Tricalcium Phosphate as a Bone Substitute to Treat Massive Acetabular Bone Defects in Hip Revision Surgery: A Systematic Review and Initial Clinical Experience with 11 Cases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Article Selection
2.2. Study Selection
2.3. Data Extraction, Outcome Measurement, and Quality Assessment
3. Results
3.1. Article Selection and Studies Characteristics
3.2. Patient Characteristics
3.3. Bone Graft Carateristics
3.4. Clinical and Radiological Outcomes
4. Early Clinical Results of rTHA with a TCP Bone Substitute to Treat Acetabular Bone Loss
4.1. Cases Series
4.2. Surgical Technique
4.3. Postoperative Management
4.4. Clinical and Radiological Outcomes
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Labek, G.; Thaler, M.; Janda, W.; Agreiter, M.; Stöckl, B. Revision Rates after Total Joint Replacement: Cumulative Results from Worldwide Joint Register Datasets. J. Bone Jt. Surg. Br. 2011, 93, 293–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheth, N.P.; Nelson, C.L.; Springer, B.D.; Fehring, T.K.; Paprosky, W.G. Acetabular Bone Loss in Revision Total Hip Arthroplasty: Evaluation and Management. J. Am. Acad. Orthop. Surg. 2013, 21, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.C.; Stockley, I.; Hamer, A.J.; Kerry, R.M. Irradiated Allograft Bone for Acetabular Revision Surgery. Results at a Mean of Five Years. J. Bone Jt. Surg. Br. 2005, 87, 310–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwong, F.N.K.; Ibrahim, T.; Power, R.A. Incidence of Infection with the Use of Non-Irradiated Morcellised Allograft Bone Washed at the Time of Revision Arthroplasty of the Hip. J. Bone Jt. Surg. Br. 2005, 87, 1524–1526. [Google Scholar] [CrossRef] [Green Version]
- Comba, F.; Buttaro, M.; Pusso, R.; Piccaluga, F. Acetabular Reconstruction with Impacted Bone Allografts and Cemented Acetabular Components: A 2- to 13-Year Follow-up Study of 142 Aseptic Revisions. J. Bone Jt. Surg. Br. 2006, 88, 865–869. [Google Scholar] [CrossRef]
- van Haaren, E.H.; Heyligers, I.C.; Alexander, F.G.M.; Wuisman, P.I.J.M. High Rate of Failure of Impaction Grafting in Large Acetabular Defects. J. Bone Jt. Surg. Br. 2007, 89, 296–300. [Google Scholar] [CrossRef] [Green Version]
- Lian, Y.-Y.; Yoo, M.-C.; Pei, F.-X.; Kim, K.-I.; Chun, S.-W.; Cheng, J.-Q. Cementless Hemispheric Acetabular Component for Acetabular Revision Arthroplasty: A 5- to 19-Year Follow-up Study. J. Arthroplast. 2008, 23, 376–382. [Google Scholar] [CrossRef]
- Park, D.K.; Della Valle, C.J.; Quigley, L.; Moric, M.; Rosenberg, A.G.; Galante, J.O. Revision of the Acetabular Component without Cement. A Concise Follow-up, at Twenty to Twenty-Four Years, of a Previous Report. J. Bone Jt. Surg. Am. 2009, 91, 350–355. [Google Scholar] [CrossRef]
- Ochs, B.G.; Schmid, U.; Rieth, J.; Ateschrang, A.; Weise, K.; Ochs, U. Acetabular Bone Reconstruction in Revision Arthroplasty: A Comparison of Freeze-Dried, Irradiated and Chemically-Treated Allograft Vitalised with Autologous Marrow versus Frozen Non-Irradiated Allograft. J. Bone Jt. Surg. Br. 2008, 90, 1164–1171. [Google Scholar] [CrossRef] [Green Version]
