansen, A.V.; Roux, F.; Salsali, A.; Kim, G.; Stella, P.; Woerle, H.J.; Broedl, U.C.; EMPA-REG EXTEND™ MONO investigators. Safety, tolerability and effects on cardiometabolic risk factors of empagliflozin monotherapy in drug-naïve patients with type 2 diabetes: A double-blind extension of a Phase III randomized controlled trial. Cardiovasc. Diabetol. 2015, 14, 154. [Google Scholar] [CrossRef] [Green Version]
- Haering, H.U.; Merker, L.; Christiansen, A.V.; Roux, F.; Salsali, A.; Kim, G.; Meinicke, T.; Woerle, H.J.; Broedl, U.C.; EMPA-REG EXTEND™ METSU investigators. Empagliflozin as add-on to metformin plus sulphonylurea in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2015, 110, 82–90. [Google Scholar] [CrossRef]
- Frías, J.P.; Guja, C.; Hardy, E.; Ahmed, A.; Dong, F.; Öhman, P.; Jabbour, S.A. Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): A 28 week, multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol. 2016, 4, 1004–1016. [Google Scholar]
- Hollander, P.; Liu, J.; Hill, J.; Johnson, J.; Jiang, Z.W.; Golm, G.; Huyck, S.; Terra, S.G.; Mancuso, J.P.; Engel, S.S. Ertugliflozin Compared with Glimepiride in Patients with Type 2 Diabetes Mellitus Inadequately Controlled on Metformin: The VERTIS SU Randomized Study. Diabetes Ther. 2018, 9, 193–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratley, R.E.; Eldor, R.; Raji, A.; Golm, G.; Huyck, S.B.; Qiu, Y.; Sunga, S.; Johnson, J.; Terra, S.G.; Mancuso, J.P. Ertugliflozin plus sitagliptin versus either individual agent over 52 weeks in patients with type 2 diabetes mellitus inadequately controlled with metformin: The VERTIS FACTORIAL randomized trial. Diabetes Obes. Metab. 2018, 20, 1111–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, S.; Charbonnel, B.; Goldman, A.; Shi, H.; Huyck, S.; Darekar, A.; Lauring, B.; Terra, S.G. Long-term efficacy and safety of ertugliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin monotherapy: 104-week VERTIS MET trial. Diabetes Obes. Metab. 2019, 21, 1027–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fralick, M.; Schneeweiss, S.; Patorno, E. Risk of Diabetic Ketoacidosis after Initiation of an SGLT2 Inhibitor. N. Engl. J. Med. 2017, 376, 2300–2302. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.G.; Jeon, J.Y.; Han, S.J.; Kim, D.J.; Lee, K.W.; Kim, H.J. Sodium-glucose co-transporter-2 inhibitors and the risk of ketoacidosis in patients with type 2 diabetes mellitus: A nationwide population-based cohort study. Diabetes Obes. Metab. 2018, 20, 1852–1858. [Google Scholar] [CrossRef]
- Ueda, P.; Svanström, H.; Melbye, M.; Eliasson, B.; Svensson, A.M.; Franzén, S.; Gudbjörnsdottir, S.; Hveem, K.; Jonasson, C.; Pasternak, B. Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: Nationwide register based cohort study. BMJ 2018, 363, k4365. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Voss, E.A.; Weaver, J.; Hester, L.; Yuan, Z.; DeFalco, F.; Schuemie, M.J.; Ryan, P.B.; Sun, D.; Freedman, A.; et al. Diabetic ketoacidosis in patients with type 2 diabetes treated with sodium glucose co-transporter 2 inhibitors versus other antihyperglycemic agents: An observational study of four US administrative claims databases. Pharm. Drug Saf. 2019, 28, 1620–1628. [Google Scholar]
- Günhan, B.; Röver, C.; Friede, T. Random-effects meta-analysis of few studies involving rare events. Res. Synth. Methods 2020, 11, 74–90. [Google Scholar] [CrossRef] [Green Version]
- Friede, T.; Röver, C.; Wandel, S.; Neuenschwander, B. Meta-analysis of few small studies in orphan diseases. Res. Synth. Methods 2017, 8, 79–91. [Google Scholar] [CrossRef]
- Greenland, S.; Mansournia, M.A.; Altman, D.G. Sparse data bias: A problem hiding in plain sight. BMJ 2016, 352, i1981. [Google Scholar] [CrossRef] [Green Version]
- Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Hong, Y.D.; Jansen, J.P.; Guerino, J.; Berger, M.L.; Crown, W.; Goettsch, W.G.; Mullins, C.D.; Willke, R.J.; Orsini, L.S. Comparative effectiveness and safety of pharmaceuticals assessed in observational studies compared with randomized controlled trials. BMC Med. 2021, 19, 307. [Google Scholar] [CrossRef] [PubMed]
- Schnell-Inderst, P.; Iglesias, C.P.; Arvandi, M.; Ciani, O.; Matteucci Gothe, R.; Peters, J.; Blom, A.W.; Taylor, R.S.; Siebert, U. A bias-adjusted evidence synthesis of RCT and observational data: The case of total hip replacement. Health Econ. 2017, 26 (Suppl. 1), 46–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Deng, K.; Busse, J.W.; Zhou, X.; Xu, C.; Liu, Z.; Ren, Y.; Zou, K.; Sun, X. A systematic survey showed important limitations in the methods for assessing drug safety among systematic reviews. J. Clin. Epidemiol. 2020, 123, 80–90. [Google Scholar] [CrossRef]
