The Impact of COVID-19 Pandemic Lockdown on the Relationship between Pediatric MAFLD and Renal Function
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Acuti Martellucci, C.; Flacco, M.E.; Cappadona, R.; Bravi, F.; Mantovani, L.; Manzoli, L. SARS-CoV-2 pandemic: An overview. Adv. Biol. Regul. 2020, 77, 100736. [Google Scholar] [CrossRef]
- Chang, D.; Chang, X.; He, Y.; Tan, K.J.K. The determinants of COVID-19 morbidity and mortality across countries. Sci. Rep. 2022, 12, 5888. [Google Scholar] [CrossRef]
- McGowan, V.J.; Bambra, C. COVID-19 mortality and deprivation: Pandemic, syndemic, and endemic health inequalities. Lancet Public Health 2022, 7, e966–e975. [Google Scholar] [CrossRef]
- Haucke, M.; Heinz, A.; Liu, S.; Heinzel, S. The Impact of COVID-19 Lockdown on Daily Activities, Cognitions, and Stress in a Lonely and Distressed Population: Temporal Dynamic Network Analysis. J. Med. Internet Res. 2022, 24, e32598. [Google Scholar] [CrossRef] [PubMed]
- de Palma, A.; Vosough, S.; Liao, F. An overview of effects of COVID-19 on mobility and lifestyle: 18 months since the outbreak. Transp. Res. Part A Policy Pract. 2022, 159, 372–397. [Google Scholar] [CrossRef] [PubMed]
- Rundle, A.G.; Park, Y.; Herbstman, J.B.; Kinsey, E.W.; Wang, Y.C. COVID-19-Related School Closings and Risk of Weight Gain Among Children. Obesity 2020, 28, 1008–1009. [Google Scholar] [CrossRef] [Green Version]
- Fegert, J.M.; Vitiello, B.; Plener, P.L.; Clemens, V. Challenges and burden of the Coronavirus 2019 (COVID-19) pandemic for child and adolescent mental health: A narrative review to highlight clinical and research needs in the acute phase and the long return to normality. Child Adol. Psychiatry Men. Health 2020, 14, 20. [Google Scholar] [CrossRef]
- Pierce, M.; Hope, H.; Ford, T.; Hatch, S.; Hotopf, M.; John, A.; Kontopantelis, E.; Webb, R.; Wessely, S.; McManus, S.; et al. Mental health before and during the COVID-19 pandemic: A longitudinal probability sample survey of the UK population. Lancet Psychiatry 2020, 7, 883–892. [Google Scholar] [CrossRef]
- Giuntella, O.; Hyde, K.; Saccardo, S.; Sadoff, S. Lifestyle and mental health disruptions during COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2016632118. [Google Scholar] [CrossRef]
- Targher, G.; Mantovani, A.; Wang, X.B.; Yan, H.D.; Sun, Q.F.; Pan, K.H.; Byrne, C.D.; Zheng, K.I.; Chen, Y.P.; Eslam, M.; et al. Patients with diabetes are at higher risk for severe illness from COVID-19. Diabetes Metab. 2020, 46, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Marjot, T.; Moon, A.M.; Cook, J.A.; Abd-Elsalam, S.; Aloman, C.; Armstrong, M.J.; Pose, E.; Brenner, E.J.; Cargill, T.; Catana, M.A.; et al. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: An international registry study. J. Hepatol. 2021, 74, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Chen, H.; Liu, Y.; Hou, X.; Wei, L.; Bao, Y.; Yang, C.; Zong, G.; Wu, J.; Jia, W. Association of MAFLD With Diabetes, Chronic Kidney Disease, and Cardiovascular Disease: A 4.6-Year Cohort Study in China. J. Clin. Endocrinol. Metab. 2022, 107, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Di Sessa, A.; Lanzaro, F.; Zarrilli, S.; Picone, V.; Guarino, S.; Miraglia Del Giudice, E.; Marzuillo, P. COVID-19 and pediatric fatty liver disease: Is there interplay? World J. Gastroenterol. 2021, 27, 3064–3072. [Google Scholar] [CrossRef]
- Moore, J.B. COVID-19, childhood obesity, and NAFLD: Colliding pandemics. Lancet Gastroenterol. Hepatol. 2022, 7, 499–501. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, A.; Anikhindi, S.; Bansal, N.; Singla, V.; Shivam, K.; Arora, A. Effect of COVID-19 on Pre-existing Liver disease: What Hepatologist Should Know? J. Clin. Exp. Hepatol. 2021, 11, 484–493. [Google Scholar] [CrossRef]
- Tellez, L.; Martin Mateos, R.M. COVID-19 and liver disease: An update. Gastroenterol. Hepatol. 2020, 43, 472–480. [Google Scholar] [CrossRef]
- Luo, M.; Ballester, M.P.; Soffientini, U.; Jalan, R.; Mehta, G. SARS-CoV-2 infection and liver involvement. Hepatol. Int. 2022, 16, 755–774. [Google Scholar] [CrossRef]
- Targher, G.; Mantovani, A.; Byrne, C.D.; Wang, X.B.; Yan, H.D.; Sun, Q.F.; Pan, K.H.; Zheng, K.I.; Chen, Y.P.; Eslam, M.; et al. Risk of severe illness from COVID-19 in patients with metabolic dysfunction-associated fatty liver disease and increased fibrosis scores. Gut 2020, 69, 1545–1547. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Q. COVID-19 Pandemic: Insights into Interactions between SARS-CoV-2 Infection and MAFLD. Int. J. Biol. Sci. 2022, 18, 4756–4767. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, X.; Bian, H.; Xia, M. Metabolic dysfunction associated fatty liver disease and coronavirus disease 2019: Clinical relationship and current management. Lipids Health Dis. 2021, 20, 126. [Google Scholar] [CrossRef]
- Eslam, M.; Sanyal, A.J.; George, J.; International Consensus, P. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020, 158, 1999–2014 e1. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wong, V.W.S.; Dufour, J.F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Di Bonito, P.; Valerio, G.; Licenziati, M.R.; Campana, G.; Del Giudice, E.M.; Di Sessa, A.; Morandi, A.; Maffeis, C.; Chiesa, C.; Pacifico, L.; et al. Uric acid, impaired fasting glucose and impaired glucose tolerance in youth with overweight and obesity. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 675–680. [Google Scholar] [CrossRef]
- Sun, D.Q.; Jin, Y.; Wang, T.Y.; Zheng, K.I.; Rios, R.S.; Zhang, H.Y.; Targher, G.; Byrne, C.D.; Yuan, W.J.; Zheng, M.H. MAFLD and risk of CKD. Metabolism 2021, 115, 154433. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, Y.; Bao, T.; Huang, Y. Association of metabolic dysfunction-associated fatty liver disease with chronic kidney disease: A Chinese population-based study. Ren. Fail. 2022, 44, 1996–2005. [Google Scholar] [CrossRef]
- Wang, T.Y.; Wang, R.F.; Bu, Z.Y.; Targher, G.; Byrne, C.D.; Sun, D.Q.; Zheng, M.H. Association of metabolic dysfunction-associated fatty liver disease with kidney disease. Nat. Rev. Nephrol. 2022, 18, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Chen, M.; Xiao, L.; Du, S.; Xue, L.; Feng, R.; Ye, W. Association of metabolic dysfunction-associated fatty liver disease, type 2 diabetes mellitus, and metabolic goal achievement with risk of chronic kidney disease. Front. Public Health 2022, 10, 1047794. [Google Scholar] [CrossRef]
- Theofilis, P.; Vordoni, A.; Kalaitzidis, R.G. Interplay between metabolic dysfunction-associated fatty liver disease and chronic kidney disease: Epidemiology, pathophysiologic mechanisms, and treatment considerations. World J. Gastroenterol. 2022, 28, 5691–5706. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Hamaguchi, M.; Okamura, T.; Nakanishi, N.; Obora, A.; Kojima, T.; Fukui, M. Metabolic associated fatty liver disease is a risk factor for chronic kidney disease. J. Diabetes. Investig. 2022, 13, 308–316. [Google Scholar] [CrossRef]
- Eslam, M.; El-Serag, H.B.; Francque, S.; Sarin, S.K.; Wei, L.; Bugianesi, E.; George, J. Metabolic (dysfunction)-associated fatty liver disease in individuals of normal weight. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 638–651. [Google Scholar] [CrossRef] [PubMed]
- Kaya, E.; Yilmaz, Y. Metabolic-associated Fatty Liver Disease (MAFLD): A Multi-systemic Disease Beyond the Liver. J. Clin. Transl. Hepatol. 2022, 10, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhao, Q.; Gong, R. Association Between Metabolic Associated Fatty Liver Disease and Chronic Kidney Disease: A Cross-Sectional Study from NHANES 2017–2018. Diabetes Metab. Syndr. Obes. 2021, 14, 1751–1761. [Google Scholar] [CrossRef]
- Tao, