Prediction of Postoperative Pulmonary Edema Risk Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Patients and Pulmonary Edema
2.3. Dataset
2.4. Machine Learning
2.5. Modified Dataset
2.6. Metrics and Statistics
3. Results
3.1. Patient Characteristics
3.2. Model Performance
3.3. Feature Importance
3.4. Validation of under-Sampling Test Dataset and Simplified Model
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bajwa, S.S.; Kulshrestha, A. Diagnosis, prevention and management of postoperative pulmonary edema. Ann. Med. Health Sci. Res. 2012, 2, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Katz, A.M. Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N. Engl. J. Med. 1990, 322, 100–110. [Google Scholar] [CrossRef]
- Kwon, Y.-S.; Kim, H.; Lee, H.; Kim, J.-H.; Jang, J.-S.; Hwang, S.-M.; Hong, J.-Y.; Yang, G.-E.; Kim, Y.; Lee, J.-J. Effect of Intra- and Post-Operative Fluid and Blood Volume on Postoperative Pulmonary Edema in Patients with Intraoperative Massive Bleeding. J. Clin. Med. 2021, 10, 4224. [Google Scholar] [CrossRef]
- Baumann, A.; Audibert, G.; McDonnell, J.; Mertes, P.M. Neurogenic pulmonary edema. Acta Anaesthesiol. Scand. 2007, 51, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Matthew Wemple, M.H.; Andrew, M.M.D.; Luks, M.D. Neurogenic Pulmonary Edema. Available online: https://www.uptodate.com/contents/neurogenic-pulmonary-edema (accessed on 24 October 2022).
- Benson, A.B. Pulmonary complications of transfused blood components. Crit. Care Nurs. Clin. North Am. 2012, 24, 403–418. [Google Scholar] [CrossRef] [Green Version]
- Ware, L.B.; Matthay, M.A. Acute Pulmonary Edema. N. Engl. J. Med. 2005, 353, 2788–2796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miskovic, A.; Lumb, A.B. Postoperative pulmonary complications. Br. J. Anaesth. 2017, 118, 317–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulkey, Z.; Yarbrough, S.; Guerra, D.; Roongsritong, C.; Nugent, K.; Phy, M.P. Postextubation pulmonary edema: A case series and review. Respir. Med. 2008, 102, 1659–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, P.-H.; Wang, J.-H.; Huang, S.-C.; Lin, Y.-K.; Lam, C.-F. Characterizing post-extubation negative pressure pulmonary edema in the operating room—A retrospective matched case-control study. Perioper. Med. 2018, 7, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artzi, N.S.; Shilo, S.; Hadar, E.; Rossman, H.; Barbash-Hazan, S.; Ben-Haroush, A.; Balicer, R.D.; Feldman, B.; Wiznitzer, A.; Segal, E. Prediction of gestational diabetes based on nationwide electronic health records. Nat. Med. 2020, 26, 71–76. [Google Scholar] [CrossRef]
- Macesic, N.; Bear Don’t Walk IV, O.J.; Pe’er, I.; Tatonetti, N.P.; Peleg, A.Y.; Uhlemann, A.-C. Predicting phenotypic polymyxin resistance in Klebsiella pneumoniae through machine learning analysis of genomic data. Msystems 2020, 5, e00656-19. [Google Scholar] [CrossRef]
- Quesada, J.A.; Lopez-Pineda, A.; Gil-Guillén, V.F.; Durazo-Arvizu, R.; Orozco-Beltrán, D.; López-Domenech, A.; Carratalá-Munuera, C. Machine learning to predict cardiovascular risk. Int. J. Clin. Pract. 2019, 73, e13389. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Yang, D.; Gao, S.; Zhang, Y.; Chen, L.; Wang, B.; Mo, Z.; Yang, Y.; Hei, Z.; Zhou, S. Development and performance assessment of novel machine learning models to predict pneumonia after liver transplantation. Respir. Res. 2021, 22, 94. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Zhu, T.; Chen, G.; Wang, Y.; Hao, X. A multicenter prospective study on postoperative pulmonary complications prediction in geriatric patients with deep neural network model. Front. Surg. 2022, 9, 976536. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Loftus, T.J.; Datta, S.; Ruppert, M.M.; Guan, Z.; Miao, S.; Shickel, B.; Feng, Z.; Giordano, C.; Upchurch, G.R., Jr.; et al. Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Predict Postoperative Complications and Report on a Mobile Platform. JAMA Netw. Open 2022, 5, e2211973. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Li, D.; Lu, C.; King, C.R.; Wildes, T.; Avidan, M.S.; Kannampallil, T.; Abraham, J. Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications. JAMA Netw. Open 2021, 4, e212240. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Wen, D.; Ji, M.-H.; Tong, J.; Yang, J.-J.; Zhou, C.-M. Developing Machine Learning Algorithms to Predict Pulmonary Complications After Emergency Gastrointestinal Surgery. Front. Med. 2021, 8, 655686. [Google Scholar] [CrossRef]
- Zeng, S.; Li, L.; Hu, Y.; Luo, L.; Fang, Y. Machine learning approaches for the prediction of postoperative complication risk in liver resection patients. BMC Med. Inform. Decis. Mak. 2021, 21, 371. [Google Scholar] [CrossRef]
- LightGBM. Available online: https://lightgbm.readthedocs.io/en/latest/index.html (accessed on 24 October 2022).
- XGBoost. Available online: https://xgboost.readthedocs.io/en/stable/ (accessed on 24 October 2022).
- MLPClassifier. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html (accessed on 24 October 2022).
- LogisticRegression. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html (accessed on 24 October 2022).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Joseph, M. The Gradient Boosters IV: LightGBM. Available online: https://deep-and-shallow.com/2020/02/21/the-gradient-boosters-iii-lightgbm/ (accessed on 24 October 2022).
- Scalable and Flexible Gradient Boosting. Available online: https://xgboost.ai/ (accessed on 24 October 2022).
- Abirami, S.; Chitra, P. Chapter Fourteen—Energy-efficient edge based real-time healthcare support system. In Advances in Computers; Raj, P., Evangeline, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 117, pp. 339–368. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Ivan, T. Two modifications of CNN. IEEE Trans. Syst. Man Commun. SMC 1976, 6, 769–772. [Google Scholar]
- Roubinian, N. TACO and TRALI: Biology, risk factors, and prevention strategies. Hematol. 2014 Am. Soc. Hematol. Educ. Program Book 2018, 2018, 585–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hager, H.H.; Burns, B. Artery Cannulation; StatPearls: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482242/ (accessed on 15 February 2023).
- Arthur, C.; Theodore, G.C.; Dalton, A. Intra-Arterial Catheterization for Invasive Monitoring: Indications, Insertion Techniques, and Interpretation. Available online: https://www.uptodate.com/contents/intra-arterial-catheterization-for-invasive-monitoring-indications-insertion-techniques-and-interpretation (accessed on 15 February 2022).
- ASA Physical Status Classification System. Available online: https://www.asahq.org/standards-and-guidelines/asa-physical-status-classification-system (accessed on 15 February 2022).
- Kim, J.H.; Kim, H.; Yoo, K.; Hwang, S.M.; Lim, S.Y.; Lee, J.J.; Kwon, Y.S. Effect of the preoperative physical status on postoperative nausea and vomiting risk: A matched cohort study. Perioper. Med. 2022, 11, 31. [Google Scholar] [CrossRef]
- Poulose, N.; Raju, R. Aging and injury: Alterations in cellular energetics and organ function. Aging Dis. 2014, 5, 101–108. [Google Scholar] [CrossRef]
- Boldt, J. RETRACTED: Use of albumin: An update. Br. J. Anaesth. 2010, 104, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Galvagno, S.M.; Steurer, M.P.; Grissom, T.E. Anesthesia for Trauma. In Miller’s Anesthesia; Gropper, M.A.M.D.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 2115–2155.e2118. [Google Scholar]
- Kaufman, D.P.; Basit, H.; Knohl, S.J. Physiology, Glomerular Filtration Rate; StatPearls: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK500032/ (accessed on 15 February 2023).
- Munis, J.R.; Munis, J.R. 19Hydrostatic Pressure. In Just Enough Physiology; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Nakamura, T.; Sakamaki, T.; Kurashina, T.; Sato, K.; Ono, Z.; Murata, K. Effect of Renal Perfusion Pressure on Renal Interstitial Hydrostatic Pressure and Sodium Excretion. Hypertension 1995, 25, 866–871. [Google Scholar] [CrossRef]
No PPE (n = 218,324) | PPE (n = 3584) | p-Value | |
---|---|---|---|
Age | 50.0 (37.0, 62.0) | 69.0 (56.0, 78.0) | <0.001 |
Male sex | 100,552 (46.1) | 1739 (48.5) | 0.004 |
Order of surgery | 1.0 (1.0, 1.0) | 1.0 (1.0, 1.0) | <0.001 |
Preoperative atelectasis | 6276 (2.9) | 418 (11.7) | <0.001 |
Preoperative effusion | 4658 (2.1) | 410 (11.4) | <0.001 |
Preoperative pneumothorax | 1968 (0.9) | 71 (2.0) | <0.001 |
Preoperative pneumonia | 1401 (0.6) | 176 (4.9) | <0.001 |
Preoperative PTE | 178 (0.1) | 18 (0.5) | <0.001 |
Preoperative ARDS | 19 (0.0) | 1 (0.0) | 0.754 |
Body mass index | 24.0 (21.8, 26.5) | 23.9 (21.5, 26.6) | 0.059 |
Congestive heart failure | 4236 (1.9) | 467 (13.0) | <0.001 |
Cardiac arrhythmia | 6520 (3.0) | 353 (9.8) | <0.001 |
Valvular diseases | 1170 (0.5) | 153 (4.3) | <0.001 |
Pulmonary circulation disorders | 921 (0.4) | 77 (2.1) | <0.001 |
Peripheral vascular disorders | 4399 (2.0) | 192 (5.4) | <0.001 |
Hypertension, uncomplicated | 24,413 (11.2) | 903 (25.2) | <0.001 |
Hypertension, complicated | 9025 (4.1) | 420 (11.7) | <0.001 |
Paralysis | 609 (0.3) | 33 (0.9) | <0.001 |
Other neurological disorders | 5120 (2.4) | 243 (6.8) | <0.001 |
Chronic pulmonary diseases | 14,365 (6.6) | 394 (11.0) | <0.001 |
Diabetes, uncomplicated | 11,051 (5.1) | 373 (10.4) | <0.001 |
Diabetes, complicated | 14,996 (6.9) | 562 (15.7) | <0.001 |
Hypothyroidism | 4828 (2.2) | 162 (4.5) | <0.001 |
Renal failure | 5847 (2.7) | 426 (11.9) | <0.001 |
Liver disease | 11,293 (5.2) | 244 (6.8) | <0.001 |
Peptic ulcer diseases (excluding bleeding) | 4055 (1.9) | 92 (2.6) | 0.002 |
AIDS/HIV | 59 (0.0) | 0 (0) | 0.640 |
Lymphoma | 744 (0.3) | 26 (0.7) | <0.001 |
Metastatic cancer | 2261 (1.0) | 77 (2.1) | <0.001 |
Solid tumors without metastasis | 33,956 (15.6) | 991 (27.6) | <0.001 |
Rheumatoid arthritis/collagen vascular diseases | 3176 (1.4) | 83 (2.3) | <0.001 |
Alcohol consumption | 59,560 (27.3) | 698 (19.5) | <0.001 |
Current smoking | 37,885 (17.4) | 533 (14.9) | <0.001 |
Smoking frequency (packs) | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
Smoking duration (years) | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | 0.014 |
Emergency | 36,571 (16.8) | 1057 (29.5) | <0.001 |
ASA-PS > 2 | 82,608 (37.8) | 1053 (0.5) | <0.001 |
General anesthesia | 181,268 (83.0) | 3210 (89.6) | <0.001 |
Anesthetics (sevoflurane) | 124,935 (57.2) | 2415 (1.1) | <0.001 |
N2O | 10,226 (4.7) | 73 (2.0) | <0.001 |
Anesthesia time (min) | 105.0 (70.0, 160.0) | 190.0 (125.0, 300.0) | <0.001 |
Surgery time (min) | 65.0 (35.0, 115.0) | 130.0 (75.0, 230.5) | <0.001 |
Intraoperative blood administration | 0.0 (0.0, 0.0) | 0.0 (0.0, 400.0) | <0.001 |
