Shock Index for Early Detection of Low Plasma Fibrinogen in Trauma: A Prospective Observational Cohort Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Injuries Violence The Facts; World Health Organization: Geneva, Switzerland, 2010; Available online: https://apps.who.int/iris/bitstream/handle/10665/149798/9789241508018_eng.pdf (accessed on 15 October 2022).
- Eastridge, B.J.; Holcomb, J.B.; Shackelford, S. Outcomes of traumatic hemorrhagic shock and the epidemiology of preventable death from injury. Transfusion 2019, 59, 1423–1428. [Google Scholar] [CrossRef] [Green Version]
- Candefjord, S.; Asker, L.; Caragounis, E.-C. Mortality of trauma patients treated at trauma centers compared to non-trauma centers in Sweden: A retrospective study. Eur. J. Trauma Emerg. Surg. 2022, 48, 525–536. [Google Scholar] [CrossRef]
- Tien, H.C.; Spencer, F.; Tremblay, L.N.; Rizoli, S.B.; Brennemn, F.D. Preventable deaths from hemorrhage at a Level I Canadian trauma center. J. Trauma: Inj. Infect. Crit. Care 2007, 62, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Sauaia, A.; Moore, F.; Moore, E.E.; Moser, K.S.; Brennan, R.; Read, R.A.; Pons, P.T. Epidemiology of Trauma Deaths: A Reassessment. J. Trauma Acute Care Surg. 1995, 38, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Brohi, K.; Singh, J.; Heron, M.; Coats, T. Acute Traumatic Coagulopathy. J. Trauma 2003, 54, 1127–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, E.E.; Moore, H.B.; Kornblith, L.Z.; Neal, M.D.; Hoffman, M.; Mutch, N.J.; Schöchl, H.; Hunt, B.J.; Sauaia, A. Trauma-induced coagulopathy. Nat. Rev. Dis. Primers. 2021, 7, 30. [Google Scholar] [CrossRef]
- Johansson, P.I.; Stensballe, J.; Ostrowski, S.R. Shock induced endotheliopathy (SHINE) in acute critical illness—A unifying pathophysiologic mechanism. Crit. Care 2017, 21, 25. [Google Scholar] [CrossRef] [Green Version]
- Chang, R.; Cardenas, J.C.; Wade, C.E.; Holcomb, J. Advances in the understanding of trauma-induced coagulopathy. Blood 2016, 128, 1043–1049. [Google Scholar] [CrossRef] [Green Version]
- Chambers, L.A.; Chow, S.J.; Shaffer, L.E.T. Frequency and characteristics of coagulopathy in trauma patients treated with a low- or high-plasma-content massive transfusion protocol. Am. J. Clin. Pathol. 2011, 136, 364–370. [Google Scholar] [CrossRef] [Green Version]
- Schöchl, H.; Cotton, B.; Inaba, K.; Niebauer, U.; Fischer, H.; Voeckel, W.; Solomon, C. FIBTEM provides early prediction of massive transfusion in trauma. Crit Care 2011, 15, R265. [Google Scholar] [CrossRef] [Green Version]
- Inaba, K.; Karamanos, E.; Lustenberger, T.; Schöchl, H.; Shulman, I.; Nelson, J.; Rhee, P.; Talving, P.; Lam, L.; Demetriades, D. Impact of fibrinogen levels on outcomes after acute injury in patients requiring a massive transfusion. J. Am. Coll. Surg. 2013, 216, 290–297. [Google Scholar] [CrossRef]
- Hagemo, J.S.; Stanworth, S.; Juffermans, N.P.; Brohi, K.; Cohen, M.; Johansson, P.; Røislien, J.; Eken, T.; Næss, P.A.; Gaarder, C. Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: A multicentre observational study. Crit Care 2014, 18, R52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rourke, C.; Curry, N.; Khan, S.; Taylor, R.; Raza, I.; Davenport, R.; Stanworth, S.; Brohi, K. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J. Thromb. Haemost. 2012, 10, 1342–1351. [Google Scholar] [CrossRef]
- Brunclikova, M.; Simurda, T.; Zolkova, J.; Sterankova, M.; Skornova, I.; Dobrotova, M.; Kolkova, Z.; Loderer, D.; Grendar, M.; Hudecek, J.; et al. Heterogeneity of Genotype–Phenotype in Congenital Hypofibrinogenemia—A Review of Case Reports Associated with Bleeding and Thrombosis. J. Clin. Med. 2022, 11, 1083. [Google Scholar] [CrossRef]
