Optimal Glomerular Filtration Rate Equations for Various Age Groups, Disease Conditions and Ethnicities in Asia: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Protocol
2.2. Eligibility Criteria
2.3. Search Strategy and Study Selection
2.4. Data Collection and Extraction
2.5. Risk of Bias in Individual Studies and Quality of Systematic Review
2.6. Diagnostic Accuracy Measures and Selection of Optimal Equations
3. Results
3.1. Optimal Equations in Different Age Groups, Specific Disease Conditions, and Ethnicities
3.1.1. Optimal Equations for Elderly CKD Population
3.1.2. Optimal Equations for Both Adult and Elderly CKD Population
3.1.3. Optimal Equations for Obstructive Nephropathy and Kidney Transplant Recipients
3.1.4. Optimal Equations for Diabetic CKD Population
3.1.5. Optimal Equations for Renal Injury Children
3.1.6. Optimal Equation for Liver Cirrhosis Population
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tangri, N.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Beck, G.J.; Greene, T.; Coresh, J.; Levey, A.S. Changes in dietary protein intake has no effect on serum cystatin C levels independent of the glomerular filtration rate. Kidney Int. 2011, 79, 471–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.Y.; Yin, W.J.; Yi, Y.H.; Zhang, B.K.; Zhao, J.; Zhu, C.N.; Zhou, L.Y.; Xie, Y.L.; Wang, J.L.; Zuo, S.R.; et al. Development and validation of a more accurate estimating equation for glomerular filtration rate in a Chinese population. Kidney Int. 2019, 95, 636–646. [Google Scholar] [CrossRef]
- Aydin, F.; Budak, E.S.; Demirelli, S.; Oner, A.O.; Korkmaz, S.; Suleymanlar, G.; Akbas, H.; Davran, F.; Gungor, F. Comparison of Cystatin C and β-Trace Protein Versus 99mTc-DTPA Plasma Sampling in Determining Glomerular Filtration Rate in Chronic Renal Disease. J. Nucl. Med. Technol. 2015, 43, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Rehling, M.; Møller, M.; Thamdrup, B.; Lund, J.; Trap-Jensen, J. Simultaneous measurement of renal clearance and plasma clearance of 99mTc-labelled diethylenetriaminepenta-acetate, 51Cr-labelled ethylenediaminetetra-acetate and inulin in man. Clin. Sci. 1984, 66, 613–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Cockcroft, D.W.; Gault, H. Prediction of creatinine clearance from serum creatinine. Nephron Clin. Pract. 1976, 16, 31–41. [Google Scholar] [CrossRef]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Slort, P.R.; Ozden, N.; Pape, L.; Offner, G.; Tromp, W.F.; Wilhelm, A.J.; Bokenkamp, A. Comparing cystatin C and creatinine in the diagnosis of pediatric acute renal allograft dysfunction. Pediatr. Nephrol. 2012, 27, 843–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, J.F.; Qiu, L.; Zhang, L.; Li, X.M.; Yang, Y.W.; Zeng, P.; Guo, X.Z.; Qin, Y.; Liu, H.C.; Han, X.M.; et al. Multicenter study of creatinine-and/or cystatin C-based equations for estimation of glomerular filtration rates in Chinese patients with chronic kidney disease. PLoS ONE 2013, 8, e57240. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.; Hendriksen, S.; Kusek, J.W.; Eggers, P. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef]
- Inker, L.A.; Schmid, C.H.; Tighiouart, H.; Eckfeldt, J.H.; Feldman, H.I.; Greene, T.; Kusek, J.W.; Manzi, J.; Van Lente, F.; Zhang, Y.L.; et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 2012, 367, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Pottel, H.; Björk, J.; Courbebaisse, M.; Couzi, L.; Ebert, N.; Eriksen, B.O.; Dalton, R.N.; Dubourg, L.; Gaillard, F.; Garrouste, C.; et al. Development and validation of a modified full age spectrum creatinine-based equation to estimate glomerular filtration rate: A cross-sectional analysis of pooled data. Ann. Intern. Med. 2021, 174, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Eneanya, N.D.; Yang, W.; Reese, P.P. Reconsidering the consequences of using race to estimate kidney function. JAMA 2019, 322, 113–114. [Google Scholar] [CrossRef]
- Diao, J.A.; Inker, L.A.; Levey, A.S.; Tighiouart, H.; Powe, N.R.; Manrai, A.K. In search of a better equation—Performance and equity in estimates of kidney function. N. Engl. J. Med. 2021, 384, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Hoek, F.J.; Kemperman, F.A.; Krediet, R.T. A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol. Dial. Transplant. 2003, 18, 2024–2031. [Google Scholar] [CrossRef] [PubMed]
- Flodin, M.; Jonsson, A.S.; Hansson, L.O.; Danielsson, L.Å.; Larsson, A. Evaluation of Gentian cystatin C reagent on Abbott Ci8200 and calculation of glomerular filtration rate expressed in mL/min/1.73 m2 from the cystatin C values in mg/L. Scand. J. Clin. Lab. Investig. 2007, 67, 560–567. [Google Scholar] [CrossRef]
- Grubb, A.; Nyman, U.; Björk, J.; Lindström, V.; Rippe, B.; Sterner, G.; Christensson, A. Simple cystatin C–based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan–Barratt prediction equations for children. Clin. Chem. 2005, 51, 1420–1431. [Google Scholar] [CrossRef]
- Larsson, A.; Malm, J.; Grubb, A.; Hansson, L.-O. Calculation of glomerular filtration rate expressed in mL/min from plasma cystatin C values in mg/L. Scand. J. Clin. Lab. Investig. 2004, 64, 25–30. [Google Scholar] [CrossRef]
- Fiseha, T. Clinical Significance of Cystatin C-Based Estimates of Renal Function in Type 2 Diabetic Patients: Review. Ann. Clin. Nical Lab. Res. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Grubb, A.; Horio, M.; Hansson, L.-O.; Björk, J.; Nyman, U.; Flodin, M.; Larsson, A.; Bökenkamp, A.; Yasuda, Y.; Blufpand, H.; et al. Generation of a new cystatin C–based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin. Chem. 2014, 60, 974–986. [Google Scholar] [CrossRef]
- PotPottel, H.; Delanaye, P.; Schaeffner, E.; Dubourg, L.; Eriksen, B.O.; Melsom, T.; Lamb, E.J.; Rule, A.D.; Turner, S.T.; Glassock, R.J.; et al. Estimating glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C. Nephrol. Dial. Transplant. 2017, 32, 497–507. [Google Scholar]
- Kellum, J.A.; Lameire, N.; Aspelin, P.; Barsoum, R.S.; Burdmann, E.A.; Goldstein, S.L. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013, 3, 5–14. [Google Scholar]
- Machado, J.D.; Camargo, E.G.; Boff, R.; da Silva Rodrigues, L.; Camargo, J.L.; Soares, A.A.; Silveiro, S.P. Combined creatinine-cystatin C CKD-EPI equation significantly underestimates measured glomerular filtration rate in people with type 2 diabetes mellitus. Clin. Biochem. 2018, 53, 43–48. [Google Scholar] [CrossRef]
- Ebert, N.; Shlipak, M.G. Cystatin C is ready for clinical use. Curr. Opin. Nephrol. Hypertens. 2020, 29, 591–598. [Google Scholar] [CrossRef]
- Ma, Y.-C.; Zuo, L.; Chen, J.-H.; Luo, Q.; Yu, X.-Q.; Li, Y.; Xu, J.-S.; Huang, S.-M.; Wang, L.-N.; Huang, W.; et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J. Am. Soc. Nephrol. 2006, 17, 2937–2944. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; De Francisco, A.L.M.; De Jong, P.E.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki, K.; Lamb, E.J.; et al. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Wu, B.; Zeng, M.; Yang, G.; Ouyang, C.; Zhang, B.; Wang, N.; Xing, C.; Mao, H. Comparison of different equations for estimated glomerular filtration rate in Han Chinese patients with chronic kidney disease. Clin. Nephrol. 2019, 91, 301. [Google Scholar] [CrossRef] [PubMed]
- Jeong, T.-D.; Cho, E.-J.; Lee, W.; Chun, S.; Hong, K.-S.; Min, W.-K. Accuracy assessment of five equations used for estimating the glomerular filtration rate in Korean adults. Ann. Lab. Med. 2017, 37, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Satirapoj, B.; Jirawatsiwaporn, K.; Tangwonglert, T.; Choovichian, P. Performance of the estimated glomerular filtration rate creatinine and cystatin C based equations in Thai patients with chronic glomerulonephritis. Int. J. Nephrol. Renov. Dis. 2015, 8, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahir, N.A.; Gafor, A.H.; Islahudin, F.H.; Saffian, S.M.; Manan, H.A.; Othman, H.; Makmor-Bakry, M. Agreement between Creatinine and Cystatin C-Based Equations in the Estimation of Glomerular Filtration Rate among Malaysian Patients with Renal Impairment. Indian J. Pharm. Educ. Res. 2018, 52, S257–S267. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.; Zhang, W.; Qin, M.; Gou, Z.; Feng, P. Validation of cystatin C-based equations for evaluating residual renal function in patients on continuous ambulatory peritoneal dialysis. Nephrol. Dial. Transplant. 2017, 32, 1032–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Xie, P.; Huang, J.-M.; Qu, Y.; Zhang, F.; Wei, L.-G.; Fu, P.; Huang, X.-J. The new Asian modified CKD-EPI equation leads to more accurate GFR estimation in Chinese patients with CKD. Int. Urol. Nephrol. 2016, 48, 2077–2081. [Google Scholar] [CrossRef] [PubMed]
- Kumpatla, S.; Soni, A.; Viswanathan, V. Comparison of two creatinine based equations for routine estimation of GFR in a speciality clinic for diabetes. J. Assoc. Physicians India 2017, 65, 38–41. [Google Scholar]
- Lee, E.Y.; Lee, Y.-M.; Choi, K.H.; Lee, H.C.; Lee, B.-W.; Kim, B.S. Comparison of two creatinine-based equations for predicting decline in renal function in type 2 diabetic patients with nephropathy in a Korean population. Int. J. Endocrinol. 2013, 2013, 848963. [Google Scholar] [CrossRef] [Green Version]
- Li, D.-Y.; Yin, W.-J.; Zhou, L.-Y.; Ma, R.-R.; Liu, K.; Hu, C.; Zhou, G.; Zuo, X.-C. Utility of cystatin C-based equations in patients undergoing dialysis. Clin. Chim. Acta 2018, 485, 282–287. [Google Scholar] [CrossRef]
- Chen, J.; Tang, H.; Huang, H.; Lv, L.; Wang, Y.; Liu, X.; Lou, T. Development and validation of new glomerular filtration rate predicting models for Chinese patients with type 2 diabetes. J. Transl. Med. 2015, 13, 317. [Google Scholar] [CrossRef] [Green Version]
- Dou, Y.; Sun, X.; Liu, D.; Zhang, L.; Xiao, J.; Cheng, G.; Yu, D.; Zhao, Z. Accuracy of glomerular filtration rate equations for chronic kidney disease patients at the G3a stage: A single-center cross-sectional study. BMC Res. Notes 2017, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, J.; Teng, G.; Wu, Y.; Han, Q.; Li, H.; Wang, T.; Liu, F. Comparison of Performance of Equations for Estimated Glomerular Filtration Rate in Chinese Patients with Biopsy-Proven Diabetic Nephropathy. Dis. Markers 2019, 2019, 4354061. [Google Scholar] [CrossRef]
- Ren, S.; Chang, Y.; Zhang, Q.; Wang, X.; Niu, H.; Chen, L.; Lv, C.; Zhang, Z.; Xiang, X.; Zhu, L.; et al. How to estimate renal function in patients with liver disease: Choosing the most suitable equation. Int. Urol. Nephrol. 2019, 51, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Jeong, T.-D.; Lee, W.; Yun, Y.-M.; Chun, S.; Song, J.; Min, W.-K. Development and validation of the Korean version of CKD-EPI equation to estimate glomerular filtration rate. Clin. Biochem. 2016, 49, 713–719. [Google Scholar] [CrossRef]
- Jalalonmuhali, M.; Elagel, S.M.A.; Tan, M.P.; Lim, S.K.; Ng, K.P. Estimating renal function in the elderly Malaysian patients attending medical outpatient clinic: A comparison between creatinine based and cystatin-C based equations. Int. Urol. Nephrol. 2018, 2018, 3081518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, Y.; Liu, X.; Guan, M.; Wang, M.; Zhang, L.; Dong, D.; Niu, R.; Zhang, F.; Zhou, Y. Evaluation of serological indicators and glomerular filtration rate equations in chinese cancer patients. Int. Med. J. Exp. Clin. Res. 2017, 23, 2949. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Li, D.; Yin, W.; Zuo, X. Evaluation of cystatin C-derived glomerular filtration rate equations in Chinese population. Scand. J. Clin. Lab. Investig. 2019, 79, 629–634. [Google Scholar] [CrossRef]
- Chi, X.-H.; Li, G.-P.; Wang, Q.-S.; Qi, Y.-S.; Huang, K.; Zhang, Q.; Xue, Y.-M. CKD-EPI creatinine-cystatin C glomerular filtration rate estimation equation seems more suitable for Chinese patients with chronic kidney disease than other equations. BMC Nephrol. 2017, 18, 226. [Google Scholar] [CrossRef]
- Adachi, M.; Tanaka, A.; Aiso, M.; Takamori, Y.; Takikawa, H. Benefit of cystatin C in evaluation of renal function and prediction of survival in patients with cirrhosis. Hepatol. Res. 2015, 45, 1299–1306. [Google Scholar] [CrossRef]
- Changjie, G.; Xusheng, Z.; Feng, H.; Shuguang, Q.; Jianwen, L.; Junzhou, F. Evaluation of glomerular filtration rate by different equations in Chinese elderly with chronic kidney disease. Int. Urol. Nephrol. 2017, 49, 133–141. [Google Scholar] [CrossRef]
- Chen, M.; Xia, J.; Pei, G.; Zhang, Y.; Wu, S.; Qin, Y.; Deng, Y.; Guo, S.; Guo, Y.; Xu, G.; et al. A more accurate method acquirement by a comparison of the prediction equations for estimating glomerular filtration rate in Chinese patients with obstructive nephropathy. BMC Nephrol. 2016, 17, 150. [Google Scholar] [CrossRef] [Green Version]
- Guan, C.; Liang, M.; Liu, R.; Qin, S.; He, F.; Li, J.; Zhu, X.; Dai, H.; Fu, J. Assessment of creatinine and cystatin C-based eGFR equations in Chinese older adults with chronic kidney disease. Int. Urol. Nephrol. 2018, 50, 2229–2238. [Google Scholar] [CrossRef]
- Horio, M.; Imai, E.; Yasuda, Y.; Watanabe, T.; Matsuo, S. Collaborators Developing the Japanese Equation for Estimated GFR. GFR estimation using standardized serum cystatin C in Japan. Am. J. Kidney Dis. 2013, 61, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Sun, X.; Chen, Y.; Zhang, M.; Tang, L.; Liu, S.; Wei, R.; Wang, S.; Zhou, J.; Cao, X.; et al. A study of the applicability of GFR evaluation equations for an elderly Chinese population. J. Nutr. Health Aging 2015, 19, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Yadav, A.K.; Yasuda, Y.; Horio, M.; Kumar, V.; Sahni, N.; Gupta, K.L.; Matsuo, S.; Kohli, H.S.; Jha, V. Existing creatinine-based equations overestimate glomerular filtration rate in Indians. BMC Nephrol. 2018, 19, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Pei, X.; Ye, X.; Liu, X.; Song, D.; Zhang, X.; Zhu, B.; Wei, L.; Zhu, J.; Zhao, W. Modification of the 2012 CKD-EPI equations for the elderly Chinese. Int. Urol. Nephrol. 2017, 49, 467–473. [Google Scholar] [CrossRef]
- Pei, X.; Yang, W.; Wang, S.; Zhu, B.; Wu, J.; Zhu, J.; Zhao, W. Using mathematical algorithms to modify glomerular filtration rate estimation equations. PLoS ONE 2013, 8, e57852. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Tao, J.; Sun, L.; Han, Z.; Chen, H.; Huang, Z.; Zhou, W.; Zhao, C.; Fei, S.; Que, H.; et al. Prospective comparison of equations based on creatinine and cystatin C for the glomerular filtration rate estimation in Chinese renal transplant recipients. Transplant. Proc. 2018, 50, 85–91. [Google Scholar] [CrossRef]
- Teo, B.W.; Xu, H.; Wang, D.; Li, J.; Sinha, A.K.; Shuter, B.; Sethi, S.; Lee, E.J.C. Estimating glomerular filtration rates by use of both cystatin C and standardized serum creatinine avoids ethnicity coefficients in Asian patients with chronic kidney disease. Clin. Chem. 2012, 58, 450–457. [Google Scholar] [CrossRef] [Green Version]
- Xie, D.; Shi, H.; Xie, J.; Ding, Y.; Zhang, W.; Ni, L.; Wu, Y.; Lu, Y.; Chen, B.; Wang, H.; et al. A validation study on eGFR equations in Chinese patients with diabetic or non-diabetic CKD. Front. Endocrinol. 2019, 10, 581. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Xu, G.; Ling, L.; Niu, J.; Lu, T.; Du, X.; Gu, Y. Performance of the creatinine and cystatin C-based equations for estimation of GFR in Chinese patients with chronic kidney disease. Clin. Exp. Nephrol. 2017, 21, 236–246. [Google Scholar] [CrossRef]
- Yang, M.; Zou, Y.; Lu, T.; Nan, Y.; Niu, J.; Du, X.; Gu, Y. Revised equations to estimate glomerular filtration rate from serum creatinine and cystatin C in China. Kidney Blood Press. Res. 2019, 44, 553–564. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, K.; Hwang, I.; Yim, T.; Do, W.; Kim, M.; Lee, S.; Jung, H.-Y.; Choi, J.-Y.; Park, S.-H.; et al. Cystatin C–Based Equation for Predicting the Glomerular Filtration Rate in Kidney Transplant Recipients. Transplant. Proc. 2017, 49, 1018–1022. [Google Scholar] [CrossRef]
- Ye, X.; Liu, X.; Song, D.; Zhang, X.; Zhu, B.; Wei, L.; Pei, X.; Wu, J.; Lou, T.; Zhao, W. Estimating glomerular filtration rate by serum creatinine or/and cystatin C equations: An analysis of multi-centre Chinese subjects. Nephrology 2016, 21, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Yong, Z.; Li, F.; Pei, X.; Liu, X.; Song, D.; Zhang, X.; Zhao, W. A comparison between 2017 FAS and 2012 CKD-EPI equations: A multi-center validation study in Chinese adult population. Int. Urol. Nephrol. 2019, 51, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Pan, B.; Shi, X.; Du, X. Comparison between the beta-2 microglobulin-based equation and the CKD-EPI equation for estimating GFR in CKD patients in China: ES-CKD study. Kidney Dis. 2020, 6, 204–214. [Google Scholar] [CrossRef]
- Zheng, K.; Gong, M.; Qin, Y.; Song, H.; Shi, X.; Wu, Y.; Li, F.; Li, X. Validation of glomerular filtration rate-estimating equations in Chinese children. PLoS ONE 2017, 12, e0180565. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, G.J.; Work, D.F. Measurement and estimation of GFR in children and adolescents. Clin. J. Am. Soc. Nephrol. 2009, 4, 1832–1843. [Google Scholar] [CrossRef] [Green Version]
- Tidman, M.; Sjöström, P.; Jones, I. A comparison of GFR estimating formulae based upon s-cystatin C and s-creatinine and a combination of the two. Nephrol. Dial. Transplant. 2008, 23, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Stevens, L.A.; Coresh, J.; Schmid, C.; Feldman, H.I.; Froissart, M.; Kusek, J.; Rossert, J.; Van Lente, F.; Bruce, R.D.; Zhang, Y.; et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: A pooled analysis of 3418 individuals with CKD. Am. J. Kidney Dis. 2008, 51, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Rule, A.D.; Bailey, K.R.; Schwartz, G.L.; Khosla, S.; Lieske, J.C.; Melton, L.J., III. For estimating creatinine clearance measuring muscle mass gives better results than those based on demographics. Kidney Int. 2009, 75, 1071–1078. [Google Scholar] [CrossRef] [Green Version]
- Ichihara, K.; Saito, K.; Itoh, Y. Sources of variation and reference intervals for serum cystatin C in a healthy Japanese adult population. Clin. Chem. Lab. Med. 2007, 45, 1232–1236. [Google Scholar] [CrossRef]
- Shardlow, A.; McIntyre, N.J.; Fraser, S.D.; Roderick, P.; Raftery, J.; Fluck, R.J.; McIntyre, C.W.; Taal, M. The clinical utility and cost impact of cystatin C measurement in the diagnosis and management of chronic kidney disease: A primary care cohort study. PLoS Med. 2017, 14, e1002400. [Google Scholar] [CrossRef]
- Piepsz, A.; Blaufox, M.; Gordon, I.; Granerus, G.; Majd, M.; O’Reilly, P.; Rosenberg, A.; Rossleigh, M.; Sixt, R. Consensus on renal cortical scintigraphy in children with urinary tract infection. Semin. Nucl. Med. 1999, 29, 160–174. [Google Scholar] [CrossRef]
- Speeckaert, M.M.; Seegmiller, J.; Glorieux, G.; Lameire, N.; Van Biesen, W.; Vanholder, R.; Delanghe, J.R. Measured Glomerular Filtration Rate: The Query for a Workable Golden Standard Technique. J. Pers. Med. 2021, 11, 949. [Google Scholar] [CrossRef]
- White, C.A.; Akbari, A.; Allen, C.; Day, A.G.; Norman, P.A.; Holland, D.; Adams, M.A.; Knoll, G.A. Simultaneous glomerular filtration rate determination using inulin, iohexol, and 99mTc-DTPA demonstrates the need for customized measurement protocols. Kidney Int. 2021, 99, 957–966. [Google Scholar] [CrossRef] [PubMed]
- González, G.C.; Vargas, M.T.; García, P.K.; Contreras, K.; Rodríguez, P. Concordance between estimated glomerular filtration rate using equations and that measured using an imaging method. Rev. Med. De Chile 2021, 149, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.; Greene, T.; Kusek, J.; Beck, G.; Group, M.S. A simplified equation to predict glomerular filtration rate from serum creatinine. J. Am. Soc. Nephrol. 2000, 11, 155. [Google Scholar]
- Levey, A.S.; Coresh, J.; Greene, T.; Marsh, J.; Stevens, L.A.; Kusek, J.W.; Van Lente, F. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin. Chem. 2007, 53, 766–772. [Google Scholar] [CrossRef] [Green Version]
- Stevens, L.A.; Claybon, M.A.; Schmid, C.H.; Chen, J.; Horio, M.; Imai, E.; Nelson, R.G.; Van Deventer, M.; Wang, H.-Y.; Zuo, L.; et al. Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int. 2011, 79, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Jessani, S.; Levey, A.S.; Bux, R.; Inker, L.A.; Islam, M.; Chaturvedi, N.; Mariat, C.; Schmid, C.H.; Jafar, T.H. Estimation of GFR in South Asians: A study from the general population in Pakistan. Am. J. Kidney Dis. 2014, 63, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Schaeffner, E.S.; Ebert, N.; Delanaye, P.; Frei, U.; Gaedeke, J.; Jakob, O.; Kuhlmann, M.K.; Schuchardt, M.; Tölle, M.; Ziebig, R.; et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann. Intern. Med. 2012, 157, 471–481. [Google Scholar] [CrossRef] [Green Version]
- Imai, E.; Horio, M.; Nitta, K.; Yamagata, K.; Iseki, K.; Tsukamoto, Y.; Ito, S.; Makino, H.; Hishida, A.; Matsuo, S. Modification of the modification of diet in renal disease (MDRD) study equation for Japan. Am. J. Kidney Dis. 2007, 50, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Horio, M.; Imai, E.; Yasuda, Y.; Watanabe, T.; Matsuo, S. Modification of the CKD epidemiology collaboration (CKD-EPI) equation for Japanese: Accuracy and use for population estimates. Am. J. Kidney Dis. 2010, 56, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Rule, A.; Bergstralh, E.; Slezak, J.; Bergert, J.; Larson, T. Glomerular filtration rate estimated by cystatin C among different clinical presentations. Kidney Int. 2006, 69, 399–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filler, G.; Lepage, N. Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr. Nephrol. 2003, 18, 981–985. [Google Scholar] [CrossRef] [PubMed]
- Grubb, A.; Björk, J.; Lindström, V.; Sterner, G.; Bondesson, P.; Nyman, U. A cystatin C-based formula without anthropometric variables estimates glomerular filtration rate better than creatinine clearance using the Cockcroft-Gault formula. Scand. J. Clin. Lab. Investig. 2005, 65, 153–162. [Google Scholar] [CrossRef]
- Nihon Jinzo Gakkai shi. Clinical practice guidebook for diagnosis and treatment of CKD. Jpn. Soc. Nephrol. 2007, 49, 757–861. [Google Scholar]
- Nyman, U.; Grubb, A.; Larsson, A.; Hansson, L.O.; Flodin, M.; Nordin, G.; Lindström, V.; Björk, J. The revised Lund-Malmö GFR estimating equation outperforms MDRD and CKD-EPI across GFR, age and BMI intervals in a large Swedish population. Clin. Chem. Lab. Med. 2014, 52, 815–824. [Google Scholar] [CrossRef]
- Pottel, H.; Hoste, L.; Dubourg, L.; Ebert, N.; Schaeffner, E.; Eriksen, B.O.; Melsom, T.; Lamb, E.J.; Rule, A.D.; Turner, S.T.; et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol. Dial. Transplant. 2016, 31, 798–806. [Google Scholar] [CrossRef] [Green Version]
- MacIsaac, R.J.; Tsalamandris, C.; Thomas, M.C.; Premaratne, E.; Panagiotopoulos, S.; Smith, T.J.; Poon, A.; Jenkins, M.A.; Ratnaike, S.I.; Power, D.A.; et al. Estimating glomerular filtration rate in diabetes: A comparison of cystatin-C-and creatinine-based methods. Diabetologia 2006, 49, 1686–1689. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, G.; Haycock, G.; Edelmann, C., Jr.; Spitzer, A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 1976, 58, 259–263. [Google Scholar] [CrossRef]
- Schwartz, G.J.; Munoz, A.; Schneider, M.F.; Mak, R.H.; Kaskel, F.; Warady, B.A.; Furth, S.L. New equations to estimate GFR in children with CKD. J. Am. Soc. Nephrol. 2009, 20, 629–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.-C.; Zuo, L.; Chen, J.-H.; Luo, Q.; Yu, X.-Q.; Li, Y.; Xu, J.-S.; Huang, S.-M.; Wang, L.-N.; Huang, W.; et al. Improved GFR estimation by combined creatinine and cystatin C measurements. Kidney Int. 2007, 72, 1535–1542. [Google Scholar] [CrossRef] [Green Version]
- Inker, L.A.; Tighiouart, H.; Coresh, J.; Foster, M.C.; Anderson, A.H.; Beck, G.J.; Contreras, G.; Greene, T.; Karger, A.B.; Kusek, J.W.; et al. GFR estimation using β-trace protein and β2-microglobulin in CKD. Am. J. Kidney Dis. 2016, 67, 40–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inker, L.A.; Eckfeldt, J.; Levey, A.S.; Leiendecker-Foster, C.; Rynders, G.; Manzi, J.; Waheed, S.; Coresh, J. Expressing the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) cystatin C equations for estimating GFR with standardized serum cystatin C values. Am. J. Kidney Dis. 2011, 58, 682–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author, Year, Country | Population | Reference Standard | mGFR (ml/min/1.73 m2) | Optimal Equations |
---|---|---|---|---|
Xiaoshuang Ye, 2016, China [62] | Chinese adult patients n= 1522 | 99mTc-DTPA | 67.30 ± 28.89 | Feng-Cr-CysC |
Min Yang, 2017, China [59] | Chinese CKD patients n = 632 | 99mTc-DTPA | 64.82 ± 31.97 | CKD-EPI-Cr-CysC |
Guan Changjie, 2017, China [48] | Chinese elderly CKD patients n = 218 | 99mTc-DTPA | 47.62 (3.00–135.00) | BIS-2 |
Zheng, 2017, China [65] | Chinese renal injury children n = 87 | 99mTc-DTPA | 97.0 ± 31.9 | CkiD and Filler |
Kumar, 2018, India [53] | Indian CKD patients n = 67 Healthy donor n = 63 | Inulin | 51.66 ± 31.68 | CKD-EPI-CysC |
Tang, 2018, China [56] | Chinese renal transplant recipients n = 252 | 99mTc-DTPA | 66.2 ± 19.1 (16.1–126.7) | JSN-CKDI Larsson Rule 2003 Hoek Filler Grubb |
Yang, 2017, Korea [61] | Korean renal transplant recipients n = 70 | 99mTc-DTPA | 57.6 ± 16.5 | MDRD CKD-EPI-CysC |
Chen, 2016, China [49] | Chinese adult patients with obstructive nephrology n = 245 | 99mTc-DTPA | 66.54 ± 23.99 | CKD-EPI-Cr-CysC |
Guan Changjie, 2018, China [50] | Chinese elderly CKD patients n = 368 | 99mTc-DTPA | 47.1 (1.0–12/9.2) | CKD-EPI-Cr-CysC BIS-2 |
Huang, 2015, China [52] | Chinese elderly CKD patients n = 151 Healthy individuals n = 94 | 99mTc-DTPA | 65.39 ± 24.19 | CG Modified CKD-EPI-Cr-CysC for elderly Standardized SCr and SCysC CKD-EPI |
Yang, 2019, China [60] | Chinese CKD patients n = 842 Development group n = 529 Validation group n = 313 | 99mTc-DTPA | 47(9.9–107.5) | C-CKD-EPI-CysC |
Xie, 2019, China [58] | Chinese diabetic CKD patients n = 215 Chinese non-diabetic CKD patients n = 192 | Iohexol | 50.30 (31.43) | CKD-EPI-Cr-CysC |
Adachi, 2015, Japan [47] | Japanese cirrhotic patients n = 63 First study n = 14 Follow-up study n = 49 | Inulin | 54.4 (38.9–97.1) | eGFR-CysC |
Yong, 2018, China [63] | Chinese patients n = 1184 | 99mTc-DTPA | 67.33 (41.37, 87.50) | FAS-Cr-CysC |
Hua Chi, 2017, China [46] | Chinese adult CKD patients n = 1296 | 99mTc-DTPA | 46.8 (29.8, 68.3) | CKD-EPI-Cr-CysC |
Fen Li, 2016, China [54] | Chinese elderly patients n = 839 Training set n = 674 Verification set n = 165 | 99mTc-DTPA | 51.88 ± 22.60 | Modified CKD-EPI-CysC for elderly Modified CKD-EPI-Cr-CysC for elderly |
Yue l., 2020, China [64] | Chinese CKD patients n = 830 | 99mTc-DTPA | 55.2 (10–108.1) | CKD-EPI-CysC C-CKD-EPI-Cr-CysC Xiangya |
Pei, 2013, China [55] | Chinese adult patients n = 703 | 99mTc-DTPA | 77.14 ± 25.93 | Modified MDRD by Pei Modified CKD-EPI by Pei Pei (Modified Maclssac) |
Feng, 2013, China [9] | Chinese CKD patients n = 788 | 99mTc-DTPA | 50.84 ± 31.36 | Feng-Cr-CysC Feng-CysC |
Horio, 2013, Japan [51] | Japanese CKD patients n = 763 | Inulin | 57.20 ± 34.7 | CKD-EPI-CysC |
Teo BW, 2012, Singapore [57] | Multiethnic CKD patients n = 232 | 99mTc-DTPA | 51.70 ± 27.50 | Standardized SCr and SCysC CKD-EPI |
Disease Condition | Age Group | Studies | Ethnicity | Optimal Equations |
---|---|---|---|---|
CKD Population | Elder | Guan Changjie, 2017, China [48] | Chinese | BIS-2 |
Guan Changjie, 2018, China [50] | Chinese | BIS-2 CKD-EPI-Cr-CysC | ||
Huang, 2015, China [52] | Chinese | CG (mGFR ≤ 60 mL/min/1.73 m2) Modified CKD-EPI-Cr-CysC for elderly (mGFR ≥ 60 mL/min/1.73 m2) Standardized SCr and SCysC CKD-EPI (mGFR ≥ 60 mL/min/1.73 m2) | ||
Fen Li, 2016, China [54] | Chinese | Modified CKD-EPI-CysC for elderly Modified CKD-EPI-Cr-CysC for elderly | ||
CKD Population | Adult + Elderly | Feng, 2013, China [9] | Chinese | Feng-Cr-CysC Feng-CysC |
Horio, 2013, Japan [51] | Japanese | CKD-EPI-CysC | ||
Teo BW, 2012, Singapore [57] | Multiethnic (Chinese, Malay, Indian, and others) | Standardized SCr and SCysC CKD-EPI | ||
Min Yang, 2017, China [59] | Chinese | CKD-EPI-Cr-CysC | ||
Yang, 2019, China [60] | Chinese | C-CKD-EPI-CysC | ||
Hua Chi, 2017, China [46] | Chinese | CKD-EPI-Cr-CysC | ||
Yue l., 2020, China [64] | Chinese | CKD-EPI-CysC C-CKD-EPI-Cr-CysC Xiangya | ||
Xiaoshuang Ye, 2016, China [62] | Chinese | Feng-Cr-CysC | ||
Yong, 2018, China [63] | Chinese | FAS-Cr-CysC (particularly in elder patients) | ||
Pei, 2013, China [55] | Chinese | Modified MDRD by Pei Modified CKD-EPI by Pei Pei (Modified Maclssac) | ||
Kumar, 2018, India [53] | Indian | CKD-EPI-CysC | ||
Renal Injury Population | Children + Adolescent | Zheng, 2017, China [65] | Chinese | CKiD Filler |
Diabetic and Non-diabetic CKD Population | Adult | Xie, 2019, China [58] | Chinese | CKD-EPI-Cr-CysC |
Population with Liver Cirrhosis | Adult | Adachi, 2015, Japan [47] | Japanese | eGFR-CysC |
Population with Obstructive nephropathy/Renal Transplant | Adult | Chen, 2016, China [49] | Chinese | CKD-EPI-Cr-CysC |
Tang, 2018, China [56] | Chinese | JSN-CKDI Larsson Rule 2003 Hoek Filler Grubb | ||
Yang, 2017, Korea [61] | Korean | MDRD CKD-EPI-CysC (mGFR ≤ 45 mL/min/1.73 m2) |
Suggested Equation | Clinical Applicability of Suggested Equations in Asian Population | |||||
---|---|---|---|---|---|---|
Disease Condition | Age Group | Ethnicity | Clinical Settings in Which the Equation Can Be Applied | Comments | Limitations in Studies from Which Equations Were Derived | |
BIS-2 | CKD | Elderly | Chinese | Outpatient, Population screenings | Ideal for estimating GFR in ≥70 years with normal or mild to moderately reduced kidney function | No randomization of participants No external validation set |
CG | CKD | Elderly | Chinese | Inpatient | Useful for quickly predicting creatinine clearance without collecting urine | Several limitations in the prediction of creatinine clearance and serum creatinine |
Modified CKD-EPI-Cr-CysC for the Elderly Modified CKD-EPI-CysC for the Elderly | CKD | Elderly | Chinese | Outpatient, Population screenings, Inpatient | These modified equations are more accurate than the original ones for elderly Chinese individuals | Limited external validation |
Standardized SCr & SCysC CKD-EPI | CKD | Adult Elderly | Multiethnic (Chinese, Malay, Indian, and others) | Population screenings | Best for population screenings but can also be employed at bedside and outpatient settings after validation | Only one external validation data set was used Pooled analysis, rather than from a representative population |
CKD-EPI-Cr-CysC CKD-EPI-CysC | CKD, obstructive nephropathy, and renal transplant | Adult Elderly | Chinese Japanese Indian Korean | Outpatient, Population screenings, Inpatient | Although included a large patient population during development but still needs further validation in Asia Widely accepted alternative in both elders and adults with normal to mildly injured kidneys | No racial or ethnic minorities Incomplete data on muscle mass & other clinical conditions Errors in mGFR |
C-CKD-EPI-Cr-CysC C-CKD-EPI-CysC | CKD | Adult Elderly | Chinese | Outpatient, Population screenings, Inpatient | Improved efficacy in Chinese population & can be applied to other ethnicities in Asia after validation | Small validation set |
FAS-Cr-CysC | CKD | Children Adolescents Adult Elderly | Chinese | Outpatient, Population screenings, Inpatient | Accurate in sub-group ≤ 60 mL/min/1.73 m2 particularly in elderly | Were limited to Caucasians during development so still needs extensive external validation |
Filler | Renal Injury | Children Adolescents Adults | Chinese | Outpatient, Population screenings | This equation can effectively replace Schwartz equation | Large variability of serum creatinine & cystatin C |
eGFR-CysC | Liver Cirrhosis | Adult | Japanese | Outpatient, Population screenings, Inpatient | Validated in the Japanese population with liver cirrhosis but require validation in other ethnicities with this disease within Asia | No diverse developmental data set |
JSN-CKDI | Renal Transplant | Adult | Japanese Chinese | Inpatient | More studies are required to check the accuracy of this equation in other regions of Asia | Possible variation in creatinine assays overtime Exclusion of patients with higher GFR |
Rule | Renal Transplant | Adult | Chinese | Outpatient, Population screenings | Depending on the clinical settings, this equation can be averaged with SCr equation or used in place of it | Generalizability needs to be tested in more diverse ethnic groups |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safdar, A.; Akram, W.; Ahmad Khan, M.; Muhammad, S. Optimal Glomerular Filtration Rate Equations for Various Age Groups, Disease Conditions and Ethnicities in Asia: A Systematic Review. J. Clin. Med. 2023, 12, 1822. https://doi.org/10.3390/jcm12051822
Safdar A, Akram W, Ahmad Khan M, Muhammad S. Optimal Glomerular Filtration Rate Equations for Various Age Groups, Disease Conditions and Ethnicities in Asia: A Systematic Review. Journal of Clinical Medicine. 2023; 12(5):1822. https://doi.org/10.3390/jcm12051822
Chicago/Turabian StyleSafdar, Aqsa, Waqas Akram, Mahtab Ahmad Khan, and Sajjad Muhammad. 2023. "Optimal Glomerular Filtration Rate Equations for Various Age Groups, Disease Conditions and Ethnicities in Asia: A Systematic Review" Journal of Clinical Medicine 12, no. 5: 1822. https://doi.org/10.3390/jcm12051822
APA StyleSafdar, A., Akram, W., Ahmad Khan, M., & Muhammad, S. (2023). Optimal Glomerular Filtration Rate Equations for Various Age Groups, Disease Conditions and Ethnicities in Asia: A Systematic Review. Journal of Clinical Medicine, 12(5), 1822. https://doi.org/10.3390/jcm12051822