Recent Advances in Small Molecule Inhibitors for the Treatment of Osteoarthritis
Abstract
:1. Introduction
2. Main Molecular Mechanisms of OA
3. Different Targeted Small Molecule Inhibitors for OA
3.1. Small Molecule Inhibitors Targeting the MMP Gene Family for OA
3.2. Small Molecule Inhibitors Targeting ADAMTS for OA
3.3. Small Molecule Inhibitors Targeting IL-1 for OA
3.4. Small Molecule Inhibitors Targeting TNF for OA
3.5. Small Molecule Inhibitors Targeting Other Proteins for OA
3.5.1. Wnt
3.5.2. NF-κB
3.5.3. Others
4. Small Molecule Inhibitors as DMOADs
4.1. DMOADs Based on Protease Inhibitors
4.2. DMOADs Based on Anti-Senility
Drug | Clinical Trial Status | Mechanism of Action | Trial Registration | Reference |
---|---|---|---|---|
BMP7 | A phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis was conducted in 2010 and demonstrated that there was no dose-limiting toxicity identified. | Upregulates transcription of osteogenic genes | NCT00456157 | [128] |
Invossa-K | As of January 2022, a phase 3 clinical trial has resumed in the US. | Gene therapy | NCT03291470 | - |
KA34 | A phase 1 study started in May 2018 to evaluate the safety of KA34 in humans. | Induces MSCs to differentiate into chondrocytes | NCT03133676 | [129] |
SM04690 | A phase 2 study was completed, and it demonstrated improvements in pain, function, and joint space width. | Wnt pathway inhibitor | NCT02536833 | [22,130] |
Sprifermin | A 5-year, dose-finding, multicenter randomized clinical trial conducted at 10 sites demonstrated that intra-articular administration of 100 μg of sprifermin every 6 or 12 months results in significant improvement in cartilage thickness. | Promotes chondrogenesis through fibroblast growth factor receptor FGFR3 | NCT01919164 | [131] |
TPX-100 | A one-year study of 104 patients showed that TPX-100 treatment was associated with significant and sustained improvement in the preservation of cartilage thickness and reduced pathological changes in cartilage. | Induces articular cartilage formation and reduces pathological shape change of joint bones | NCT01925261 | [132,133,134] |
4.3. Drug Delivery of DMOADs Based on Small Molecule Inhibitors
5. The Undergoing and Completed Clinical Trials of Small Molecule Inhibitors for OA
6. Challenges and Future of Small Molecule Inhibitors for OA
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slomski, A. Novel Drug Benefits Bone and Cartilage in Knee Osteoarthritis. JAMA 2020, 323, 701. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Dubreuil, M.; LaRochelle, M.; Lu, N.; Wei, J.; Choi, H.; Lei, G.; Zhang, Y. Association of Tramadol With All-Cause Mortality Among Patients With Osteoarthritis. JAMA 2019, 321, 969–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Costa, B.; Hari, R.; Jüni, P. Intra-articular Corticosteroids for Osteoarthritis of the Knee. JAMA 2016, 316, 2671–2672. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Aitken, D.; Laslett, L.; Pelletier, J.; Martel-Pelletier, J.; Hill, C.; March, L.; Wluka, A.; Wang, Y.; Antony, B.; et al. Effect of Intravenous Zoledronic Acid on Tibiofemoral Cartilage Volume Among Patients with Knee Osteoarthritis With Bone Marrow Lesions: A Randomized Clinical Trial. JAMA 2020, 323, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef] [PubMed]
- Barnett, R. Osteoarthritis. Lancet 2018, 391, 1985. [Google Scholar] [CrossRef]
- Gestwicki, J.; Crabtree, G.; Graef, I. Harnessing chaperones to generate small-molecule inhibitors of amyloid beta aggregation. Science 2004, 306, 865–869. [Google Scholar] [CrossRef] [Green Version]
- Bonekamp, N.; Peter, B.; Hillen, H.; Felser, A.; Bergbrede, T.; Choidas, A.; Horn, M.; Unger, A.; Di Lucrezia, R.; Atanassov, I.; et al. Small-molecule inhibitors of human mitochondrial DNA transcription. Nature 2020, 588, 712–716. [Google Scholar] [CrossRef]
- Haag, S.; Gulen, M.; Reymond, L.; Gibelin, A.; Abrami, L.; Decout, A.; Heymann, M.; van der Goot, F.; Turcatti, G.; Behrendt, R.; et al. Targeting STING with covalent small-molecule inhibitors. Nature 2018, 559, 269–273. [Google Scholar] [CrossRef]
- Tichy, E.; Hoffman, J.; Suda, K.; Rim, M.; Tadrous, M.; Cuellar, S.; Clark, J.; Wiest, M.; Matusiak, L.; Schumock, G. National trends in prescription drug expenditures and projections for 2021. Am. J. Health-Syst. Pharm: AJHP Off. J. Am. Soc. Health-Syst. Pharm. 2021, 78, 1294–1308. [Google Scholar] [CrossRef]
- Al Yami, M.; Alzahrani, M.; Alshehri, A.; Alshaya, O.; Alsubiae, N.; Alharbi, Y.; Albaiahy, L.; Aldeiban, M.; Alkuait, H.; Alobaidi, W.; et al. Real-World Effectiveness and Safety of Apixaban versus Warfarin in Patients with Acute Venous Thromboembolism: Experience of a Large Tertiary Hospital in Saudi Arabia. Int. J. Gen. Med. 2021, 14, 4031–4037. [Google Scholar] [CrossRef] [PubMed]
- San-Juan-Rodriguez, A.; Gellad, W.; Good, C.; Hernandez, I. Trends in List Prices, Net Prices, and Discounts for Originator Biologics Facing Biosimilar Competition. JAMA Netw. Open 2019, 2, e1917379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, T.; Wang, J.; Shi, Y.; Qian, H.; Liu, P. Inhibitors targeting Bruton’s tyrosine kinase in cancers: Drug development advances. Leukemia 2021, 35, 312–332. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Gong, W.; Liu, S.; Li, Q.; Guo, M.; Wang, J.; Wang, S.; Chen, N.; Wang, Y.; Liu, Q.; et al. Ibrutinib targets microRNA-21 in multiple myeloma cells by inhibiting NF-κB and STAT3. TumourBiol. J. Int. Soc. Oncodevelopmental Biol. Med. 2018, 40, 1010428317731369. [Google Scholar] [CrossRef] [Green Version]
- Smith, C. From identification of the BTK kinase to effective management of leukemia. Oncogene 2017, 36, 2045–2053. [Google Scholar] [CrossRef] [Green Version]
- Aranapakam, V.; Grosu, G.; Davis, J.; Hu, B.; Ellingboe, J.; Baker, J.; Skotnicki, J.; Zask, A.; DiJoseph, J.; Sung, A.; et al. Synthesis and structure-activity relationship of alpha-sulfonylhydroxamic acids as novel, orally active matrix metalloproteinase inhibitors for the treatment of osteoarthritis. J. Med. Chem. 2003, 46, 2361–2375. [Google Scholar] [CrossRef]
- Yamada, A.; Uegaki, A.; Nakamura, T.; Ogawa, K. ONO-4817, an orally active matrix metalloproteinase inhibitor, prevents lipopolysaccharide-induced proteoglycan release from the joint cartilage in guinea pigs. Inflamm.Res. Off. J. Eur. Histamine Res. Society 2000, 49, 144–146. [Google Scholar] [CrossRef]
- Siebuhr, A.; Werkmann, D.; Bay-Jensen, A.; Thudium, C.; Karsdal, M.; Serruys, B.; Ladel, C.; Michaelis, M.; Lindemann, S. The Anti-ADAMTS-5 Nanobody(®) M6495 Protects Cartilage Degradation Ex Vivo. Int. J. Mol. Sci. 2020, 21, 5992. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, J.; Zhou, S.; Luo, F.; Xu, W.; Wang, Q.; Tan, Q.; Chen, L.; Wang, J.; Chen, H.; et al. cf-02 attenuates osteoarthritis progression through inhibiting the activation of IL-1β/NF-κB pathway. J. Cell. Mol. Med. 2017, 21, 3231–3243. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Lu, J.; Chien, C.; Huang, H.; Lee, C.; Lien, S.; Lin, L.; Chen, L.; Ho, Y.; Shen, M.; et al. Arthroprotective Effects of Cf-02 Sharing Structural Similarity with Quercetin. Int. J. Mol. Sci. 2018, 19, 1453. [Google Scholar] [CrossRef] [Green Version]
- Weng, P.; Yadav, V.; Pikatan, N.; Fong, I.; Lin, I.; Yeh, C.; Lee, W. Novel NFκB Inhibitor SC75741 Mitigates Chondrocyte Degradation and Prevents Activated Fibroblast Transformation by Modulating miR-21/GDF-5/SOX5 Signaling. Int. J. Mol. Sci. 2021, 22, 11082. [Google Scholar] [CrossRef] [PubMed]
- Yazici, Y.; McAlindon, T.; Fleischmann, R.; Gibofsky, A.; Lane, N.; Kivitz, A.; Skrepnik, N.; Armas, E.; Swearingen, C.; DiFrancesco, A.; et al. A novel Wnt pathway inhibitor, SM04690, for the treatment of moderate to severe osteoarthritis of the knee: Results of a 24-week, randomized, controlled, phase 1 study. Osteoarthr. Cartil. 2017, 25, 1598–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Deng, Z.; Chen, K.; Jian, S.; Zhou, F.; Yang, Y.; Fu, Z.; Xie, H.; Xiong, J.; Zhu, W. Cartilage tissue engineering: From proinflammatory and anti-inflammatory cytokines to osteoarthritis treatments (Review). Mol. Med. Rep. 2022, 25, 99. [Google Scholar] [CrossRef] [PubMed]
- Sirikaew, N.; Chomdej, S.; Tangyuenyong, S.; Tangjitjaroen, W.; Somgird, C.; Thitaram, C.; Ongchai, S. Proinflammatory cytokines and lipopolysaccharides up regulate MMP-3 and MMP-13 production in Asian elephant (Elephas maximus) chondrocytes: Attenuation by anti-arthritic agents. BMC Vet. Res. 2019, 15, 419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afonso, V.; Champy, R.; Mitrovic, D.; Collin, P.; Lomri, A. Reactive oxygen species and superoxide dismutases: Role in joint diseases. Jt. Bone Spine 2007, 74, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Efferth, T.; Oesch, F. The immunosuppressive activity of artemisinin-type drugs towards inflammatory and autoimmune diseases. Med. Res. Rev. 2021, 41, 3023–3061. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Wang, W.; McDavid, A.; Xu, H.; Boyce, B.; Xing, L. The E3 ubiquitin ligase Itch limits the progression of post-traumatic osteoarthritis in mice by inhibiting macrophage polarization. Osteoarthr. Cartil. 2021, 29, 1225–1236. [Google Scholar] [CrossRef]
- Mailhot, B.; Christin, M.; Tessandier, N.; Sotoudeh, C.; Bretheau, F.; Turmel, R.; Pellerin, È.; Wang, F.; Bories, C.; Joly-Beauparlant, C.; et al. Neuronal interleukin-1 receptors mediate pain in chronic inflammatory diseases. J. Exp. Med. 2020, 217, e20191430. [Google Scholar] [CrossRef]
- Cheng, C.; Tian, J.; Zhang, F. Can IL-1 be used as a target for osteoarthritis? Ann. Rheum. Dis. 2020, 79, e88. [Google Scholar] [CrossRef] [Green Version]
- Godmann, L.; Bollmann, M.; Korb-Pap, A.; König, U.; Sherwood, J.; Beckmann, D.; Mühlenberg, K.; Echtermeyer, F.; Whiteford, J.; De Rossi, G.; et al. Antibody-mediated inhibition of syndecan-4 dimerisation reduces interleukin (IL)-1 receptor trafficking and signalling. Ann. Rheum. Dis. 2020, 79, 481–489. [Google Scholar] [CrossRef]
- Fleischmann, R.; Bliddal, H.; Blanco, F.; Schnitzer, T.; Peterfy, C.; Chen, S.; Wang, L.; Feng, S.; Conaghan, P.; Berenbaum, F.; et al. A Phase II Trial of Lutikizumab, an Anti-Interleukin-1α/β Dual Variable Domain Immunoglobulin, in Knee Osteoarthritis Patients With Synovitis. Arthritis Rheumatol. 2019, 71, 1056–1069. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cao, C.; Zhang, Y.; Liu, G.; Ren, W.; Ye, Y.; Sun, T. PI3K/Akt inhibitor partly decreases TNF-α-induced activation of fibroblast-like synoviocytes in osteoarthritis. J. Orthop. Surg. Res. 2019, 14, 425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, X.; Zhang, Y.; Huang, Y.; Liu, S.; Lu, H.; Sun, T. Cadherin-11 involves in synovitis and increases the migratory and invasive capacity of fibroblast-like synoviocytes of osteoarthritis. Int. Immunopharmacol. 2015, 26, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Hettinghouse, A.; Chen, Y.; Hu, W.; Ding, X.; Chen, M.; Ding, Y.; Mundra, J.; Song, W.; Liu, R.; et al. 14-3-3 epsilon is an intracellular component of TNFR2 receptor complex and its activation protects against osteoarthritis. Ann. Rheum. Dis. 2021, 80, 1615–1627. [Google Scholar] [CrossRef] [PubMed]
- Francisco, V.; Pino, J.; González-Gay, M.; Lago, F.; Karppinen, J.; Tervonen, O.; Mobasheri, A.; Gualillo, O. A new immunometabolic perspective of intervertebral disc degeneration. Nat. Rev. Rheumatol. 2021, 18, 47–60. [Google Scholar] [CrossRef]
- Hagemans, F.; Larsson, S.; Reijman, M.; Frobell, R.; Struglics, A.; Meuffels, D. An Anterior Cruciate Ligament Rupture Increases Levels of Urine N-terminal Cross-linked Telopeptide of Type I Collagen, Urine C-terminal Cross-linked Telopeptide of Type II Collagen, Serum Aggrecan ARGS Neoepitope, and Serum Tumor Necrosis Factor-α. Am. J. Sport. Med. 2021, 49, 3534–3543. [Google Scholar] [CrossRef]
- Chen, J.; Yan, J.; Li, S.; Zhu, J.; Zhou, J.; Li, J.; Zhang, Y.; Huang, Z.; Yuan, L.; Xu, K.; et al. Atorvastatin inhibited TNF-α induced matrix degradation in rat nucleus pulposus cells by suppressing NLRP3 inflammasome activity and inducing autophagy through NF-κB signaling. Cell Cycle 2021, 20, 2160–2173. [Google Scholar] [CrossRef]
- Kruisbergen, N.; van Gemert, Y.; Walgreen, B.; Helsen, M.; Slöetjes, A.; Koenders, M.; van de Loo, F.; Roth, J.; Vogl, T.; van der Kraan, P.; et al. A single dose of anti-IL-1β antibodies prevents Western diet-induced immune activation during early stage collagenase-induced osteoarthritis, but does not ameliorate end-stage pathology. Osteoarthr. Cartil. 2021, 29, 1462–1473. [Google Scholar] [CrossRef]
- Tat, S.K.; Padrines, M.; Théoleyre, S.; Heymann, D.; Fortun, Y. IL-6, RANKL, TNF-alpha/IL-1: Interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 2004, 15, 49–60. [Google Scholar]
- Liao, Y.; Ren, Y.; Luo, X.; Mirando, A.; Long, J.; Leinroth, A.; Ji, R.; Hilton, M. Interleukin-6 signaling mediates cartilage degradation and pain in posttraumatic osteoarthritis in a sex-specific manner. Sci. Signal. 2022, 15, eabn7082. [Google Scholar] [CrossRef]
- Chenoufi, H.; Diamant, M.; Rieneck, K.; Lund, B.; Stein, G.; Lian, J. Increased mRNA expression and protein secretion of interleukin-6 in primary human osteoblasts differentiated in vitro from rheumatoid and osteoarthritic bone. J. Cell. Biochem. 2001, 81, 666–678. [Google Scholar] [CrossRef] [PubMed]
- Close, D. Matrix metalloproteinase inhibitors in rheumatic diseases. Ann. Rheum. Dis. 2011, 60 (Suppl. 3), iii62–iii67. [Google Scholar]
- Burrage, P.; Mix, K.; Brinckerhoff, C. Matrix metalloproteinases: Role in arthritis. Front.Biosci. J. Virtual Libr. 2006, 11, 529–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monfort, J.; Tardif, G.; Reboul, P.; Mineau, F.; Roughley, P.; Pelletier, J.; Martel-Pelletier, J. Degradation of small leucine-rich repeat proteoglycans by matrix metalloprotease-13: Identification of a new biglycan cleavage site. Arthritis Res. Ther. 2006, 8, R26. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Tardif, G.; Hum, D.; Duval, N.; Pelletier, J.; Martel-Pelletier, J. Hsp90{beta} and p130(cas): Novel regulatory factors of MMP-13 expression in human osteoarthritic chondrocytes. Ann. Rheum. Dis. 2009, 68, 976–982. [Google Scholar] [CrossRef]
- Yamada, H.; Watanabe, K.; Saito, T.; Hayashi, H.; Niitani, Y.; Kikuchi, T.; Ito, A.; Fujikawa, K.; Lohmander, L. Esculetin (dihydroxycoumarin) inhibits the production of matrix metalloproteinases in cartilage explants, and oral administration of its prodrug, CPA-926, suppresses cartilage destruction in rabbit experimental osteoarthritis. J. Rheumatol. 1999, 26, 654–662. [Google Scholar]
- Lewis, E.J.; Bishop, J.; Bottomley, K.M.K.; Bradshaw, D.; Brewster, M.; Broadhurst, M.J.; Brown, P.A.; Budd, J.M.; Elliott, L.; Greenham, A.K.; et al. Ro 32-3555, an orally active collagenase inhibitor, prevents cartilage breakdown in vitro and in vivo. Br. J. Pharmacol. 1997, 121, 540–546. [Google Scholar] [CrossRef] [Green Version]
- Lauer-Fields, J.L.; Minond, D.; Chase, P.S.; Baillargeon, P.E.; Saldanha, S.A.; Stawikowska, R.; Hodder, P.; Fields, G.B. High throughput screening of potentially selective MMP-13 exosite inhibitors utilizing a triple-helical FRET substrate. Bioorg. Med. Chem. 2009, 17, 990–1005. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.-J.; Lu, J.-W.; Ho, L.-J.; Lai, J.-H.; Huang, H.-S.; Lee, C.-C.; Lin, T.-Y.; Lien, S.-B.; Lin, L.-C.; Chen, L.W.; et al. Anti-inflammatory and anti-osteoarthritis effects of Cm-02 and Ck-02. Biochem. Biophys. Res. Commun. 2019, 517, 155–163. [Google Scholar] [CrossRef]
- Abshirini, M.; Ilesanmi-Oyelere, B.; Kruger, M. Potential modulatory mechanisms of action by long-chain polyunsaturated fatty acids on bone cell and chondrocyte metabolism. Prog. Lipid Res. 2021, 83, 101113. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Ding, X.; Huang, T.; Song, D.; Tao, H. EZH2 is associated with cartilage degeneration in osteoarthritis by promoting SDC1 expression via histone methylation of the microRNA-138 promoter. Lab.Investig. J. Tech. Methods Pathol. 2021, 101, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Thorup, A.; Strachan, D.; Caxaria, S.; Poulet, B.; Thomas, B.; Eldridge, S.; Nalesso, G.; Whiteford, J.; Pitzalis, C.; Aigner, T.; et al. ROR2 blockade as a therapy for osteoarthritis. Sci. Transl. Med. 2020, 12, eaax3063. [Google Scholar] [CrossRef] [PubMed]
- Najar, M.; Ouhaddi, Y.; Paré, F.; Lussier, B.; Urade, Y.; Kapoor, M.; Pelletier, J.; Martel-Pelletier, J.; Benderdour, M.; Fahmi, H. Role of Lipocalin-Type Prostaglandin D Synthase in Experimental Osteoarthritis. Arthritis Rheumatol. 2020, 72, 1524–1533. [Google Scholar] [CrossRef]
- Sharma, N.; Drobinski, P.; Kayed, A.; Chen, Z.; Kjelgaard-Petersen, C.; Gantzel, T.; Karsdal, M.; Michaelis, M.; Ladel, C.; Bay-Jensen, A.; et al. Inflammation and joint destruction may be linked to the generation of cartilage metabolites of ADAMTS-5 through activation of toll-like receptors. Osteoarthr. Cartil. 2020, 28, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; O’Keefe, H.; Davie, C.; Lind, K.; Acharya, R.; Franklin, G.; Larkin, J.; Matico, R.; Neeb, M.; Thompson, M.; et al. Discovery of highly potent and selective small molecule ADAMTS-5 inhibitors that inhibit human cartilage degradation via encoded library technology (ELT). J. Med. Chem. 2012, 55, 7061–7079. [Google Scholar] [CrossRef]
- Sogame, S.; Suenaga, Y.; Atobe, M.; Kawanishi, M.; Tanaka, E.; Miyoshi, S. Discovery of a benzimidazole series of ADAMTS-5 (aggrecanase-2) inhibitors by scaffold hopping. Eur. J. Med. Chem. 2014, 71, 250–258. [Google Scholar] [CrossRef]
- Wang, F.; Liu, J.; Chen, X.; Zheng, X.; Qu, N.; Zhang, B.; Xia, C. IL-1β receptor antagonist (IL-1Ra) combined with autophagy inducer (TAT-Beclin1) is an effective alternative for attenuating extracellular matrix degradation in rat and human osteoarthritis chondrocytes. Arthritis Res. Ther. 2019, 21, 171. [Google Scholar] [CrossRef] [Green Version]
- Conaghan, P.; Cook, A.; Hamilton, J.; Tak, P. Therapeutic options for targeting inflammatory osteoarthritis pain. Nat. Rev. Rheumatol. 2019, 15, 355–363. [Google Scholar] [CrossRef]
- Kloppenburg, M.; Peterfy, C.; Haugen, I.; Kroon, F.; Chen, S.; Wang, L.; Liu, W.; Levy, G.; Fleischmann, R.; Berenbaum, F.; et al. Phase IIa, placebo-controlled, randomised study of lutikizumab, an anti-interleukin-1α and anti-interleukin-1β dual variable domain immunoglobulin, in patients with erosive hand osteoarthritis. Ann. Rheum. Dis. 2019, 78, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Le, L.; Swingler, T.; Crowe, N.; Vincent, T.; Barter, M.; Donell, S.; Delany, A.; Dalmay, T.; Young, D.; Clark, I. The microRNA-29 family in cartilage homeostasis and osteoarthritis. J. Mol. Med. 2016, 94, 583–596. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Xia, C.; Mei, S.; Wang, J.; Shan, Z.; Lin, X.; Fan, S. Intra-articular delivery of sinomenium encapsulated by chitosan microspheres and photo-crosslinked GelMA hydrogel ameliorates osteoarthritis by effectively regulating autophagy. Biomaterials 2016, 81, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pizzute, T.; Li, J.; He, F.; Pei, M. sb203580 preconditioning recharges matrix-expanded human adult stem cells for chondrogenesis in an inflammatory environment—A feasible approach for autologous stem cell based osteoarthritic cartilage repair. Biomaterials 2015, 64, 88–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, S.; Lv, Z.; Zhang, J.; Wang, Y.; Dong, Y.; Wang, Z.; Chen, K.; Cheng, P.; Yang, Q.; Guo, F.; et al. Necrostatin-1 Attenuates Trauma-Induced Mouse Osteoarthritis and IL-1β Induced Apoptosis via HMGB1/TLR4/SDF-1 in Primary Mouse Chondrocytes. Front. Pharmacol. 2018, 9, 1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J.; Wang, C.; Ying, J.; Xu, T.; McAlinden, A.; O’Keefe, R.J. Inhibition of 4-aminobutyrate aminotransferase protects against injury-induced osteoarthritis in mice. JCI Insight 2019, 4, e128568. [Google Scholar] [CrossRef]
- Akeson, A.; Woods, C.; Hsieh, L.; Bohnke, R.; Ackermann, B.; Chan, K.; Robinson, J.; Yanofsky, S.; Jacobs, J.; Barrett, R.; et al. AF12198, a novel low molecular weight antagonist, selectively binds the human type I interleukin (IL)-1 receptor and blocks in vivo responses to IL-1. J. Biol. Chem. 1996, 271, 30517–30523. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Sun, X.; Xu, Q.; Zhang, Y.; Tian, F.; Sun, H.; Zheng, H.; Dai, J. TAK-242 suppresses lipopolysaccharide-induced inflammation in human coronary artery endothelial cells. Die Pharm. 2016, 71, 583–587. [Google Scholar]
- Zhong, G.; Long, H.; Chen, F.; Yu, Y. Oxoglaucine mediates Ca(2+) influx and activates autophagy to alleviate osteoarthritis through the TRPV5/calmodulin/CAMK-II pathway. Br. J. Pharmacol. 2021, 178, 2931–2947. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, Z.; Chen, D.; He, Y. CY-09 attenuates the progression of osteoarthritis via inhibiting NLRP3 inflammasome-mediated pyroptosis. Biochem. Biophys. Res. Commun. 2021, 553, 119–125. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, Y.; Dong, H.; Cui, Y.; Du, Q.; Wang, X.; Li, L.; Zhang, H. Telmisartan Mitigates TNF-α-Induced Type II Collagen Reduction by Upregulating SOX-9. ACS Omega 2021, 6, 11756–11761. [Google Scholar] [CrossRef]
- Allaeys, I.; de Vargas, F.R.; Bourgoin, S.; Poubelle, P. Human Inflammatory Neutrophils Express Genes Encoding Peptidase Inhibitors: Production of Elafin Mediated by NF-κB and CCAAT/Enhancer-Binding Protein β. J. Immunol. 2021, 206, 1943–1956. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiang, E.; Rao, W.; Zhang, Y.; Xiao, C.; Li, C.; Han, B.; Wu, D. Intra-articular injection of human umbilical cord mesenchymal stem cells ameliorates monosodium iodoacetate-induced osteoarthritis in rats by inhibiting cartilage degradation and inflammation. Bone Jt. Res. 2021, 10, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Kjelgaard-Petersen, C.; Sharma, N.; Kayed, A.; Karsdal, M.; Mobasheri, A.; Hägglund, P.; Bay-Jensen, A.; Thudium, C. Tofacitinib and TPCA-1 exert chondroprotective effects on extracellular matrix turnover in bovine articular cartilage ex vivo. Biochem. Pharmacol. 2019, 165, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.; Mastbergen, S. Joint distraction for osteoarthritis: Clinical evidence and molecular mechanisms. Nat. Rev. Rheumatol. 2022, 18, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, T.; Kelly, D.; Curtin, C.; O’Brien, F. Mechanosignalling in cartilage: An emerging target for the treatment of osteoarthritis. Nat. Rev. Rheumatol. 2021, 8, 67–84. [Google Scholar] [CrossRef]
- Øiestad, B.; Juhl, C.; Culvenor, A.; Berg, B.; Thorlund, J. Knee extensor muscle weakness is a risk factor for the development of knee osteoarthritis: An updated systematic review and meta-analysis including 46 819 men and women. Br. J. Sport. Med. 2021, 56, 349–355. [Google Scholar] [CrossRef]
- Jiang, Y. Osteoarthritis year in review 2021: Biology. Osteoarthr. Cartil. 2021, 30, 207–215. [Google Scholar] [CrossRef]
- Katz, J.; Arant, K.; Loeser, R. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review. JAMA 2021, 325, 568–578. [Google Scholar] [CrossRef]
- Latourte, A.; Kloppenburg, M.; Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol. 2020, 16, 673–688. [Google Scholar] [CrossRef]
- Saito, T.; Tanaka, S. Molecular mechanisms underlying osteoarthritis development: Notch and NF-κB. Arthritis Res. Ther. 2017, 19, 94. [Google Scholar] [CrossRef]
- McAlindon, T.; Bannuru, R. Osteoarthritis in 2017: Latest advances in the management of knee OA. Nat. Rev. Rheumatol. 2018, 14, 73–74. [Google Scholar] [CrossRef] [Green Version]
- Yazici, Y.; McAlindon, T.; Gibofsky, A.; Lane, N.; Lattermann, C.; Skrepnik, N.; Swearingen, C.; Simsek, I.; Ghandehari, H.; DiFrancesco, A.; et al. A Phase 2b randomized trial of lorecivivint, a novel intra-articular CLK2/DYRK1A inhibitor and Wnt pathway modulator for knee osteoarthritis. Osteoarthr. Cartil. 2021, 29, 654–666. [Google Scholar] [CrossRef] [PubMed]
- Cherifi, C.; Monteagudo, S.; Lories, R. Promising targets for therapy of osteoarthritis: A review on the Wnt and TGF-β signalling pathways. Ther. Adv. Musculoskelet. Dis. 2021, 13, 1759720x211006959. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Li, L.; Fang, X.; Zang, M. Exosome-Encapsulated microRNA-127-3p Released from Bone Marrow-Derived Mesenchymal Stem Cells Alleviates Osteoarthritis Through Regulating CDH11-Mediated Wnt/β-Catenin Pathway. J. Pain Res. 2021, 14, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, X.; Hua, B.; Yang, X.; Zheng, J.; Liu, S. WNT16 is upregulated early in mouse TMJ osteoarthritis and protects fibrochondrocytes against IL-1β induced inflammatory response by regulation of RUNX2/MMP13 cascade. Bone 2021, 143, 115793. [Google Scholar] [CrossRef]
- Miyatake, K.; Kumagai, K.; Imai, S.; Yamaguchi, Y.; Inaba, Y. Sclerostin inhibits interleukin-1β-induced late stage chondrogenic differentiation through downregulation of Wnt/β-catenin signaling pathway. PLoS ONE 2020, 15, e0239651. [Google Scholar] [CrossRef] [PubMed]
- Lories, R.; Monteagudo, S. Review Article: Is Wnt Signaling an Attractive Target for the Treatment of Osteoarthritis? Rheumatol. Ther. 2020, 7, 259–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, Y.; Huang, X.; Tan, G.; Chu, X.; Zhang, R.; Ma, X.; Ni, B.; You, H. Protective effects of Erdosteine on interleukin-1β-stimulated inflammation via inhibiting the activation of MAPK, NF-κB, and Wnt/β-catenin signaling pathways in rat osteoarthritis. Eur. J. Pharmacol. 2020, 873, 172925. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, C.; Liang, C.; Luo, P.; Xia, G.; Zhang, L.; Wang, X.; Wen, Z.; Cao, X.; Wu, S. Dysregulation of the Wnt Signaling Pathway and Synovial Stem Cell Dysfunction in Osteoarthritis Development. Stem Cells Dev. 2020, 29, 401–413. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, V.; O’Green, A.L.; Bossard, C.; Seo, T.; Lamangan, L.; Ibanez, M.; Ghias, A.; Lai, C.; Do, L.; Cho, S.; et al. Modulation of the Wnt pathway through inhibition of CLK2 and DYRK1A by lorecivivint as a novel, potentially disease-modifying approach for knee osteoarthritis treatment. Osteoarthr. Cartil. 2019, 27, 1347–1360. [Google Scholar] [CrossRef] [Green Version]
- Lietman, C.; Wu, B.; Lechner, S.; Shinar, A.; Sehgal, M.; Rossomacha, E.; Datta, P.; Sharma, A.; Gandhi, R.; Kapoor, M.; et al. Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis. JCI Insight 2018, 3, e96308. [Google Scholar] [CrossRef]
- Takamatsu, A.; Ohkawara, B.; Ito, M.; Masuda, A.; Sakai, T.; Ishiguro, N.; Ohno, K. Verapamil protects against cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling. PLoS ONE 2014, 9, e92699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazici, Y.; McAlindon, T.; Gibofsky, A.; Lane, N.; Clauw, D.; Jones, M.; Bergfeld, J.; Swearingen, C.; DiFrancesco, A.; Simsek, I.; et al. Lorecivivint, a Novel Intraarticular CDC-like Kinase 2 and Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A Inhibitor and Wnt Pathway Modulator for the Treatment of Knee Osteoarthritis: A Phase II Randomized Trial. Arthritis Rheumatol. 2020, 72, 1694–1706. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, M.; Yang, W.; Xia, B.; Wang, W.; Pan, X. Nootkatone protects cartilage against degeneration in mice by inhibiting NF-κB signaling pathway. Int. Immunopharmacol. 2021, 100, 108119. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Chen, B.; Liu, S.; Lin, Y.; Tsai, C.; Ko, C.; Tang, C.; Tung, K. Nesfatin-1 facilitates IL-1β production in osteoarthritis synovial fibroblasts by suppressing miR-204-5p synthesis through the AP-1 and NF-κB pathways. Aging 2021, 13, 22490–22501. [Google Scholar] [CrossRef]
- Catheline, S.; Bell, R.; Oluoch, L.; James, M.; Escalera-Rivera, K.; Maynard, R.; Chang, M.; Dean, C.; Botto, E.; Ketz, J.; et al. IKKβ-NF-κB signaling in adult chondrocytes promotes the onset of age-related osteoarthritis in mice. Sci. Signal. 2021, 14, eabf3535. [Google Scholar] [CrossRef]
- Bi, R.; Chen, K.; Wang, Y.; Luo, X.; Li, Q.; Li, P.; Yin, Q.; Fan, Y.; Zhu, S. Regulating Fibrocartilage Stem Cells via TNF-α/Nf-κB in TMJ Osteoarthritis. J. Dent. Res. 2021, 101, 312–322. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Qiu, J.; Huang, X. 8-Methoxypsoralen has Anti-inflammatory and Antioxidant Roles in Osteoarthritis Through SIRT1/NF-κB Pathway. Front. Pharmacol. 2021, 12, 692424. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, Z.; Wu, B.; Gong, S.; Chen, B. Small molecule natural compound targets the NF-κB signaling and ameliorates the development of osteoarthritis. J. Cell. Physiol. 2021, 236, 7298–7307. [Google Scholar] [CrossRef]
- Yano, F.; Hojo, H.; Ohba, S.; Fukai, A.; Hosaka, Y.; Ikeda, T.; Saito, T.; Hirata, M.; Chikuda, H.; Takato, T.; et al. A novel disease-modifying osteoarthritis drug candidate targeting Runx1. Ann. Rheum. Dis. 2013, 72, 748–753. [Google Scholar] [CrossRef] [Green Version]
- Chanalaris, A.; Doherty, C.; Marsden, B.; Bambridge, G.; Wren, S.; Nagase, H.; Troeberg, L. Suramin Inhibits Osteoarthritic Cartilage Degradation by Increasing Extracellular Levels of Chondroprotective Tissue Inhibitor of Metalloproteinases 3. Mol. Pharmacol. 2017, 92, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.; Feigenson, M.; Begun, D.; Shull, L.; Culley, K.; Otero, M.; Goldring, M.; Ta, L.; Kakar, S.; Bradley, E.; et al. Phlpp inhibitors block pain and cartilage degradation associated with osteoarthritis. J. Orthop.Res. Off. Publ. Orthop. Res. Soc. 2018, 36, 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Hu, X.; Cheng, J.; Zhang, X.; Zhao, F.; Shi, W.; Ren, B.; Yu, H.; Yang, P.; Li, Z.; et al. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development. Nat. Commun. 2019, 10, 1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peilin, W.; Songsong, T.; Chengyu, Z.; Zhi, C.; Chunhui, M.; Yinxian, Y.; Lei, Z.; Min, M.; Zongyi, W.; Mengkai, Y.; et al. Directed elimination of senescent cells attenuates development of osteoarthritis by inhibition of c-IAP and XIAP. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 2618–2632. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; He, Z.; Shi, J.; Wang, Z.; Wu, W.; Liu, J.; Kang, H.; Li, F.; Liang, S. AMD3100 Attenuates Post-Traumatic Osteoarthritis by Maintaining Transforming Growth Factor-β1-Induced Expression of Tissue Inhibitor of Metalloproteinase-3 via the Phosphatidylinositol 3-Kinase/Akt Pathway. Front. Pharmacol. 2019, 10, 1554. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lin, C.; Kuo, S.; Liu, S.; Lu, Y.; Chen, Y.; Wang, S.; Tang, C. Resistin Enhances VCAM-1 Expression and Monocyte Adhesion in Human Osteoarthritis Synovial Fibroblasts by Inhibiting MiR-381 Expression through the PKC, p38, and JNK Signaling Pathways. Cells 2020, 9, 1369. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Ansari, M.; Bano, S.; Haqqi, T. Imperatorin suppresses IL-1β-induced iNOS expression via inhibiting ERK-MAPK/AP1 signaling in primary human OA chondrocytes. Int. Immunopharmacol. 2020, 85, 106612. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Register, T.; Yammani, R. Age-Related Decline in Expression of Molecular Chaperones Induces Endoplasmic Reticulum Stress and Chondrocyte Apoptosis in Articular Cartilage. Aging Dis. 2020, 11, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Gao, M.; He, Z.; Guo, P.; Liu, Z.; Zhang, P.; Zhang, F.; Chen, D.; Zhou, G.; Zhou, Z. Noggin, an inhibitor of bone morphogenetic protein signaling, antagonizes TGF-β1 in a mouse model of osteoarthritis. Biochem. Biophys. Res. Commun. 2021, 570, 199–205. [Google Scholar] [CrossRef]
- Novikov, F.; Panova, M.; Titov, I.; Stroylov, V.; Stroganov, O.; Chilov, G. Inhibition of SYK and cSrc kinases can protect bone and cartilage in preclinical models of osteoarthritis and rheumatoid arthritis. Sci. Rep. 2021, 11, 23120. [Google Scholar] [CrossRef]
- Oo, W.; Little, C.; Duong, V.; Hunter, D. The Development of Disease-Modifying Therapies for Osteoarthritis (DMOADs): The Evidence to Date. Drug Des. Dev. Ther. 2021, 15, 2921–2945. [Google Scholar] [CrossRef]
- Glasson, S.; Askew, R.; Sheppard, B.; Carito, B.; Blanchet, T.; Ma, H.; Flannery, C.; Peluso, D.; Kanki, K.; Yang, Z.; et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 2005, 434, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Little, C.; Barai, A.; Burkhardt, D.; Smith, S.; Fosang, A.; Werb, Z.; Shah, M.; Thompson, E. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum 2009, 60, 3723–3733. [Google Scholar] [CrossRef] [PubMed]
- Stanton, H.; Rogerson, F.; East, C.; Golub, S.; Lawlor, K.; Meeker, C.; Little, C.; Last, K.; Farmer, P.; Campbell, I.; et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 2005, 434, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Neuhold, L.; Killar, L.; Zhao, W.; Sung, M.; Warner, L.; Kulik, J.; Turner, J.; Wu, W.; Billinghurst, C.; Meijers, T.; et al. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J. Clin. Investig. 2001, 107, 35–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clement-Lacroix, P.; Little, C.; Meurisse, S.; Blanqué, R.; Mollat, P.; Brebion, F.; Gosmini, R.; De Ceuninck, F.; Botez, I.; Lepescheux, L. GLPG1972: A potent, selective, orally available adamts-5 inhibitor for the treatment of OA. Osteoarthr. Cartil. 2017, 25, S58–S59. [Google Scholar] [CrossRef] [Green Version]
- Clement-Lacroix, P.; Little, C.; Smith, M.; Cottereaux, C.; Merciris, D.; Meurisse, S.; Mollat, P.; Touitou, R.; Brebion, F.; Gosmini, R.; et al. Pharmacological characterization of GLPG1972/S201086, a potent and selective small-molecule inhibitor of ADAMTS5. Osteoarthr. Cartil. 2022, 30, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Van der Aar, E.; Desrivot, J.; Fagard, L.; Amantini, D.; Larsson, S.; Struglics, A.; Lohmander, S.; Vanhoutte, F.; Dupont, S. ADAMTS-5 inhibitor GLPG1972, a potential new treatment in osteoarthritis, shows favorable safety, pharmacokinetics and pharmacodynamics in healthy subjects. Osteoarthr. Cartil. 2018, 26, S310. [Google Scholar] [CrossRef]
- Siebuhr, A.; Bay-Jensen, A.-C.; Thudium, C.; Karsdal, M.; Serruys, B.; Werkmann, D.; Michaelis, M.; Ladel, C.; Lindemann, S. The anti-ADAMTS-5 nanobody®, M6495, protects against cartilage breakdown in cartilage and synovial joint tissue explant models. Osteoarthr. Cartil. 2018, 26, S187. [Google Scholar] [CrossRef]
- Werkmann, D.; Buyse, M.-A.; Dejager, L.; Cornelis, S.; Thudium, C.; Karsdal, M.; Ladel, C.; Guehring, H.; Michaelis, M.; Lindemann, S. In vitro characterization of the ADAMTS-5 specific nanobody® M6495. Osteoarthr. Cartil. 2018, 26, S178. [Google Scholar] [CrossRef]
- Guehring, H.; Balchen, T.; Goteti, K.; Sonne, J.; Ladel, C.; Ona, V.; Moreau, F.; Bay-Jensen, A.; Bihlet, A. Safety, tolerability, pharmacokinetics and pharmacodynamics of single ascending doses of the anti-ADAMTS-5 nanobody (R), M6495, in healthy male subjects: A phase I, placebo-controlled, first-in-human study. Arthritis Rheumatol. 2019, 71, 2175. [Google Scholar]
- Krzeski, P.; Buckland-Wright, C.; Bálint, G.; Cline, G.; Stoner, K.; Lyon, R.; Beary, J.; Aronstein, W.; Spector, T. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: A randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res. Ther. 2007, 9, R109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coryell, P.; Diekman, B.; Loeser, R. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat. Rev. Rheumatol. 2021, 17, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Diekman, B.; Sessions, G.; Collins, J.; Knecht, A.; Strum, S.; Mitin, N.; Carlson, C.; Loeser, R.; Sharpless, N. Expression of p16(INK)(4a) is a biomarker of chondrocyte aging but does not cause osteoarthritis. Aging Cell 2018, 17, e12771. [Google Scholar] [CrossRef] [PubMed]
- Del Rey, M.; Valín, Á.; Usategui, A.; Ergueta, S.; Martín, E.; Municio, C.; Cañete, J.; Blanco, F.; Criado, G.; Pablos, J. Senescent synovial fibroblasts accumulate prematurely in rheumatoid arthritis tissues and display an enhanced inflammatory phenotype. Immun. Ageing 2019, 16, 29. [Google Scholar] [CrossRef] [Green Version]