Intraoperative fluid administration | 500.0 (300.0, 900.0) | 1500.0 (850.0, 2500.0) | <0.001 |
Intraoperative urine output | 0.0 (0.0, 90.0) | 215.0 (60.0, 550.0) | <0.001 |
Estimated blood loss | 20.0 (0.0, 100.0) | 500.0 (100.0, 800.0) | <0.001 |
Arterial line | 56,990 (26.1) | 3252 (90.7) | <0.001 |
Central venous line | 14,362 (6.6) | 1649 (46.0) | <0.001 |
Foley catheter | 77,786 (35.6) | 3097 (86.4) | <0.001 |
Levin tube | 3656 (1.7) | 277 (7.7) | <0.001 |
Patient-controlled analgesia (intravenous) | 83,711 (38.3) | 1119 (0.5) | <0.001 |
Intraoperative packed red blood cells | 0.0 (0.0, 0.0) | 0.0 (0.0, 2.0) | <0.001 |
Intraoperative FFP | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
Intraoperative PC | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
Intraoperative cryoprecipitate | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
Rocuronium | 50.0 (0.0, 50.0) | 50.0 (25.0, 60.0) | <0.001 |
Vecuronium | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
Atracurium | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | 0.214 |
Cisatracurium | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
Succinylcholine | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
Pyridostigmine | 0.0 (0.0, 15.0) | 0.0 (0.0, 15.0) | <0.001 |
Neostigmine | 0.0 (0.0, 1.0) | 0.0 (0.0, 1.0) | 0.026 |
Sugammadex | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
Fentanyl | 0.0 (0.0, 0.1) | 0.0 (0.0, 0.0) | <0.001 |
Alfentanil | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | 0.171 |
Sufentanil | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
Remifentanil | 0.0 (0.0, 1.0) | 0.0 (0.0, 1.0) | <0.001 |
Pethidine | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
BUN | 13.3 (10.5, 16.6) | 16.1 (12.1, 21.6) | <0.001 |
Cr | 0.8 (0.6, 0.9) | 0.8 (0.7, 1.1) | <0.001 |
GFR | 98.0 (83.0, 116.0) | 85.0 (63.0, 107.0) | <0.001 |
PT | 12.1 (11.3, 12.9) | 12.9 (12.0, 13.9) | <0.001 |
aPTT | 31.6 (27.9, 35.2) | 33.2 (28.5, 37.8) | <0.001 |
INR | 1.0 (0.9, 1.1) | 1.0 (1.0, 1.1) | <0.001 |
PLT | 246.0 (206.0, 291.0) | 219.0 (171.0, 276.0) | <0.001 |
Na | 140.0 (138.0, 141.0) | 139.0 (136.0, 141.0) | <0.001 |
K | 4.1 (3.9, 4.4) | 4.0 (3.7, 4.3) | <0.001 |
Uric acid | 4.7 (3.7, 5.8) | 4.6 (3.4, 5.9) | 0.004 |
Protein | 7.2 (6.7, 7.5) | 6.6 (6.0, 7.2) | <0.001 |
Albumin | 4.4 (4.1, 4.6) | 3.9 (3.3, 4.3) | <0.001 |
Robotic surgery | 5022 (2.3) | 117 (3.3) | <0.001 |
Laparoscopic surgery | 41,921 (19.2) | 436 (12.2) | <0.001 |
Heart surgery | 970 (0.4) | 265 (7.4) | <0.001 |
Abdominal surgery (minor/major) | 34,286 (15.7)/6750 (3.1) | 434 (12.1)/369 (10.3) | <0.001 |
Breast surgery (minor/major) | 7304 (3.4)/20 (0.0) | 19 (0.5)/2 (0.1) | <0.001 |
Ear surgery (minor/major) | 4270 (2.0)/2 (0.0) | 8 (0.2)/0 (0) | <0.001 |
Endocrine surgery (minor/major) | 3145 (1.4)/2691 (1.2) | 19 (0.5)/7 (0.2) | <0.001 |
Eye surgery | 4215 (1.9) | 10 (0.3) | <0.001 |
Head and neck surgery (minor/major) | 25,006 (11.4)/269 (0.1) | 41 (1.1)/8 (0.2) | <0.001 |
Musculoskeletal surgery (minor/major) | 50,412 (23.1)/3040 (1.4) | 666 (18.6)/306 (8.5) | <0.001 |
Neurosurgery (minor/major) | 5837 (2.7)/1707 (0.8) | 306 (8.5)/197 (5.5) | <0.001 |
OBGY surgery (minor/major) | 33,713 (15.4)/602 (0.3) | 128 (3.6)/30 (0.8) | <0.001 |
Spine surgery (minor/major) | 4181 (1.9)/2743 (1.3) | 144 (4.0)/208 (5.8) | <0.001 |
Thoracic surgery (minor/major) | 3130 (1.4)/945 (0.4) | 142 (4.0)/71 (2.0) | <0.001 |
Transplantation surgery (minor/major) | 64 (0.0)/127 (0.1) | 4 (0.1)/37 (1.0) | <0.001 |
Urogenital surgery (minor/major) | 19,458 (8.9)/1894 (0.9) | 98 (2.7)/118 (3.3) | <0.001 |
Vascular surgery (minor/major) | 1610 (0.7)/82 (0.0) | 76 (2.1)/25 (0.7) | <0.001 |
Skin and soft tissue surgery (minor/major) | 15,406 (7.1)/97 (0.0) | 111 (3.1)/7 (0.2) | <0.001 |
No PPE (n = 33,095) | PPE (n = 1896) | p-Value | |
---|---|---|---|
Age, year | 52.0 (39.0, 64.0) | 71.0 (60.0, 79.0) | <0.001 |
Male sex | 18,038 (54.5) | 973 (51.3) | 0.007 |
Order of surgery | 1.0 (1.0, 1.0) | 1.0 (1.0, 1.0) | <0.001 |
Preoperative atelectasis | 788 (2.4) | 172 (9.1) | <0.001 |
Preoperative effusion | 725 (2.2) | 194 (10.2) | <0.001 |
Preoperative pneumothorax | 191 (0.6) | 25 (1.3) | <0.001 |
Preoperative pneumonia | 257 (0.8) | 109 (5.8) | <0.001 |
Preoperative PTE | 17 (0.1) | 6 (0.3) | <0.001 |
Preoperative ARDS | 6 (0.0) | 0 (0) | >0.999 |
Body mass index | 24.4 (22.1, 26.9) | 23.9 (21.3, 26.5) | <0.001 |
Congestive heart failure | 1168 (3.5) | 238 (12.6) | <0.001 |
Cardiac arrhythmias | 1438 (4.3) | 231 (12.2) | <0.001 |
Valvular disease | 231 (0.7) | 51 (2.7) | <0.001 |
Pulmonary circulation disorders | 239 (0.7) | 65 (3.4) | <0.001 |
Peripheral vascular disorders | 534 (1.6) | 73 (3.9) | <0.001 |
Hypertension, uncomplicated | 3896 (11.8) | 467 (24.6) | <0.001 |
Hypertension, complicated | 2507 (7.6) | 264 (13.9) | <0.001 |
Paralysis | 282 (0.8) | 38 (2.0) | <0.001 |
Other neurological disorders | 1021 (3.1) | 163 (8.6) | <0.001 |
Chronic pulmonary diseases | 4377 (13.2) | 380 (20.0) | <0.001 |
Diabetes, uncomplicated | 3325 (10.1) | 338 (17.8) | <0.001 |
Diabetes, complicated | 2067 (6.2) | 251 (13.2) | <0.001 |
Hypothyroidism | 537 (1.6) | 54 (2.9) | <0.001 |
Renal failure | 1378 (4.2) | 236 (12.4) | <0.001 |
Liver disease | 2556 (7.7) | 221 (11.7) | <0.001 |
Peptic ulcer diseases (excluding bleeding) | 1147 (3.5) | 75 (4.0) | 0.287 |
AIDS/HIV | 2 (0.0) | 0 (0) | >0.999 |
Lymphoma | 132 (0.4) | 9 (0.5) | 0.749 |
Metastatic cancer | 333 (1.0) | 57 (3.0) | <0.001 |
Solid tumors without metastasis | 4336 (13.1) | 595 (31.4) | <0.001 |
Rheumatoid arthritis/collagen vascular diseases | 655 (2.0) | 45 (2.4) | 0.268 |
Alcohol consumption | 8651 (26.1) | 309 (16.3) | <0.001 |
Current smoking | 5953 (18.0) | 258 (13.6) | <0.001 |
Smoking frequency (packs) | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
Smoking duration (years) | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
Emergency | 4606 (13.9) | 596 (31.4) | <0.001 |