- Landor, I.; Vavrik, P.; Jahoda, D.; Pokorny, D.; Tawa, A.; Sosna, A. The Long Oblique Revision Component in Revision Arthroplasty of the Hip. J. Bone Jt. Surg. Br. 2009, 91, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Cadossi, M.; Garcia, F.L.; Sambri, A.; Andreoli, I.; Dallari, D.; Pignatti, G. A 2- to 7-Year Follow-Up of a Modular Iliac Screw Cup in Major Acetabular Defects: Clinical, Radiographic and Survivorship Analysis With Comparison to the Literature. J. Arthroplast. 2017, 32, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Baauw, M.; van Hellemondt, G.G.; Spruit, M. A Custom-Made Acetabular Implant for Paprosky Type 3 Defects. Orthopedics 2017, 40, e195–e198. [Google Scholar] [CrossRef] [Green Version]
- Romagnoli, M.; Grassi, A.; Costa, G.G.; Lazaro, L.E.; Lo Presti, M.; Zaffagnini, S. The Efficacy of Dual-Mobility Cup in Preventing Dislocation after Total Hip Arthroplasty: A Systematic Review and Meta-Analysis of Comparative Studies. Int. Orthop. 2019, 43, 1071–1082. [Google Scholar] [CrossRef]
- Pierannunzii, L.; Zagra, L. Bone Grafts, Bone Graft Extenders, Substitutes and Enhancers for Acetabular Reconstruction in Revision Total Hip Arthroplasty. EFORT Open Rev. 2016, 1, 431–439. [Google Scholar] [CrossRef]
- Wang, W.; Yeung, K.W.K. Bone Grafts and Biomaterials Substitutes for Bone Defect Repair: A Review. Bioact. Mater. 2017, 2, 224–247. [Google Scholar] [CrossRef]
- Fillingham, Y.; Jacobs, J. Bone Grafts and Their Substitutes. Bone Jt. J. 2016, 98, 6–9. [Google Scholar] [CrossRef]
- Bohner, M.; Santoni, B.L.G.; Döbelin, N. β-Tricalcium Phosphate for Bone Substitution: Synthesis and Properties. Acta Biomater. 2020, 113, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Kondo, N.; Ogose, A.; Tokunaga, K.; Ito, T.; Arai, K.; Kudo, N.; Inoue, H.; Irie, H.; Endo, N. Bone Formation and Resorption of Highly Purified β-Tricalcium Phosphate in the Rat Femoral Condyle. Biomaterials 2005, 26, 5600–5608. [Google Scholar] [CrossRef]
- Yuan, H.; Fernandes, H.; Habibovic, P.; de Boer, J.; Barradas, A.M.C.; de Ruiter, A.; Walsh, W.R.; van Blitterswijk, C.A.; de Bruijn, J.D. Osteoinductive Ceramics as a Synthetic Alternative to Autologous Bone Grafting. Proc. Natl. Acad. Sci. USA 2010, 107, 13614–13619. [Google Scholar] [CrossRef] [Green Version]
- Rh. Owen, G.; Dard, M.; Larjava, H. Hydoxyapatite/Beta-Tricalcium Phosphate Biphasic Ceramics as Regenerative Material for the Repair of Complex Bone Defects. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 2493–2512. [Google Scholar] [CrossRef]
- Yamada, S.; Heymann, D.; Bouler, J.-M.; Daculsi, G. Osteoclastic Resorption of Calcium Phosphate Ceramics with Different Hydroxyapatite/β-Tricalcium Phosphate Ratios. Biomaterials 1997, 18, 1037–1041. [Google Scholar] [CrossRef]
- Bouler, J.M.; Pilet, P.; Gauthier, O.; Verron, E. Biphasic Calcium Phosphate Ceramics for Bone Reconstruction: A Review of Biological Response. Acta Biomater. 2017, 53, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.D.; Quatman, C.E.; Manring, M.M.; Siston, R.A.; Flanigan, D.C. How to Write a Systematic Review. Am. J. Sport Med. 2014, 42, 2761–2768. [Google Scholar] [CrossRef]
- Page, M.J.; Shamseer, L.; Tricco, A.C. Registration of Systematic Reviews in PROSPERO: 30,000 Records and Counting. Syst. Rev. 2018, 7, 32. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [Green Version]
- Cowan, J.; Lozano-Calderón, S.; Ring, D. Quality of Prospective Controlled Randomized Trials. Analysis of Trials of Treatment for Lateral Epicondylitis as an Example. J. Bone Jt. Surg. Am. 2007, 89, 1693–1699. [Google Scholar] [CrossRef] [PubMed]
- Blom, A.W.; Wylde, V.; Livesey, C.; Whitehouse, M.R.; Eastaugh-Waring, S.; Bannister, G.C.; Learmonth, I.D. Impaction Bone Grafting of the Acetabulum at Hip Revision Using a Mix of Bone Chips and a Biphasic Porous Ceramic Bone Graft Substitute. Acta Orthop. 2009, 80, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.; Bordei, R. Biphasic Phospho-Calcium Ceramics Used as Bone Substitutes Are Efficient in the Management of Severe Acetabular Bone Loss in Revision Total Hip Arthroplasties. Eur. J. Orthop. Surg. Traumatol. 2005, 15, 191–196. [Google Scholar] [CrossRef]
- Schwartz, C.; Liss, P.; Jacquemaire, B.; Lecestre, P.; Frayssinet, P. Biphasic Synthetic Bone Substitute Use in Orthopaedic and Trauma Surgery: Clinical, Radiological and Histological Results. J. Mater. Sci. Mater. Med. 1999, 10, 821–825. [Google Scholar] [CrossRef]
- Fujishiro, T.; Nishikawa, T.; Niikura, T.; Takikawa, S.; Saegusa, Y.; Kurosaka, M.; Bauer, T.W. Histologic Analysis of Allograft Mixed with Hydroxyapatite-Tricalcium Phosphate Used in Revision Femoral Impaction Bone Grafting. Orthopedics 2008, 31, 277. [Google Scholar] [CrossRef]
- Parry, M.C.; Whitehouse, M.R.; Mehendale, S.A.; Smith, L.K.; Webb, J.C.; Spencer, R.F.; Blom, A.W. A Comparison of the Validity and Reliability of Established Bone Stock Loss Classification Systems and the Proposal of a Novel Classification System. HIP Int. 2010, 20, 50–55. [Google Scholar] [CrossRef]
- D’Antonio, J.A.; Capello, W.N.; Borden, L.S.; Bargar, W.L.; Bierbaum, B.F.; Boettcher, W.G.; Steinberg, M.E.; Stulberg, S.D.; Wedge, J.H. Classification and Management of Acetabular Abnormalities in Total Hip Arthroplasty. Clin. Orthop. Relat. Res. 1989, 243, 126–137. [Google Scholar] [CrossRef]
- Paprosky, W.G.; Perona, P.G.; Lawrence, J.M. Acetabular Defect Classification and Surgical Reconstruction in Revision Arthroplasty: A 6-Year Follow-up Evaluation. J. Arthroplast. 1994, 9, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, M.R.; Dacombe, P.J.; Webb, J.C.J.; Blom, A.W. Impaction Grafting of the Acetabulum with Ceramic Bone Graft Substitute: High Survivorship in 43 Patients with a Mean Follow-up Period of 4 Years. Acta Orthop. 2013, 84, 371–376. [Google Scholar] [CrossRef]
- Whitehouse, M.R.; Dacombe, P.J.; Webb, J.C.J.; Blom, A.W. Impaction Grafting of the Acetabulum with Ceramic Bone Graft Substitute Mixed with Femoral Head Allograft: High Survivorship in 43 Patients with a Median Follow-up of 7 Years: A Follow-up Report. Acta Orthop. 2013, 84, 365–370. [Google Scholar] [CrossRef]
- Haenle, M.; Schlüter, S.; Ellenrieder, M.; Mittelmeier, W.; Bader, R. Treatment of Acetabular Defects during Revision Total Hip Arthroplasty--Preliminary Clinical and Radiological Outcome Using Bone Substitute Materials. Hip. Int. 2013, 23, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.; Vautrin, M. Phosphocalcium Ceramics Are Efficient in the Management of Severe Acetabular Loss in Revision Hip Arthroplasties. A 22 Cases Long-Term Follow-up Study. Eur. J. Orthop. Surg. Traumatol. 2015, 25, 227–232. [Google Scholar] [CrossRef]
- Hayashi, S.; Nishiyama, T.; Hashimoto, S.; Matsumoto, T.; Takayama, K.; Ishida, K.; Nishida, K.; Kuroda, R. Risk Factors for Failure of Revision Total Hip Arthroplasty Using a Kerboull-Type Acetabular Reinforcement Device. BMC Musculoskelet. Disord. 2017, 18, 382. [Google Scholar] [CrossRef] [Green Version]
- Abdelazim, H.; Elerian, S.; Abdelrahman, A.A.; Nageeb Mahmoud, A. Early Results of Revision Dual Mobility Uncemented Cups with Impaction Autologous and Synthetic Bone Graft Composite in Revision Hip Arthroplasty for Cavitary Acetabular Defects: A Retrospective Case Series. Curr. Orthop. Pract. 2020, 31, 48–53. [Google Scholar] [CrossRef]
- Gagala, J. Minimum 10 Years Clinical and Radiological Outcomes of Acetabular Revisions of Total Hip Arthroplasties with Tricalcium Phosphate/Hydroxyapatite Bone Graft Substitute. BMC Musculoskelet. Disord. 2021, 22, 835. [Google Scholar] [CrossRef] [PubMed]
- Comba, L.C.; Bellato, E.; Colombero, D.; Mattei, L.; Marmotti, A.; Castoldi, F. Revision of Total Hip Arthroplasty with Acetabular Bone Defects: Are Biological Grafts Really Better than Synthetic Bone Graft Substitutes? Arch. Bone Jt. Surg. 2022, 10, 568–575. [Google Scholar] [CrossRef] [PubMed]
- DeLee, J.G.; Charnley, J. Radiological Demarcation of Cemented Sockets in Total Hip Replacement. Clin. Orthop. Relat. Res. 1976, 20–32. [Google Scholar] [CrossRef]
- Brooker, A.F.; Bowerman, J.W.; Robinson, R.A.; Riley, L.H. Ectopic Ossification Following Total Hip Replacement. Incidence and a Method of Classification. J. Bone Jt. Surg. Am. 1973, 55, 1629–1632. [Google Scholar] [CrossRef]
- Zheng, H.; Bai, Y.; Shih, M.-S.; Hoffmann, C.; Peters, F.; Waldner, C.; Hübner, W.-D. Effect of a β-TCP Collagen Composite Bone Substitute on Healing of Drilled Bone Voids in the Distal Femoral Condyle of Rabbits. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 376–383. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, H.; Zhou, K.; Wang, D.; Ling, T.; Pei, F.; Zhou, Z. The Mid-Long Term Results of Reconstructional Cage and Morselized Allografts Combined Application for the Paprosky Type III Acetabular Bone Defects in Revision Hip Arthroplasty. BMC Musculoskelet. Disord. 2019, 20, 517. [Google Scholar] [CrossRef] [Green Version]
- Udomkiat, P.; Wan, Z.; Dorr, L.D. Comparison of Preoperative Radiographs and Intraoperative Findings of Fixation of Hemispheric Porous-Coated Sockets. J. Bone Jt. Surg. Am. 2001, 83, 1865–1870. [Google Scholar] [CrossRef]
- Gross, A.E. Revision Arthroplasty of the Acetabulum with Restoration of Bone Stock. Clin. Orthop. Relat. Res. 1999, 369, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, S.N.; Brady, J.M.; Getter, L.; Grower, M.F.; Driskell, T. Biodegradable Ceramic Implants in Bone: Electron and Light Microscopic Analysis. Oral Surg. Oral Med. Oral Pathol. 1971, 32, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Jarcho, M.; Salsbury, R.L.; Thomas, M.B.; Doremus, R.H. Synthesis and Fabrication of β-Tricalcium Phosphate (Whitlockite) Ceramics for Potential Prosthetic Applications. J. Mater. Sci. 1979, 14, 142–150. [Google Scholar] [CrossRef]