- Jeon, O.; Kim, C.; Laberge, R.; Demaria, M.; Rathod, S.; Vasserot, A.; Chung, J.; Kim, D.; Poon, Y.; David, N.; et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 2017, 23, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Hsu, B.; Visich, J.; Genovese, M.; Walter, K.; An, M.; Laberge, R.-M.; Dananberg, J. Safety, tolerability, pharmacokinetics, and clinical outcomes following single-dose IA administration of UBX0101, a senolytic MDM2/p53 interaction inhibitor, in patients with knee OA. Arthritis Rheumatol. 2019, 71, L05. [Google Scholar]
- Jeon, O.; David, N.; Campisi, J.; Elisseeff, J. Senescent cells and osteoarthritis: A painful connection. J. Clin. Investig. 2018, 128, 1229–1237. [Google Scholar] [CrossRef]
- Hunter, D.; Pike, M.; Jonas, B.; Kissin, E.; Krop, J.; McAlindon, T. Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis. BMC Musculoskelet. Disord. 2010, 11, 232. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.; Lee, S.; Na, H.; Jung, K.; Choi, J.; Cho, K.; Lee, C.; Kim, S.; Park, S.; Shin, D.; et al. Kartogenin inhibits pain behavior, chondrocyte inflammation, and attenuates osteoarthritis progression in mice through induction of IL-10. Sci. Rep. 2018, 8, 13832. [Google Scholar] [CrossRef] [Green Version]
- Yazici, Y.; McAlindon, T.; Gibofsky, A.; Lane, N.; Clauw, D.; Jones, M.; Bergfeld, J.; Swearingen, C.; DiFrancesco, A.; Tambiah, J. Results from a 52-week randomized, double-blind, placebo-controlled, phase 2 study of a novel, intra-articular wnt pathway inhibitor (SM04690) for the treatment of knee osteoarthritis. Osteoarthr. Cartil. 2018, 26, S293–S294. [Google Scholar] [CrossRef]
- Hochberg, M.; Guermazi, A.; Guehring, H.; Aydemir, A.; Wax, S.; Fleuranceau-Morel, P.; Bihlet, A.R.; Byrjalsen, I.; Andersen, J.R.; Eckstein, F. Effect of Intra-Articular Sprifermin vs Placebo on Femorotibial Joint Cartilage Thickness in Patients With Osteoarthritis: The FORWARD Randomized Clinical Trial. JAMA 2019, 322, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- McGuire, D.; Segal, N.; Metyas, S.; Barthel, H.; Miller, M.; Rosen, D.; Kumagai, Y. Intra-articular TPX-100 in knee osteoarthritis: Robust functional response at 6 and 12 months is associated with increased tibiofemoral cartilage thickness. Arthritis Rheumatol. 2018, 70 (Suppl. 10), 3405–3406. [Google Scholar]
- McGuire, D.; Bowes, M.; Brett, A.; Miller, M.; Kumugai, Y. Study TPX-100-5: Significant reduction in femoral bone shape change 12 months after IA TPX-100 correlates with tibiofemoral cartilage stabilization. Osteoarthr. Cartil. 2020, 28, S37–S38. [Google Scholar] [CrossRef]
- McGuire, D.; Bowes, M.; Brett, A.; Segal, N.; Miller, M.; Rosen, D.; Kumagai, Y. Study TPX-100-5: Intra-articular TPX-100 significantly delays pathological bone shape change and stabilizes cartilage in moderate to severe bilateral knee OA. Arthritis Res. Ther. 2021, 23, 242. [Google Scholar] [CrossRef]
- Watt, F.; Blauwet, M.; Fakhoury, A.; Jacobs, H.; Smulders, R.; Lane, N. Tropomyosin-related kinase A (TrkA) inhibition for the treatment of painful knee osteoarthritis: Results from a randomized controlled phase 2a trial. Osteoarthr. Cartil. 2019, 27, 1590–1598. [Google Scholar] [CrossRef] [Green Version]
- Brown, W.; Leff, R.; Griffin, A.; Hossack, S.; Aubray, R.; Walker, P.; Chiche, D. Safety, Pharmacokinetics, and Pharmacodynamics Study in Healthy Subjects of Oral NEO6860, a Modality Selective Transient Receptor Potential Vanilloid Subtype 1 Antagonist. J. Pain 2017, 18, 726–738. [Google Scholar] [CrossRef]
- Lindström, E.; Rizoska, B.; Tunblad, K.; Edenius, C.; Bendele, A.; Maul, D.; Larson, M.; Shah, N.; Otto, V.Y.; Jerome, C.; et al. The selective cathepsin K inhibitor MIV-711 attenuates joint pathology in experimental animal models of osteoarthritis. J. Transl. Med. 2018, 16, 56. [Google Scholar] [CrossRef] [Green Version]
- Conaghan, P.; Bowes, M.; Kingsbury, S.; Brett, A.; Guillard, G.; Rizoska, B.; Sjögren, N.; Graham, P.; Jansson, Å.; Wadell, C.; et al. Disease-Modifying Effects of a Novel Cathepsin K Inhibitor in Osteoarthritis: A Randomized Controlled Trial. Ann. Intern Med. 2020, 172, 86–95. [Google Scholar] [CrossRef]
- Li, Y.; Jiao, J.; Zhang, Y.; Huang, C.; Wang, H.; Wang, B.; Su, X.; Song, H.; Zhao, M.; Jiang, D.; et al. Clinical Efficacy of Cortex Daphnes (Zushima) Patch in Patients With Symptomatic Knee Osteoarthritis: A Multicenter Non-Inferiority Randomized Controlled Clinical Trial. Front. Pharmacol. 2021, 12, 646310. [Google Scholar] [CrossRef]
- Waghule, T.; Singhvi, G.; Dubey, S.; Pandey, M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019, 109, 1249–1258. [Google Scholar] [CrossRef]
- Krupka, E.; Jiang, G.; Jan, C. Efficacy and safety of intra-articular injection of tropomyosin receptor kinase A inhibitor in painful knee osteoarthritis: A randomized, double-blind and placebo-controlled study. Osteoarthr. Cartil. 2019, 27, 1599–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, R.; Ervin, J.; Nezzer, J.; Nieves, Y.; Guedes, K.; Burges, R.; Hanson, P.; Campbell, J. Randomized, Double-Blind, Placebo-Controlled Trial of Intraarticular Trans-Capsaicin for Pain Associated With Osteoarthritis of the Knee. Arthritis Rheumatol. 2019, 71, 1524–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, C.; Kraus, V.; Setton, L. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 2014, 10, 11–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, R.; Volkmer, T.; Wang, P.; Lee, L.; Wang, Q.; García, A. Synthesis of self-assembled IL-1Ra-presenting nanoparticles for the treatment of osteoarthritis. J. Biomed. Mater. Res. A 2016, 104, 595–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, L.M.; Sequeira, A.; García, A.; Guldberg, R. Articular Cartilage- and Synoviocyte-Binding Poly(ethylene glycol) Nanocomposite Microgels as Intra-Articular Drug Delivery Vehicles for the Treatment of Osteoarthritis. ACS Biomater. Sci. Eng. 2020, 6, 5084–5095. [Google Scholar] [CrossRef]
- Park, J.; Lee, S. A review of osteoarthritis signaling intervention using small-molecule inhibitors. Medicine 2022, 101, e29501. [Google Scholar] [CrossRef]
- Eckstein, F.; Kraines, J.; Aydemir, A.; Wirth, W.; Maschek, S.; Hochberg, M. Intra-articular sprifermin reduces cartilage loss in addition to increasing cartilage gain independent of location in the femorotibial joint: Post-hoc analysis of a randomised, placebo-controlled phase II clinical trial. Ann. Rheum. Dis. 2020, 79, 525–528. [Google Scholar] [CrossRef]
- Lohmander, L.; Hellot, S.; Dreher, D.; Krantz, E.; Kruger, D.; Guermazi, A.; Eckstein, F. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: A randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 2014, 66, 1820–1831. [Google Scholar] [CrossRef]
- Kloppenburg, M.; Ramonda, R.; Bobacz, K.; Kwok, W.; Elewaut, D.; Huizinga, T.; Kroon, F.; Punzi, L.; Smolen, J.; Cruyssen, B.V.; et al. Etanercept in patients with inflammatory hand osteoarthritis (EHOA): A multicentre, randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 2018, 77, 1757–1764. [Google Scholar] [CrossRef]
- Aitken, D.; Laslett, L.; Pan, F.; Haugen, I.; Otahal, P.; Bellamy, N.; Bird, P.; Jones, G. A randomised double-blind placebo-controlled crossover trial of HUMira (adalimumab) for erosive hand OsteoaRthritis—The HUMOR trial. Osteoarthr. Cartil. 2018, 26, 880–887. [Google Scholar] [CrossRef] [Green Version]
- Deveza, L.A.; Nelson, A.E.; Loeser, R.F. Phenotypes of osteoarthritis: Current state and future implications. Clin. Exp. Rheumatol. 2019, 37, 64–72. [Google Scholar] [PubMed]
Inhibitors | Compound Type | Target | Reference |
---|---|---|---|
a-Sulfonylhydroxamic Acids | Sulfonylhydroxamic Acids | MMPs | [16] |
Cm-02/Ck-02 | oxazine | MMPs | [49] |
CPA-926 | dihydroxycoumarin | MMP-1 and MMP-3 | [46] |
ONO-4817 | hydroxamic acid | MMPs except MMP-1 and MMP-7 | [17] |
pyrimidine-4,6-dicarboxylic acid and similar compounds | dicarboxylic acid and similar compounds | MMPs | [48] |
Ro32-3555 | piperidinobutyrooxamic acid | MMPs | [47] |
Inhibitors | Compound Type | Target | Reference |
---|---|---|---|
Propylbenzenesulfonamide (8) | Propylbenzenesulfonamide | ADAMTS-5 | [55] |
benzimidazole | benzimidazole | ADAMTS-5 | [56] |
M6495 | - | ADAMTS-5 | [18] |
Inhibitors | Compound Type | Target | Reference |
---|---|---|---|
Anemonin | Anemonin | IL-1 | [19] |
Necrostatin-1 | Necrostatin | IL-1 | [63] |
vigabatrin | vigabatrin | IL-1 | [64] |
AF12198 | carboxylic acid | IL-1 | [65] |
TAK-242 | cyclohexene | IL-1 | [66] |
Inhibitors | Compound Type | Target | Reference |
---|---|---|---|
TD-198946 | DMOAD | Runx1 | [99] |
NSC117079 | - | Phlpp | [101] |
BNTA | - | SOD3 | [102] |
AT-406 | Smac analog | IAP | [103] |
AMD3100 | Plerixafor | CXCR4 | [104] |
Resistin | - | PKCα | [105] |
Imperatorin | Coumarins | iNOS | [106] |
PBA | Phenylbutyric acid | PERK | [107] |
Noggin | - | TGF-β1 | [108] |
MT-SYK-03 | - | SYK | [109] |
Drug | Type | Action Mechanism | Route of Administration | Current Phase State | Trial Registration |
---|---|---|---|---|---|
ASP7962 | TrkA inhibitor | Selective inhibition of ATP-induced substrate phosphorylation of human TrkA. | Oral | Phase II: Four-week 100 mg BID ASP7962 did not improve pain or physical function in osteoarthritis patients. | NCT02611466 |
GZ389988A | A small molecule inhibitor of TrkA. | Intra-articular | Phase II: GZ389988A reduced pain, protected physical function, and had a good safety profile. | NCT02845271 | |
CNTX-4875 | TRPV1 modulator | A small molecule modulating TRPV1. | Intra-articular | Phase II: CNTX-4975 provided dose-dependent improvement in knee OA-associated pain. Phase III: Undergoing trial. | NCT02558439 NCT03660943 NCT03661996 |
NEO6860 | An antagonist of TRPV1, blocking the activation by capsaicin. | Oral | Phase I: The first-in-human study on NEO6860 indicated an acceptable safety profile. Phase II: Undergoing trial. | NCT02337543 NCT02712957 | |
Fasinumab | NGF inhibitor | IgG4 anti-NGF monoclonal antibody that binds selectively to NGF. | Subcutaneous | Phase IIb/III: Fasinumab improves OA pain and function. The observed benefit-to-risk relationship favors further clinical development to explore the lowest doses of fasinumab in patients with knee or hip OA. | NCT02447276. |
MIV-711 | Cathepsin K inhibitor | A novel selective cathepsin K inhibitor | Oral | Phase II: MIV-711 was not more effective than placebo for pain, but it significantly reduced bone and cartilage progression with a reassuring safety profile. | NCT02705625, NCT03037489 |
Tocilizumab | IL-6R inhibitor | An antibody against the IL-6 receptor that decreases the serum IL-6 level. | Intravenous | Phase III: Tocilizumab was no more effective than placebo for pain relief in patients with hand osteoarthritis. | NCT02477059 |
UBX0101 | Senolytic drug | A p53/MDM2 interaction inhibitor that reduces cytokine and chemokine secretion | Intra-articular | Phase II: Undergoing trial. | NCT04129944 NCT04229225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Jia, S.; Zhang, W.; Nian, M.; Liu, P.; Yang, L.; Zuo, J.; Li, W.; Zeng, H.; Zhang, X. Recent Advances in Small Molecule Inhibitors for the Treatment of Osteoarthritis. J. Clin. Med. 2023, 12, 1986. https://doi.org/10.3390/jcm12051986
Lin J, Jia S, Zhang W, Nian M, Liu P, Yang L, Zuo J, Li W, Zeng H, Zhang X. Recent Advances in Small Molecule Inhibitors for the Treatment of Osteoarthritis. Journal of Clinical Medicine. 2023; 12(5):1986. https://doi.org/10.3390/jcm12051986
Chicago/Turabian StyleLin, Jianjing, Shicheng Jia, Weifei Zhang, Mengyuan Nian, Peng Liu, Li Yang, Jianwei Zuo, Wei Li, Hui Zeng, and Xintao Zhang. 2023. "Recent Advances in Small Molecule Inhibitors for the Treatment of Osteoarthritis" Journal of Clinical Medicine 12, no. 5: 1986. https://doi.org/10.3390/jcm12051986
APA StyleLin, J., Jia, S., Zhang, W., Nian, M., Liu, P., Yang, L., Zuo, J., Li, W., Zeng, H., & Zhang, X. (2023). Recent Advances in Small Molecule Inhibitors for the Treatment of Osteoarthritis. Journal of Clinical Medicine, 12(5), 1986. https://doi.org/10.3390/jcm12051986