The Techniques of Blood Purification in the Treatment of Sepsis and Other Hyperinflammatory Conditions
Abstract
:1. Introduction
2. Rationale of Blood Purification
- (a)
- The lowering of both pro- and anti-inflammatory mediators below a threshold level, thus limiting the associated organ damage [6];
- (b)
- The passage of mediators from the tissues to the blood and their subsequent extracorporeal clearance along a concentration gradient [7];
- (c)
- The restoration of a cytokine gradient between the tissues and the blood, promoting leukocyte chemotaxis [8];
- (d)
- The interaction between the membrane and the immune cells, as demonstrated by the modulation of surface molecules during different BP procedures [9].
3. Classification and Principles of Function of the BP Techniques
3.1. Blood Processing Techniques
3.1.1. Hemofiltration (HF)
3.1.2. Hemoadsorption (HA)
3.2. Plasma Processing Techniques
- Plasmapheresis (PF), which is based on the selective removal of one or more plasma components (lipoproteins, paraproteins, etc.), and is not currently used in the treatment of septic shock;
- Plasma exchange (PEX), consisting in the removal of one or more volumes of plasma, which is replaced with donors’ plasma or albumin. The rationale of PEX consists in the removal of “toxic substances” and the supply of a large amount of plasma components whose absence is considered responsible for the disorder (i.e., ADAMTS 13 for patients with thrombotic thrombocytopenic purpura [15]). Ideally, the best candidate substance for removal by PEX should have a high MW, small volume of distribution, long half-life, and low turnover rate [15];
- Coupled plasma filtration and adsorption (CPFA), which basically consists in a three-step process: (1) the partial extraction of plasma from the blood via a plasma filter; (2) its processing within a cartridge, where a number of mediators are absorbed by a synthetic resin arranged in microtubules; and (3) reinfusion of the purified plasma upstream of a second filter used for continuous veno-venous hemodiafiltration in cases of concomitant AKI. The adsorptive capabilities of the resin are exhausted after 10 h, but the CRRT can continue beyond this limit by excluding the plasma processing unit.
4. Clinical Research Evidence
4.1. Hemofiltration
4.2. Hemoperfusion
4.2.1. Endotoxin Adsorption
4.2.2. Cytosorb®
4.2.3. oXiris®
4.2.4. Seraph 100®
5. Plasma Exchange
6. Coupled Plasma Filtration and Adsorption
7. Discussion
- d.
- The assessment of the efficacy. The outcome of septic shock patients and of patients with non-septic hyperinflammatory conditions can be influenced by factors other than the BP used, including the appropriateness of the antibiotic treatment, the timely and complete drainage of septic foci, underlying conditions, etc. Thus, survival by itself does not represent a reliable marker of the efficacy of BP; consequently, other biological and clinical variables, such as the variation of the blood lactate levels and the changes in the need for vasopressors, can be used as proxies of efficacy [5].
- e.
- The choice of the clinical situation. As stated above, patients with a prolonged LoS in ICU can undergo a biphasic clinical course, the first being characterized by a hyperinflammatory reaction that can be followed by a second one associated with the reduction of the immune capabilities caused by the production of substances with anti-inflammatory properties. These patients are usually old and with several frailties associated with pre-existing irreversible chronic conditions, such as chronic heart failure and obstructive pulmonary disease and worsening of chronic kidney disease. These patients often survive the disease that prompted the ICU admission, but their subsequent clinical course is marked by the occurrence of a number of different complications that make their survival unlikely, including malnutrition, difficulty in weaning from mechanical ventilation, skin ulcers, reinfections, etc. The possible role, if any, of BP in these chronic critically ill patients is not yet clear since most clinical investigations concerning BP treated patients in the initial hyperinflammatory phase and not in the second stage of the disease.
- f.
- Undesired effects other than drug removal. In addition to the iatrogenic risks associated with indwelling large-bore catheters and the need of anticoagulation, all BP procedures can induce an undesired hypothermia due to the extracorporeal circuitry; to overcome this effect, all the currently used devices can warm the blood of the re-entry segment.
- g.
- Lack of precision. BP techniques efficiently clear from the bloodstream all substances with certain chemico-physical properties, independent from their role in that timeframe. In many cases, the rule of “one size fits all” was and is still the rule for BP, and for many other treatments currently used in critically ill septic patients [58]. This is far removed from precision medicine in which the treatment is tailored to the needs of the individual patient. However, this approach is still experimental in critically ill septic patients [59].
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Wieringa, F.P.; Søndergaard, H.; Ash, S. Father of Artificial Organs—The story of medical pioneer Willem J. Kolff (1911–2009). Artif. Organs 2021, 45, 1136–1140. [Google Scholar] [CrossRef]
- Clowes, G.H., Jr.; George, B.C.; Villee, C.A., Jr.; Saravis, C.A. Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma. N. Engl. J. Med. 1983, 308, 545–552. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Leopold, S.J.; Cranendonk, D.R.; van der Poll, T. Host innate immune responses to sepsis. Virulence 2014, 5, 36–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girardot, T.; Schneider, A.; Rimmelé, T. Blood Purification Techniques for Sepsis and Septic AKI. Semin. Nephrol. 2019, 39, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Ronco, C.; Tetta, C.; Mariano, F.; Wratten, M.L.; Bonello, M.; Bordoni, V.; Cardona, X.; Inguaggiato, P.; Pilotto, L.; d’Intini, V.; et al. Interpreting the mechanisms of continuous renal replacement therapy in sepsis: The peak concentration hypothesis. Artif. Organs 2003, 27, 792–801. [Google Scholar] [CrossRef]
- Lee, P.A.; Matson, J.R.; Pryor, R.W.; Hinshaw, L.B. Continuous arteriovenous hemofiltration therapy for Staphylococcus aureus-induced septicemia in immature swine. Crit. Care Med. 1993, 21, 914–924. [Google Scholar] [CrossRef]
- Rimmelé, T.; Kellum, J.A. Clinical review: Blood purification for sepsis. Crit. Care 2011, 15, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Xu, Q.; Deng, B.; Zheng, Y.; Tian, H.; Wang, L.; Ding, F. Granulocyte and monocyte adsorptive apheresis ameliorates sepsis in rats. Intensive Care Med. Exp. 2017, 5, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monard, C.; Rimmelé, T.; Ronco, C. Extracorporeal Blood Purification Therapies for Sepsis. Blood Purif. 2019, 47 (Suppl. 3), 1–14. [Google Scholar] [CrossRef]
- Morgera, S.; Rocktaschel, J.; Haase, M.; Lehmann, C.; von Heymann, C.; Ziemer, S.; Priem, F.; Hocher, B.; Gohl, H.; Kox, W.J.; et al. Intermittent high permeability hemofiltration in septic patients with acute renal failure. Intensive Care Med. 2003, 29, 1989–1995. [Google Scholar] [CrossRef] [PubMed]
- Villa, G.; Chelazzi, C.; Morettini, E.; Zamidei, L.; Valente, S.; Caldini, A.L.; Zagli, G.; De Gaudio, A.R.; Romagnoli, S. Organ dysfunction during continuous veno-venous high cut-off hemodialysis in patients with septic acute kidney injury: A prospective observational study. PLoS ONE 2017, 12, e0172039. [Google Scholar] [CrossRef] [Green Version]
- Ankawi, G.; Fan, W.; Pomarè Montin, D.; Lorenzin, A.; Neri, M.; Caprara, C.; de Cal, M.; Ronco, C. A New Series of Sorbent Devices for Multiple Clinical Purposes: Current Evidence and Future Directions. Blood Purif. 2019, 47, 94–100. [Google Scholar] [CrossRef]
- Eden, G.; Schmidt, J.J.; Büttner, S.; Kümpers, P.; Hafer, C.; Rovas, A.; Koch, B.F.; Schmidt, B.M.W.; Kielstein, J.T. Safety and efficacy of the Seraph® 100 Microbind® Affinity Blood Filter to remove bacteria from the blood stream: Results of the first in human study. Crit. Care 2022, 17, 181. [Google Scholar] [CrossRef] [PubMed]
- Bauer, P.R.; Ostermann, M.; Russell, L.; Robba, C.; David, S.; Ferreyro, B.L.; Cid, J.; Castro, P.; Juffermans, N.P.; Montini, L.; et al. Investigators. Plasma exchange in the intensive care unit: A narrative review. Intensive Care Med. 2022, 48, 1382–1396. [Google Scholar] [CrossRef] [PubMed]
- Ronco, C.; Bellomo, R.; Homel, P.; Brendolan, A.; Dan, M.; Piccinni, P.; La Greca, G. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: A prospective randomised trial. Lancet 2000, 356, 26–30. [Google Scholar] [CrossRef]
- Cole, L.; Bellomo, R.; Journois, D.; Davenport, P.; Baldwin, I.; Tipping, P. High-volume haemofiltration in human septic shock. Intensive Care Med. 2001, 27, 978–986. [Google Scholar] [CrossRef]
- Rimmelé, T.; Kellum, J.A. High-volume hemofiltration in the intensive care unit: A blood purification therapy. Anesthesiology 2012, 116, 1377–1387. [Google Scholar] [CrossRef] [Green Version]
- Joannes-Boyau, O.; Honore, P.M.; Perez, P.; Bagshaw, S.M.; Grand, H.; Canivet, J.L.; Dewitte, A.; Flamens, C.; Pujol, W.; Grandoulier, A.S.; et al. High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury IVOIRE study]: A multicentre randomized controlled trial. Intensive Care Med. 2013, 39, 1535–1546. [Google Scholar] [CrossRef]
- Breilh, D.; Honore, P.M.; De Bels, D.; Roberts, J.A.; Gordien, J.B.; Fleureau, C.; Dewitte, A.; Coquin, J.; Roze, H.; Perez, P.; et al. Pharmacokinetics and Pharmacodynamics of Anti-infective Agents during Continuous Veno-venous Hemofiltration in Critically Ill Patients: Lessons Learned from an Ancillary Study of the IVOIRE Trial. J. Transl. Intern. Med. 2019, 7, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Rimmelé, T.; Hayi-Slayman, D.; Page, M.; Rada, H.; Monchi, M.; Allaouchiche, B. Cascade hemofiltration: Principle, first experimental data. Ann. Fr. D’anesthesie Reanim. 2009, 28, 249–252. [Google Scholar] [CrossRef]
- Coudroy, R.; Payen, D.; Launey, Y.; Lukaszewicz, A.C.; Kaaki, M.; Veber, B.; Collange, O.; Dewitte, A.; Martin-Lefevre, L.; Jabaudon, M.; et al. ABDOMIX group. Modulation by Polymyxin-B Hemoperfusion of Inflammatory Response Related to Severe Peritonitis. Shock 2017, 47, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Atan, R.; Virzi, G.M.; Peck, L.; Ramadas, A.; Brocca, A.; Eastwood, G.; Sood, S.; Ronco, C.; Bellomo, R.; Goehl, H.; et al. High cut-off hemofiltration versus standard hemofiltration: A pilot assessment of effects on indices of apoptosis. Blood Purif. 2014, 37, 296–303. [Google Scholar] [CrossRef]
- Kade, G.; Lubas, A.; Rzeszotarska, A.; Korsak, J.; Niemczyk, S. Effectiveness of High Cut-Off Hemofilters in the Removal of Selected Cytokines in Patients During Septic Shock Accompanied by Acute Kidney Injury-Preliminary Study. Med. Sci. Monit. 2016, 22, 4338–4344. [Google Scholar] [CrossRef] [Green Version]
- Cruz, D.N.; Antonelli, M.; Fumagalli, R.; Foltran, F.; Brienza, N.; Donati, A.; Malcangi, V.; Petrini, F.; Volta, G.; Bobbio Pallavicini, F.M.; et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: The EUPHAS randomized controlled trial. JAMA 2009, 301, 2445–2452. [Google Scholar] [CrossRef] [Green Version]
- Payen, D.; Dupuis, C.; Deckert, V.; Pais de Barros, J.P.; Rérole, A.L.; Lukaszewicz, A.C.; Coudroy, R.; Robert, R.; Lagrost, L. Endotoxin Mass Concentration in Plasma Is Associated with Mortality in a Multicentric Cohort of Peritonitis-Induced Shock. Front. Med. 2021, 8, 749405. [Google Scholar] [CrossRef]
- Dellinger, R.P.; Bagshaw, S.M.; Antonelli, M.; Foster, D.M.; Klein, D.J.; Marshall, J.C.; Palevsky, P.M.; Weisberg, L.S.; Schorr, C.A.; Trzeciak, S.; et al. Effect of Targeted Polymyxin B Hemoperfusion on 28-Day Mortality in Patients with Septic Shock and Elevated Endotoxin Level: The EUPHRATES Randomized Clinical Trial. JAMA 2018, 320, 1455–1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kogelmann, K.; Jarczak, D.; Scheller, M.; Drüner, M. Hemoadsorption by CytoSorb in septic patients: A case series. Crit. Care 2017, 21, 74. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, W.P.; Duran, S.; Kuijper, M.; Ince, C. Hemoadsorption with CytoSorb shows a decreased observed versus expected 28-day all-cause mortality in ICU patients with septic shock: A propensity-score-weighted retrospective study. Crit. Care 2019, 23, 317. [Google Scholar] [CrossRef] [Green Version]