- Buser, Z.; Brodke, D.S.; Youssef, J.A.; Meisel, H.-J.; Myhre, S.L.; Hashimoto, R.; Park, J.-B.; Tim Yoon, S.; Wang, J.C. Synthetic Bone Graft versus Autograft or Allograft for Spinal Fusion: A Systematic Review. J. Neurosurg. Spine 2016, 25, 509–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.C.; Solderer, A.; Heumann, C.; Attin, T.; Schmidlin, P.R. Tricalcium Phosphate (-Containing) Biomaterials in the Treatment of Periodontal Infra-Bony Defects: A Systematic Review and Meta-Analysis. J. Dent. 2021, 114, 103812. [Google Scholar] [CrossRef]
- Jasser, R.A.; AlSubaie, A.; AlShehri, F. Effectiveness of Beta-Tricalcium Phosphate in Comparison with Other Materials in Treating Periodontal Infra-Bony Defects around Natural Teeth: A Systematic Review and Meta-Analysis. BMC Oral Health. 2021, 21, 219. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, J.J.; Liu, S.S.; Phruetthiphat, O.-A. The Revision Acetabulum—Allograft and Bone Substitutes. Bone Jt. J. 2014, 96, 70–72. [Google Scholar] [CrossRef]
- Nishii, T.; Sugano, N.; Miki, H.; Koyama, T.; Yoshikawa, H. Multidetector-CT Evaluation of Bone Substitutes Remodeling after Revision Hip Surgery. Clin. Orthop. Relat. Res. ® 2006, 442, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Mofakhami, S.; Salahinejad, E. Biphasic Calcium Phosphate Microspheres in Biomedical Applications. J. Control. Release 2021, 338, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Botelho, M.G.; Dorozhkin, S.V. Biphasic Calcium Phosphates Bioceramics (HA/TCP): Concept, Physicochemical Properties and the Impact of Standardization of Study Protocols in Biomaterials Research. Mater. Sci. Eng. C 2017, 71, 1293–1312. [Google Scholar] [CrossRef]
- Field, R.E.; Cronin, M.D.; Singh, P.J. The Oxford Hip Scores for Primary and Revision Hip Replacement. J. Bone Jt. Surg. Br. 2005, 87, 618–622. [Google Scholar] [CrossRef]
- Sodhi, N.; Mont, M.A. Survival of Total Hip Replacements. Lancet 2019, 393, 613. [Google Scholar] [CrossRef] [Green Version]
- Deere, K.; Whitehouse, M.R.; Kunutsor, S.K.; Sayers, A.; Mason, J.; Blom, A.W. How Long Do Revised and Multiply Revised Hip Replacements Last? A Retrospective Observational Study of the National Joint Registry. Lancet Rheumatol. 2022, 4, e468–e479. [Google Scholar] [CrossRef]
- Iwase, T.; Ito, T.; Morita, D. Massive Bone Defect Compromises Postoperative Cup Survivorship of Acetabular Revision Hip Arthroplasty with Impaction Bone Grafting. J. Arthroplast. 2014, 29, 2424–2429. [Google Scholar] [CrossRef]
Authors and Year | Age Mean (Range) | Patients (Sex) | Final F-Up | Bone Graft Substitute | Parry | AAOS | Paprosky | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | I | II | III | IV | IIA | IIB | IIC | IIIA | IIIB | |||||
Whitehouse et al., 2013 [34] | 74 (42–90) | 43 (27F/16M) | 80 m (69–106) | TCP + HA | 33 | NA | NA | |||||||
Whitehouse et al., 2013 [35] | 73 (28–92) | 43 (26F/17M) | 49 m (SD ± 20) | TCP + HA | 33 | NA | NA | |||||||
Haenle et al., 2013 [36] | 74.3 (48–87) | 22 (15F/7M) | 20.5 m (7–33) | TCP + HA | NA | 2 | 7 | 13 | 0 | NA | ||||
Schwartz et al., 2015 [37] | 68.2 (45–84) | 22 (13F/9M) | 177.2 m (108–192) | TCP + HA | NA | 12 | 6 | 8 | 6 | NA | ||||
Hayashi et al., 2017 [38] | 66.6 ± 10.4 | 31 (NR) | 105.6 m (SD ± 60) | TCP | NA | 0 | 3 | 28 | 0 | NA | ||||
27 (NR) | 99.6 m (SD ± 27.6) | HA | 0 | 2 | 21 | 4 | ||||||||
19 (NR) | 61.2 m (SD ± 30) | Femoral head allografts | 0 | 1 | 17 | 1 | ||||||||
Abdelazim et al., 2020 [39] | 65.6 (54–79) | 14 (5F/9M) | 28.9 m (14.7–34) | TCP + HA | NA | NA | 0 | 0 | 12 | 0 | 2 | |||
Gagala et al., 2021 [40] | 68.5 (40–83) | 43 (18F/25M) | 144 m (120–174) | TCP + HA | NA | NA | 17 | 3 | 3 | 10 | 11 | |||
Comba et al., 2022 [41] | 69 (50–89) | 12 (5F/7M) | 33 m (12–60) | TCP | NA | NA | 5 | 0 | 3 | 0 | 4 | |||
67 (31–84) | 21 (11F/10M) | 36 m (13–60) | Femoral head allografts | 7 | 2 | 1 | 4 | 7 |
Bioceramic | BoneSave® | BonitMatrix® | Eurocer 200+® | Eurocer 400® | OSferion® | Vitoss® |
---|---|---|---|---|---|---|
Composition | 80% TCP 20% HA | 40% β-TCP 60% HA | 35 ± 0.5% TCP 65 ± 0.5% HA | 45 ± 0.5% TCP 55 ± 0.5% HA | 100% β-TCP | 100% β-TCP |
Sintering temperature | T > 1200 °C | 200 °C | NR | NR | NR | NR |
Crystallinity | >80% | NR | NR | NR | NR | NR |
Porosity | 50% | 60–80% | 60% | 60–80% | 75% | 88–92% |
Pore size | 300–500 μm | Micro-and nano-porous range | 150–300 µm | 300–500 µm | 100–400 μm | 1–1000 µm |
Granule size | 2–8 mm | 0.6 × 0.4 mm | blocks | 3–4 mm | NR | 100–1000 µm |
Additional features | Embedded in a biologically active silicon dioxide matrix (13%) | Compressive strength 20 Mpa | NR | NR | NR |
Authors and Year | Study Design | Survival Rate of the Implants | Bone Graft Substitute | Clinical Scale | Score at Baseline and Last F-Up | Failure (Definition and Timing) | Results | mCMS |
---|---|---|---|---|---|---|---|---|
Haenle et al., 2013 [36] | Retrospective case series | NR | 50% BonitMatrix® + 50% autologous BM pelvis | HHS | 53 (41–79) 67 (43–93) | No revisions | The use of bone substitutes may gain significance during acetabular revision surgery, partly due to its easy accessibility and broad availability. | 36 |
Whitehouse et al., 2013 [34] | Retrospective case series | 94% (CI 99–78) 84 m f-up | 50% BoneSave® + 50% femoral head allografts | OHS | NR 31 (NR) | Two acetabular revisions NR (21 m) Deep infection (32 m) | BoneSave® combined with femoral head allograft is associated with low revision rates and high rates of graft incorporation in rTHA. | 36 |
Whitehouse et al., 2013 [35] | Retrospective case series | 98% (CI: 85–100) 85 m f-up | 100% BoneSave® | OHS | NR 36 (6–48) | One acetabular revision Deep infection (16 m) | BoneSave® used without augmentation in rTHA is associated with a low rate of failure and it osseointegrates when suitably loaded by the construct. | 28 |
Schwartz et al., 2015 [37] | Retrospective case series | NR | 100% Eurocer 200+ ® or 100% Eurocer 400® | OHS | NR 40 (30–48) | No revisions | This study asserts the advantages, safety, and efficiency of the ceramics used in the management of acetabular bone loss in rTHA in a long follow-up. | 30 |
Hayashi et al., 2017 [38] | Retrospective comparative case series | 74.2% 105.6 m f-up | 100% OSferion® | JOA score | NR | NR | The midterm outcomes of rTHA indicate that the type of bone graft and bone defect size may affect the radiographic survival rate when using a KT plate. | 59 |
81.5% 99.6 m f-up | 100% Osteograft® | |||||||
94.7% 61.2 m f-up | 100% femoral head allografts | |||||||