ASA-PS > 2 | 13,558 (41.0) | 829 (2.5) | <0.001 |
General anesthesia | 29,306 (88.5) | 1886 (99.5) | <0.001 |
Anesthetics (Sevoflurane) | 16,024 (48.4) | 888 (2.7) | <0.001 |
N2O | 18,445 (55.7) | 578 (30.5) | <0.001 |
Anesthesia time (min) | 85.0 (60.0, 130.0) | 140.0 (95.0, 215.0) | <0.001 |
Surgery time (min) | 55.0 (35.0, 95.0) | 100.0 (60.0, 165.0) | <0.001 |
Intraoperative blood administration | 0.0 (0.0, 0.0) | 0.0 (0.0, 240.0) | <0.001 |
Intraoperative fluid administration | 350.0 (200.0, 600.0) | 950.0 (500.0, 1750.0) | <0.001 |
Intraoperative urine output | 0.0 (0.0, 30.0) | 85.0 (20.0, 230.0) | <0.001 |
Estimated blood loss | 20.0 (5.0, 50.0) | 200.0 (30.0, 600.0) | <0.001 |
Arterial line | 7387 (22.3) | 1627 (85.8) | <0.001 |
Central venous line | 3314 (10.0) | 1258 (66.3) | <0.001 |
Foley catheter | 10,807 (32.6) | 1560 (82.3) | <0.001 |
Levin tube | 1070 (3.2) | 278 (14.7) | <0.001 |
Patient-controlled analgesia (intravenous) | 15,263 (46.1) | 490 (1.5) | <0.001 |
Intraoperative packed red blood cell | 0.0 (0.0, 0.0) | 0.0 (0.0, 1.0) | <0.001 |
Intraoperative FFP | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
Intraoperative PC | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
Intraoperative cryoprecipitate | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
Rocuronium | 50.0 (50.0, 75.0) | 75.0 (50.0, 150.0) | <0.001 |
Vecuronium | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | >0.999 |
Atracurium | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
Cisatracurium | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
Succinylcholine | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | 0.081 |
Pyridostigmine | 20.0 (0.0, 20.0) | 0.0 (0.0, 20.0) | <0.001 |
Neostigmine | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | >0.999 |
Sugammadex | 0.0 (0.0, 0.0) | 0.0 (0.0, 200.0) | <0.001 |
Fentanyl | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | 0.056 |
Alfentanil | 0.0 (0.0, 0.5) | 0.0 (0.0, 0.2) | <0.001 |
Sufentanil | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | 0.095 |
Remifentanil | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.4) | <0.001 |
Pethidine | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | <0.001 |
BUN | 14.1 (11.5, 17.4) | 16.4 (12.6, 22.0) | <0.001 |
Cr | 0.8 (0.7, 1.0) | 0.9 (0.7, 1.1) | 0.002 |
GFR | 90.0 (77.0, 104.0) | 81.6 (63.0, 100.7) | <0.001 |
PT | 11.1 (10.6, 11.7) | 11.6 (11.0, 12.5) | <0.001 |
aPTT | 31.2 (29.0, 33.7) | 30.0 (27.5, 32.8) | <0.001 |
INR | 1.0 (1.0, 1.1) | 1.1 (1.0, 1.1) | <0.001 |
PLT | 247.0 (208.0, 292.0) | 218.0 (169.8, 274.0) | <0.001 |
Na | 141.0 (140.0, 143.0) | 140.0 (138.0, 142.0) | <0.001 |
K | 4.2 (3.9, 4.4) | 4.1 (3.8, 4.4) | <0.001 |
Uric acid | 4.8 (3.8, 5.9) | 4.5 (3.4, 5.8) | <0.001 |
Protein | 7.0 (6.6, 7.3) | 6.5 (6.0, 7.0) | <0.001 |
Albumin | 4.4 (4.1, 4.6) | 3.9 (3.4, 4.3) | <0.001 |
Robotic surgery | 208 (0.6) | 73 (3.9) | <0.001 |
Laparoscopic surgery | 4240 (12.8) | 427 (22.5) | <0.001 |
Heart surgery | 24 (0.1) | 8 (0.4) | <0.001 |
Abdominal surgery (minor/major) | 5113 (15.4)/706 (2.1) | 428 (22.6)/268 (14.1) | <0.001 |
Breast surgery (minor/major) | 1306 (4.0)/2 (0.0) | 5 (0.3)/1 (0.1) | <0.001 |
Ear surgery (minor/major) | 855 (2.6) | 1 (0.1) | <0.001 |
Endocrine surgery (minor/major) | 369 (1.1)/107 (0.3) | 8 (0.4)/1 (0.1) | 0.002 |
Eye surgery | 606 (1.8) | 4 (0.2) | <0.001 |
Head and neck surgery (minor/major) | 4087 (12.3)/12 (0.0) | 22 (1.2)/3 (0.2) | <0.001 |
Musculoskeletal surgery (minor/major) | 11,044 (33.4)/530 (1.6) | 353 (18.6)/226 (11.9) | <0.001 |
Neurosurgery (minor/major) | 779 (2.4)/231 (0.7) | 99 (5.2)/96 (5.1) | <0.001 |
OBGY surgery (minor/major) | 1705 (5.2)/24 (0.1) | 5 (0.3)/1 (0.1) | <0.001 |
Spine surgery (minor/major) | 2050 (6.2)/220 (0.7) | 73 (3.9)/44 (2.3) | <0.001 |
Thoracic surgery (minor/major) | 272 (0.8)/54 (0.2) | 76 (4.0)/19 (1.0) | <0.001 |
Transplantation surgery (minor/major) | 0 (0) | 0 (0) | >0.999 |
Urogenital surgery (minor/major) | 2021 (6.1)/104 (0.3) | 62 (3.3)/69 (3.6) | <0.001 |
Vascular surgery (minor/major) | 368 (1.1)/2 (0.0) | 13 (0.7)/0 (0) | 0.208 |
Skin and soft tissue surgery (minor/major) | 1510 (4.6)/14 (0.0) | 12 (0.6)/4 (0.2) | <0.001 |
Best Threshold | Accuracy | Precision | Recall | F1 Score | ||
---|---|---|---|---|---|---|
BRF | 0.42 | 0.82 | Normal | 0.99 | 0.81 | 0.89 |
PPE | 0.21 | 0.89 | 0.34 | |||
LGBM | 0.048 | 0.72 | Normal | 0.98 | 0.72 | 0.83 |
PPE | 0.14 | 0.80 | 0.24 | |||
XGB | 0.353 | 0.76 | Normal | 0.98 | 0.77 | 0.86 |
PPE | 0.14 | 0.66 | 0.23 | |||
MLP | 0 | 0.93 | Normal | 0.95 | 0.98 | 0.96 |
PPE | 0.07 | 0.03 | 0.04 | |||
LR | 697.8 | 0.75 | Normal | 0.98 | 0.75 | 0.85 |
PPE | 0.14 | 0.68 | 0.23 |
AUC (95% CI) | Best Threshold | Accuracy | Precision | Recall | F1 Score | ||
---|---|---|---|---|---|---|---|
After under sampling | 0.911 (0.855–0.972) | 0.42 | 0.83 | Normal | 0.99 | 0.82 | 0.90 |
PPE | 0.22 | 0.89 | 0.36 | ||||
Simplified model | 0.901 (0.829–0.978) | 0.44 | 0.82 | Normal | 0.99 | 0.81 | 0.89 |
PPE | 0.21 | 0.88 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.H.; Kim, Y.; Yoo, K.; Kim, M.; Kang, S.S.; Kwon, Y.-S.; Lee, J.J. Prediction of Postoperative Pulmonary Edema Risk Using Machine Learning. J. Clin. Med. 2023, 12, 1804. https://doi.org/10.3390/jcm12051804
Kim JH, Kim Y, Yoo K, Kim M, Kang SS, Kwon Y-S, Lee JJ. Prediction of Postoperative Pulmonary Edema Risk Using Machine Learning. Journal of Clinical Medicine. 2023; 12(5):1804. https://doi.org/10.3390/jcm12051804
Chicago/Turabian StyleKim, Jong Ho, Youngmi Kim, Kookhyun Yoo, Minguan Kim, Seong Sik Kang, Young-Suk Kwon, and Jae Jun Lee. 2023. "Prediction of Postoperative Pulmonary Edema Risk Using Machine Learning" Journal of Clinical Medicine 12, no. 5: 1804. https://doi.org/10.3390/jcm12051804
APA StyleKim, J. H., Kim, Y., Yoo, K., Kim, M., Kang, S. S., Kwon, Y. -S., & Lee, J. J. (2023). Prediction of Postoperative Pulmonary Edema Risk Using Machine Learning. Journal of Clinical Medicine, 12(5), 1804. https://doi.org/10.3390/jcm12051804