- Spahn, D.R.; Bouillon, B.; Cerny, V.; Duranteau, J.; Filipescu, D.; Hunt, B.; Komadina, R.; Maegele, M.; NArdi, G.; Riddez, L.; et al. The European guideline on management of major bleeding and coagulopathy following trauma: Fifth edition. Crit. Care 2019, 23, 98. [Google Scholar] [PubMed] [Green Version]
- Khan, S.; Davenport, R.; Raza, I.; Glasgow, S.; De’Ath, H.; Johansson, P.; Curry, N.; Stanworth, S.; Gaarder, C.; Brohi, K. Damage control resuscitation using blood component therapy in standard doses has a limited effect on coagulopathy during trauma hemorrhage. Intensive Care Med. 2015, 41, 239–247. [Google Scholar] [CrossRef]
- Innerhofer, P.; Fries, D.; Mittermayr, M.; Innerhofer, N.; von Langen, D.; Hell, T.; Gruber, G.; Schmid, S.; Friesenecker, B.; Lorenz, I.; et al. Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): A single-centre, parallel-group, open-label, randomised trial. Lancet Haematol. 2017, 4, e258–e271. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Yamaguchi, A.; Sawano, M.; Matsuda, M.; Anan, M.; Inokuchi, K.; Sugiyama, S. Pre-emptive administration of fibrinogen concentrate contributes to improved prognosis in patients with severe trauma. Trauma Surg Acute Care Open 2016, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grottke, O.; Mallaiah, S.; Karkouti, K.; Saner, F.; Haas, T. Fibrinogen Supplementation and Its Indications. Semin. Thromb. Hemost. 2020, 46, 38–49. [Google Scholar] [CrossRef]
- Mitra, B.; Cameron, P.A.; Mori, A.; Maini, A.; Fitzgerald, M.; Paul, E.; Street, A. Early prediction of acute traumatic coagulopathy. Resuscitation 2011, 82, 1208–1213. [Google Scholar] [CrossRef] [PubMed]
- Schlimp, C.J.; Voelckel, W.; Inaba, K.; Maegele, M.; Ponschab, M.; Schöchl, H. Estimation of plasma fibrinogen levels based on hemoglobin, base excess and Injury Severity Score upon emergency room admission. Crit. Care 2013, 17, R137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, M.J.; Kutcher, M.; Redick, B.; Nelson, M.; Call, M.; Knudson, M.; Schreiber, M.; Bulger, E.; Muskat, P.; Alarcon, L.; et al. Clinical and mechanistic drivers of acute traumatic coagulopathy. J. Trauma Acute Care Surg. 2013, 75, S40–S47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gauss, T.; Campion, S.; Kerever, S.; Eurin, M.; Raux, M.; Harrois, A.; Paugam-Burtz, C.; Hamada, S. Fibrinogen on Admission in Trauma score. Eur. J. Anaesthesiol. 2018, 35, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Allgöwer, M.; Burri, C. Schockindex. Dtsch. Med. Wochenschr. 1967, 92, 1947–1950. [Google Scholar] [CrossRef] [PubMed]
- Vandromme, M.J.; Griffin, R.L.; Kerby, J.D.; McGwin, G.; Rue, L.; Weinberg, J. Identifying risk for massive transfusion in the relatively normotensive patient: Utility of the prehospital shock index. J. Trauma: Inj. Infect. Crit. Care 2011, 70, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Cannon, C.M.; Braxton, C.C.; Kling-Smith, M.; Mahnken, J.; Carlton, E.; Moncure, M. Utility of the shock index in predicting mortality in traumatically injured patients. J. Trauma: Inj. Infect. Crit. Care 2009, 67, 1426–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutschler, M.; Nienaber, U.; Münzberg, M.; Wölfl, C.; Schoechl, H.; Paffrath, T.; Bouillon, B.; Maegele, M. The Shock Index revisited—A fast guide to transfusion requirement? A retrospective analysis on 21,853 patients derived from the TraumaRegister DGU®. Crit. Care 2013, 17, R172. [Google Scholar] [CrossRef] [Green Version]
- Era, S.; Matsunaga, S.; Matsumura, H.; Murayama, H.; Takai, Y.; Seki, H. Usefulness of shock indicators for determining the need for blood transfusion after massive obstetric hemorrhage. J. Obstet. Gynaecol. Res. 2015, 41, 39–43. [Google Scholar] [CrossRef]
- Lamb, C.M.; Macgoey, P.; Navarro, A.P.; Brooks, A. Damage control surgery in the era of damage control resuscitation. Br. J. Anaesth. 2014, 113, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Vang, M.; Østberg, M.; Steinmetz, J.; Rasmussen, L. Shock index as a predictor for mortality in trauma patients: A systematic review and meta-analysis. Eur. J. Trauma Emerg. Surg. 2022, 48, 2559–2566. [Google Scholar] [CrossRef] [PubMed]
- James, A.; Abback, P.S.; Pasquier, P.; Ausset, S.; Duranteau, J.; Hoffman, C.; Hamada, S. The conundrum of the definition of haemorrhagic shock: A pragmatic exploration based on a scoping review, experts’ survey and a cohort analysis. Eur. J. Trauma Emerg. Surg. 2022, 48, 4639–4649. [Google Scholar] [CrossRef] [PubMed]
- Mutschler, M.; Nienaber, U.; Brockamp, T.; Wafaisade, A.; Fabian, T.; Paffrath, T.; Bouzillon, B.; Maegele, M. Renaissance of base deficit for the initial assessment of trauma patients: A base deficit-based classification for hypovolemic shock developed on data from 16,305 patients derived from the TraumaRegister DGU®. Crit. Care 2013, 17, R42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossaint, R.; Bouillon, B.; Cerny, V.; Coats, T.; Duranteau, J.; Fernandez-Mondejar, E.; Filipescu, D.; Hunt, B.; Komadina, R.; Nardi, G.; et al. The European guideline on management of major bleeding and coagulopathy following trauma: Fourth edition. Crit. Care 2016, 20, 100. [Google Scholar] [CrossRef] [PubMed]
- Aubron, C.; Reade, M.C.; Fraser, J.F.; Cooper, D. Efficacy and safety of fibrinogen concentrate in trauma patients—A systematic review. J. Crit. Care 2014, 29, e11–e17. [Google Scholar] [CrossRef]
- Ziegler, B.; Bachler, M.; Haberfellner, H.; Niederwanger, C.; Innerhofer, P.; Kaufman, M.; Maegele, M.; Martinowitz, U.; Nebl, C.; Oswald, E.; et al. Efficacy of prehospital administration of fibrinogen concentrate in trauma patients bleeding or presumed to bleed (FIinTIC): A multicentre, double-blind, placebo-controlled, randomised pilot study. Eur. J. Anaesthesiol. 2021, 38, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Volod, O.; Bunch, C.M.; Zackariya, N.; Moore, E.; Moore, H.; Kwaan, H.; Al-Fadhl, M.; Patel, S.; Wiarda, G.; Al-Fadhl, H.D.; et al. Viscoelastic Hemostatic Assays: A Primer on Legacy and New Generation Devices. J. Clin. Med. 2022, 11, 860. [Google Scholar] [CrossRef] [PubMed]
- Hagemo, J.S. Prehospital detection of traumatic coagulopathy. Transfusion 2013, 53, 48S–51S. [Google Scholar] [CrossRef]
- Paladino, L.; Subramanian, R.A.; Nabors, S.; Sinert, R. The utility of shock index in differentiating major from minor injury. Eur. J. Emerg. Med. 2011, 18, 94–98. [Google Scholar] [CrossRef]
- Costa, A.; Carron, P.-N.; Zingg, T.; Roberts, I.; Ageron, F. Early identification of bleeding in trauma patients: External validation of traumatic bleeding scores in the Swiss Trauma Registry. Crit. Care 2022, 26, 296. [Google Scholar] [CrossRef]
- Tonglet, M.L.; Minon, J.M.; Seidel, L.; Poplavsky, J.; Vergnion, M. Prehospital identification of trauma patients with early acute coagulopathy and massive bleeding: Results of a prospective non-interventional clinical trial evaluating the Trauma Induced Coagulopathy Clinical Score (TICCS). Crit. Care 2014, 18, 648, Epub ahead of print. [Google Scholar] [CrossRef] [Green Version]
- David, J.-S.; Voiglio, E.-J.; Cesareo, E.; Vassal, O.; Decullier, E.; Gueugniaud, P.; Peyrefitte, S.; Tazarourte, K. Prehospital parameters can help to predict coagulopathy and massive transfusion in trauma patients. Vox Sang. 2017, 112, 557–566. [Google Scholar] [CrossRef] [PubMed]
Physiological criteria |
|
Anatomical criteria |
|
Mechanism of injury |
|
Auxiliary criteria |
|
All | Centre 1 (Ustí nad Labem) | Centre 2 (Plzen) | p Value 1 | |
---|---|---|---|---|
n (%) | 264 (100) | 155 (59) | 109 (41) | N/A |
Age (SD) | 42.1 (15.4) | 41.2 (15.2) | 43.4 (15.5) | 0.23 |
Male (%) | 196 (74) | 112 (72) | 84 (77) | 0.37 |
Injury Severity Score (SD) | 13.6 (11.8) | 11.2 (10.6) | 16.9 (12.7) | <0.001 |
Injury Severity Score ≥ 16 (%) | 86 (32.6) | 40 (25.8) | 46 (42.2) | 0.005 |
Blunt trauma (%) | 260 (98) | 153 (99) | 107 (98) | 0.72 |
Prehospital time [min] (SD) | 68 (20.7) | 63 (16.7) | 76.3 (23.9) | <0.001 |
Time to sample [min] (SD) | 76 (21.7) | 70.5 (18.8) | 85.1 (23.2) | 0.02 |
Prehospital SI (IQR) | 0.70 [0.59–0.86] | 0.69 [0.59–0.83] | 0.78 [0.61–0.93] | 0.01 |
Admission SI (IQR) | 0.64 [0.54–0.76] | 0.65 [0.54–0.78] | 0.63 [0.54–0.76] | 0.48 |
Fibrinogen, g.L−1 (IQR) | 2.69 [2.29–3.12] | 2.70 [2.31–3.25] | 2.61 [2.27–2.98] | 0.13 |
Fibrinogen <2.3 g.L−1 (%) | 69 (26.1) | 38 (24.5) | 31 (28.4) | 0.47 |
Fibrinogen <2.0 g.L−1 (%) | 32 (12.1) | 16 (10.3) | 16 (10.3) | 0.29 |
Fibrinogen <1.5 g.L−1 (%) | 11 (4.2) | 7 (4.5) | 4 (3.7) | 0.73 |
Prehospital SI ≥ 1 (%) * | 36 (13.7) | 12 (7.8) | 24 (22) | <0.001 |
Admission SI ≥ 1 (%) * | 17 (6.5) | 8 (5.2) | 9 (8.3) | 0.30 |
Shock Index | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | Accuracy (95% CI) |
---|---|---|---|---|---|
Prehospital SI ≥ 1 | 0.50 (0.19–0.81) | 0.88 (0.83–0.92) | 0.15 (0.08–0.27) | 0.98 (0.96–0.99) | 0.87 (0.82–0.90) |
Prehospital SI ≥ 0.92 | 0.73 (0.39–0.94) | 0.82 (0.76–0.86) | 0.15 (0.11–0.26) | 0.99 (0.99–0.99) | 0.81 (0.76–0.86) |
Admission SI ≥ 1 | 0.30 (0.07–0.65) | 0.94 (0.91–0.97) | 0.19 (0.07–0.41) | 0.97 (0.95–0.98) | 0.92 (0.88–0.95) |
Admission SI ≥ 0.8 | 0.80 (0.44–0.97) | 0.80 (0.74–0.85) | 0.15 (0.11–0.25) | 0.99 (0.99–1.0) | 0.80 (0.75–0.85) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Škola, J.; Bílská, M.; Horáková, M.; Tégl, V.; Beneš, J.; Škulec, R.; Černý, V. Shock Index for Early Detection of Low Plasma Fibrinogen in Trauma: A Prospective Observational Cohort Pilot Study. J. Clin. Med. 2023, 12, 1707. https://doi.org/10.3390/jcm12041707
Škola J, Bílská M, Horáková M, Tégl V, Beneš J, Škulec R, Černý V. Shock Index for Early Detection of Low Plasma Fibrinogen in Trauma: A Prospective Observational Cohort Pilot Study. Journal of Clinical Medicine. 2023; 12(4):1707. https://doi.org/10.3390/jcm12041707
Chicago/Turabian StyleŠkola, Josef, Marcela Bílská, Michala Horáková, Václav Tégl, Jan Beneš, Roman Škulec, and Vladimír Černý. 2023. "Shock Index for Early Detection of Low Plasma Fibrinogen in Trauma: A Prospective Observational Cohort Pilot Study" Journal of Clinical Medicine 12, no. 4: 1707. https://doi.org/10.3390/jcm12041707
APA StyleŠkola, J., Bílská, M., Horáková, M., Tégl, V., Beneš, J., Škulec, R., & Černý, V. (2023). Shock Index for Early Detection of Low Plasma Fibrinogen in Trauma: A Prospective Observational Cohort Pilot Study. Journal of Clinical Medicine, 12(4), 1707. https://doi.org/10.3390/jcm12041707