- Hawchar, F.; László, I.; Öveges, N.; Trásy, D.; Ondrik, Z.; Molnar, Z. Extracorporeal cytokine adsorption in septic shock: A proof of concept randomized, controlled pilot study. J. Crit. Care 2019, 49, 72–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, P.; Schwier, E.; Eickmeyer, C.; Henzler, D.; Köhler, T. High-dose CytoSorb hemoadsorption is associated with improved survival in patients with septic shock: A retrospective cohort study. J. Crit. Care 2021, 64, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Scharf, C.; Schroeder, I.; Paal, M.; Winkels, M.; Irlbeck, M.; Zoller, M.; Liebchen, U. Can the cytokine adsorber CytoSorb® help to mitigate cytokine storm and reduce mortality in critically ill patients? A propensity score matching analysis. Ann. Intensive Care 2021, 11, 115. [Google Scholar] [CrossRef]
- Wendel Garcia, P.D.; Hilty, M.P.; Held, U.; Kleinert, E.M.; Maggiorini, M. Cytokine adsorption in severe, refractory septic shock. Intensive Care Med. 2021, 47, 1334–1336. [Google Scholar] [CrossRef]
- Supady, A.; Brodie, D.; Wengenmayer, T. Extracorporeal haemoadsorption: Does the evidence support its routine use in critical care? Lancet Respir. Med. 2022, 10, 307–312. [Google Scholar] [CrossRef]
- Hawchar, F.; Tomescu, D.; Träger, K.; Joskowiak, D.; Kogelmann, K.; Soukup, J.; Friesecke, S.; Jacob, D.; Gummert, J.; Faltlhauser, A.; et al. Hemoadsorption in the critically ill-Final results of the International CytoSorb Registry. PLoS ONE 2022, 17, e0274315. [Google Scholar] [CrossRef]
- Berlot, G.; Samola, V.; Barbaresco, I.; Tomasini, A.; di Maso, V.; Bianco, F.; Gerini, U. Effects of the timing and intensity of treatment on septic shock patients treated with CytoSorb®: Clinical experience. Int. J. Artif. Organs 2022, 45, 249–253. [Google Scholar] [CrossRef]
- Bottari, G.; Confalone, V.; Cotugno, N.; Guzzo, I.; Perdichizzi, S.; Manno, E.C.; Stoppa, F.; Cecchetti, C. Efficacy of CytoSorb in a Pediatric Case of Severe Multisystem Infammatory Syndrome (MIS-C): A Clinical Case Report. Front. Pediatr. 2021, 9, 676298. [Google Scholar] [CrossRef] [PubMed]
- Broman, M.E.; Hansson, F.; Vincent, J.L.; Bodelsson, M. Endotoxin and cytokine reducing properties of the oXiris membrane in patients with septic shock: A randomized crossover double-blind study. PLoS ONE 2019, 14, e0220444. [Google Scholar] [CrossRef] [Green Version]
- Turani, F.; Barchetta, R.; Falco, M.; Busatti, S.; Weltert, L. Continuous Renal Replacement Therapy with the Adsorbing Filter oXiris in Septic Patients: A Case Series. Blood Purif. 2019, 47 (Suppl. 3), 1–5. [Google Scholar] [CrossRef]
- Schwindenhammer, V.; Girardot, T.; Chaulier, K.; Grégoire, A.; Monard, C.; Huriaux, L.; Illinger, J.; Leray, V.; Uberti, T.; Crozon-Clauzel, J.; et al. oXiris® Use in Septic Shock: Experience of Two French Centres. Blood Purif. 2019, 47 (Suppl. 3), 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, P.; Chang, K.; Yang, M.; Deng, N.; Chen, S.; Su, B. Effect of Continuous Renal Replacement Therapy with the oXiris Hemofilter on Critically Ill Patients: A Narrative Review. J. Clin. Med. 2022, 11, 6719. [Google Scholar] [CrossRef]
- Stahl, K.; Wand, P.; Seeliger, B.; Wendel-Garcia, P.D.; Schmidt, J.J.; Schmidt, B.M.W.; Sauer, A.; Lehmann, F.; Budde, U.; Busch, M.; et al. Clinical and biochemical endpoints and predictors of response to plasma exchange in septic shock: Results from a randomized controlled trial. Crit. Care 2022, 26, 134. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Bode, C.; Putensen, C.; Welte, T.; Stahl, K.; EXCHANGE study group. Adjuvant therapeutic plasma exchange in septic shock. Intensive Care Med. 2021, 47, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Ronco, C.; Brendolan, A.; Lonnemann, G.; Bellomo, R.; Piccinni, P.; Digito, A.; Dan, M.; Irone, M.; La Greca, G.; Inguaggiato, P.; et al. A pilot study of coupled plasma filtration with adsorption in septic shock. Crit. Care Med. 2002, 30, 1250–1255. [Google Scholar] [CrossRef]
- Formica, M.; Olivieri, C.; Livigni, S.; Cesano, G.; Vallero, A.; Maio, M.; Tetta, C. Hemodynamic response to coupled plasmafiltration-adsorption in human septic shock. Intensive Care Med. 2003, 29, 703–708. [Google Scholar] [CrossRef]
- Cesano, G.; Livigni, S.; Vallero, A.; Olivieri, C.; Borca, M.; Quarello, F.; Tetta, C.; Formica, M. Trattamento dello shock settico con l’impiego della CPFA (plasmafiltrazione e adsorbimento associate): Impatto sull’emodinamica valutata con sistema PiCCO [Treatment of septic shock with the use of CPFA (associated plasma filtration and adsorption): Impact on hemodynamics monitored with PiCCO ]. G. Ital. Nefrol. 2003, 20, 258–263. (In Italian) [Google Scholar]
- Livigni, S.; Bertolini, G.; Rossi, C.; Ferrari, F.; Giardino, M.; Pozzato, M.; Remuzzi, G.; GiViTI: Gruppo Italiano per la Valutazione degli Interventi in Terapia Intensiva (Italian Group for the Evaluation of Interventions in Intensive Care Medicine) is an independent collaboration network of Italian Intensive Care units. Efficacy of coupled plasma filtration adsorption (CPFA) in patients with septic shock: A multicenter randomised controlled clinical trial. BMJ Open 2014, 4, e003536. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Sun, S.; Zhu, B.; Mei, Z.; Wang, L.; Zhu, S.; Zhao, W. Effects of Coupled Plasma Filtration Adsorption on Septic Patients with Multiple Organ Dysfunction Syndrome. Ren. Fail. 2012, 34, 834–839. [Google Scholar] [CrossRef]
- Franchi, M.; Giacalone, M.; Traupe, I.; Rago, R.; Baldi, G.; Giunta, F.; Forfori, F. Coupled plasma filtration adsorption improves hemodynamics in septic shock. J. Crit. Care 2016, 33, 100–105. [Google Scholar] [CrossRef]
- Hazzard, I.; Jones, S.; Quinn, T. Coupled plasma haemofiltration filtration in severe sepsis: Systematic review and meta-analysis. J. R. Army Med. Corps 2015, 161 (Suppl. 1), i17–i22. [Google Scholar] [CrossRef]
- Garbero, E.; Livigni, S.; Ferrari, F.; Finazzi, S.; Langer, M.; Malacarne, P.; Meca, M.C.C.; Mosca, S.; Olivieri, C.; Pozzato, M.; et al. High dose coupled plasma filtration and adsorption in septic shock patients. Results of the COMPACT-2: A multicentre, adaptive, randomised clinical trial. Intensive Care Med. 2021, 47, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Esparza, C.; Portillo-Requena, C.; Colomina-Climent, F.; Allegue-Gallego, J.M.; Galindo-Martínez, M.; Mollà-Jiménez, C.; Antón-Pascual, J.L.; Mármol-Peis, E.; Dólera-Moreno, C.; Rodríguez-Serra, M.; et al. The premature closure of ROMPA clinical trial: Mortality reduction in septic shock by plasma adsorption. BMJ Open 2019, 9, e030139. [Google Scholar] [CrossRef] [PubMed]