- Anglemyer, A.; Horvath, H.T.; Bero, L. Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials. Cochrane Database Syst. Rev. 2014, 2014, Mr000034. [Google Scholar] [CrossRef] [PubMed]
- Greenland, S. Bayesian perspectives for epidemiological research: I. Foundations and basic methods. Int. J. Epidemiol. 2006, 35, 765–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, R.M.; Davey, J.; Clarke, M.J.; Thompson, S.G.; Higgins, J.P. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. Int. J. Epidemiol. 2012, 41, 818–827. [Google Scholar] [CrossRef] [Green Version]
First Author (Year) | Design | Cases/Participants | Log (OR) | SE | Risk of Bias |
---|---|---|---|---|---|
Honkanen (1999) [25] | RCT | 7/38,037 | −0.97 | 0.84 | Unclear |
Maruyama (2010) [26] | RCT | 3/2289 | −1.94 | 1.51 | Low |
Ortqvist (1998) [27] | RCT | 6/1666 | −1.52 | 1.1 | Low |
Hechter (2012) [28] | Cohort study | 9/31,282 | −1.04 | 0.89 | High |
Jackson (2003) [29] | Cohort study | 61/47,365 | −0.58 | 0.26 | Low |
Ochoa-Gondar (2014) [30] | Cohort study | 16/27,204 | −0.96 | 0.75 | Low |
Tsai (2015) [31] | Cohort study | 57/458,362 | −1.42 | 0.33 | High |
Vila-Corcoles (2006) [32] | Cohort study | 22/11,241 | −0.51 | 0.51 | Low |
Dominguez (2005) [33] | Case-control study | 149/596 | −1.18 | 0.26 | Low |
Leventer-Roberts (2015) [34] | Case-control study | 212/1060 | −0.54 | 0.17 | Low |
Vila-Corcoles (2009) [35] | Case-control study | 94/282 | −1.08 | 0.34 | Low |
First Author (Year) | Design | Cases/Participants | Log (OR) | SE | Study Quality |
---|---|---|---|---|---|
Lavalle-González (2013) [38] | RCT | 1/1284 | −0.79 | 1.23 | Good |
Roden (2015) [39] | RCT | 1/680 | 0.49 | 1.24 | Good |
Haering (2015) [40] | RCT | 2/2702 | −0.23 | 1.01 | Good |
Frías (2016) [41] | RCT | 1/463 | −0.70 | 1.23 | Good |
Hollander (2018) [42] | RCT | 1/1361 | 0.50 | 1.24 | Fair |
Pratley (2018) [43] | RCT | 1/1232 | 0.31 | 1.27 | Good |
Gallo (2019) [44] | RCT | 1/414 | 0.70 | 1.23 | Good |
Fralick (2017) [45] | Cohort study | 81/76,090 | 0.79 | 0.24 | Good |
Wang (2017) [36] | Cohort study | 55/60,932 | 0.65 | 0.38 | Fair |
Kim (2018) [46] | Cohort study | 63/112,650 | −0.05 | 0.25 | Good |
Ueda (2018) [47] | Cohort study | 30/34,426 | 0.76 | 0.38 | Good |
Wang-CCAE (2019) [48] | Cohort study | 668/220,504 | 0.34 | 0.10 | Good |
Wang-MDCD (2019) [48] | Cohort study | 155/20,532 | 0.17 | 0.20 | Good |
Wang-MDCR (2019) [48] | Cohort study | 80/27,764 | 0.98 | 0.34 | Good |
Wang-Optum (2019) [48] | Cohort study | 379/115,722 | 0.25 | 0.14 | Good |
Douros (2020) [10] | Cohort study | 505/404,372 | 1.05 | 0.18 | Good |
Variance Inflation Factor (w) | DAS | RPI | THM |
---|---|---|---|
w~beta (0.25, 1) | 0.40 (0.22–0.67) | 0.38 (0.12–0.91) | 0.37 (0.09–1.32) |
w~beta (1.5, 1) | 0.42 (0.27–0.62) | 0.40 (0.23–0.64) | 0.39 (0.12–1.20) |
w~beta (4, 1) | 0.42 (0.28–0.59) | 0.41 (0.26–0.61) | 0.39 (0.14–1.14) |
Variance Inflation Factor (w) | DAS | RPI | THM |
---|---|---|---|
w~beta (0.25, 1) | 1.46 (1.06–2.07) | 1.41 (0.56–2.45) | 1.32 (0.36–3.81) |
w~beta (1.5, 1) | 1.53 (1.19–2.00) | 1.52 (0.98–2.19) | 1.40 (0.47–3.73) |
w~beta (4, 1) | 1.56 (1.21–2.03) | 1.56 (1.12–2.12) | 1.42 (0.50–3.75) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, M.; Wang, Y.; Mei, F.; Zou, K.; Li, L.; Sun, X. Methods for the Inclusion of Real-World Evidence in a Rare Events Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2023, 12, 1690. https://doi.org/10.3390/jcm12041690
Yao M, Wang Y, Mei F, Zou K, Li L, Sun X. Methods for the Inclusion of Real-World Evidence in a Rare Events Meta-Analysis of Randomized Controlled Trials. Journal of Clinical Medicine. 2023; 12(4):1690. https://doi.org/10.3390/jcm12041690
Chicago/Turabian StyleYao, Minghong, Yuning Wang, Fan Mei, Kang Zou, Ling Li, and Xin Sun. 2023. "Methods for the Inclusion of Real-World Evidence in a Rare Events Meta-Analysis of Randomized Controlled Trials" Journal of Clinical Medicine 12, no. 4: 1690. https://doi.org/10.3390/jcm12041690
APA StyleYao, M., Wang, Y., Mei, F., Zou, K., Li, L., & Sun, X. (2023). Methods for the Inclusion of Real-World Evidence in a Rare Events Meta-Analysis of Randomized Controlled Trials. Journal of Clinical Medicine, 12(4), 1690. https://doi.org/10.3390/jcm12041690