Abdelazim et al., 2020 [39] | Retrospective case series | NR | 50% BoneSave® + 50% autologous BM pelvis | OHS | 9.5 (42–56) 23.3 (16–30) | No revisions | Dual mobility showed good short-term functional and radiographic outcomes in combination with synthetic bone grafts in rTHA for acetabular defects. | 41 |
Gagala et al., 2021 [40] | Retrospective case series | 97.56% 120 m f-up | 100% BoneSave® | HHS | 38.3 (25–55) 86.3 (45–95) | One acetabular revision Aseptic loosening (14 m) | BoneSave® may be suitable for acetabular revision, given that treated patients have better clinical outcomes as compared to the previously cited reports. | 56 |
Comba et al., 2022 [41] | Retrospective comparative case series | 100% 35 m f-up | 66% Vitoss® + 33% bone grafts | HHS | NR 83 (55–98) | No revisions | β-TCP bone graft substitutes combined with allografts were associated with lower risk of failure compared to biological-only grafts in rTHA. | 30 |
86% 35 m f-up | 100% femoral head allografts | NR 75 (42–96) | Three acetabular revisions Aseptic loosening (NR) |
Patient Characteristics | |
---|---|
Patients (F/M) | 11 (9/2) |
Mean age (range) | 68 y (46–82) |
Clinical follow-up | 2.65 y (1 y–4.75 y) |
Radiological follow-up | 1.7 y (4 m–3.6 y) |
Paprosky classification | 3 type IIC |
3 type IIIA | |
5 type IIIB |
Preoperative | Postoperative | Final Follow-Up | |
---|---|---|---|
Lower limb leg discrepancy | −3.0 (−6.8/+0.3) | −0.4 (−3.0/+1.0) | −0.4 (−3.0/+1.0) |
HHS | 33.5 (15.7–46.2) | NA | 79.2 (64.7–91.8) |
HD | 30.5 mm (17.5–56.9) | 33.2 mm (21.4–44) | 31.9 mm (19.2–44) |
VD | 32.2 mm (22–90) | 26.7 mm (15.5–69) | 25.7 mm (15.5–69) |
DeLee and Charnley radiolucent lines | NA | NA | 2 in zone I |
1 in zone II | |||
5 in zone III |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romagnoli, M.; Casali, M.; Zaffagnini, M.; Cucurnia, I.; Raggi, F.; Reale, D.; Grassi, A.; Zaffagnini, S. Tricalcium Phosphate as a Bone Substitute to Treat Massive Acetabular Bone Defects in Hip Revision Surgery: A Systematic Review and Initial Clinical Experience with 11 Cases. J. Clin. Med. 2023, 12, 1820. https://doi.org/10.3390/jcm12051820
Romagnoli M, Casali M, Zaffagnini M, Cucurnia I, Raggi F, Reale D, Grassi A, Zaffagnini S. Tricalcium Phosphate as a Bone Substitute to Treat Massive Acetabular Bone Defects in Hip Revision Surgery: A Systematic Review and Initial Clinical Experience with 11 Cases. Journal of Clinical Medicine. 2023; 12(5):1820. https://doi.org/10.3390/jcm12051820
Chicago/Turabian StyleRomagnoli, Matteo, Marco Casali, Marco Zaffagnini, Ilaria Cucurnia, Federico Raggi, Davide Reale, Alberto Grassi, and Stefano Zaffagnini. 2023. "Tricalcium Phosphate as a Bone Substitute to Treat Massive Acetabular Bone Defects in Hip Revision Surgery: A Systematic Review and Initial Clinical Experience with 11 Cases" Journal of Clinical Medicine 12, no. 5: 1820. https://doi.org/10.3390/jcm12051820
APA StyleRomagnoli, M., Casali, M., Zaffagnini, M., Cucurnia, I., Raggi, F., Reale, D., Grassi, A., & Zaffagnini, S. (2023). Tricalcium Phosphate as a Bone Substitute to Treat Massive Acetabular Bone Defects in Hip Revision Surgery: A Systematic Review and Initial Clinical Experience with 11 Cases. Journal of Clinical Medicine, 12(5), 1820. https://doi.org/10.3390/jcm12051820