- Mariano, F.; Hollo’, Z.; Depetris, N.; Malvasio, V.; Mella, A.; Bergamo, D.; Pensa, A.; Berardino, M.; Stella, M.; Biancone, L. Coupled-plasma filtration and adsorption for severe burn patients with septic shock and acute kidney injury treated with renal replacement therapy. Burns 2020, 46, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Honore, P.M.; Hoste, E.; Molnár, Z.; Jacobs, R.; Joannes-Boyau, O.; Malbrain, M.L.N.G.; Forni, L.G. Cytokine removal in human septic shock: Where are we and where are we going? Ann. Intensive Care 2019, 9, 56–69. [Google Scholar] [CrossRef] [Green Version]
- Putzu, A.; Schorer, R.; Lopez-Delgado, J.C.; Cassina, T.; Landoni, G. Blood Purification and Mortality in Sepsis and Septic Shock: A Systematic Review and Meta-analysis of Randomized Trials. Anesthesiology 2019, 131, 580–593. [Google Scholar] [CrossRef]
- Snow, T.A.C.; Littlewood, S.; Corredor, C.; Singer, M.; Arulkumaran, N. Effect of Extracorporeal Blood Purification on Mortality in Sepsis: A Meta-Analysis and Trial Sequential Analysis. Blood Purif. 2021, 50, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L. Recent negative clinical trials in septic patients: Maybe a good thing? Minerva Anestesiol. 2015, 81, 122–124. [Google Scholar]
- Vignon, P.; Laterre, P.F.; Daix, T.; François, B. New Agents in Development for Sepsis: Any Reason for Hope? Drugs 2020, 80, 1751–1761. [Google Scholar] [CrossRef]
Substrate | Technique/Brand | Mechanism |
---|---|---|
Blood | Ultrafiltration | High-volume ultrafiltration |
High-cutoff membrane | ||
Hemoadsorption | Toraymixin® | |
oXyris® | ||
Cytosorb® | ||
Seraph® | ||
Plasma | Plasma exchange | |
Ultrafiltration + plasma adsorption | CPFA® |
Study/Author | BP | Treatment Group N. | Control Group N. | Results |
---|---|---|---|---|
IVOIRE | HVHF | 66 | 71 | No difference in hospital mortality |
EUPHAS | Toraymixin® | 30 | 34 | Improved hemodynamics and survival in the treatment group |
ABDOMIX | Toraymixin® | 119 | 113 | Non-significant increase in mortality and no improvement in organ failure in the treatment group |
EUPHRATES | Toraymixin® | 84 | 78 | Toraymixin® compared with sham treatment did not reduce mortality at 28 days |
Supady et al. * | Cytosorb® | 17 | 17 | Excess mortality in the treatment group |
ROMPA | CPFA | 19 | 30 | No difference in hospital mortality |
COMPACT 1 | CPFA | 91 | 93 | No difference in hospital mortality |
COMPACT 2 | CPFA | 63 | 52 | Excess mortality in the treatment group |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berlot, G.; Tomasini, A.; Zanchi, S.; Moro, E. The Techniques of Blood Purification in the Treatment of Sepsis and Other Hyperinflammatory Conditions. J. Clin. Med. 2023, 12, 1723. https://doi.org/10.3390/jcm12051723
Berlot G, Tomasini A, Zanchi S, Moro E. The Techniques of Blood Purification in the Treatment of Sepsis and Other Hyperinflammatory Conditions. Journal of Clinical Medicine. 2023; 12(5):1723. https://doi.org/10.3390/jcm12051723
Chicago/Turabian StyleBerlot, Giorgio, Ariella Tomasini, Silvia Zanchi, and Edoardo Moro. 2023. "The Techniques of Blood Purification in the Treatment of Sepsis and Other Hyperinflammatory Conditions" Journal of Clinical Medicine 12, no. 5: 1723. https://doi.org/10.3390/jcm12051723
APA StyleBerlot, G., Tomasini, A., Zanchi, S., & Moro, E. (2023). The Techniques of Blood Purification in the Treatment of Sepsis and Other Hyperinflammatory Conditions. Journal of Clinical Medicine, 12(5), 1723. https://doi.org/10.3390/jcm12051723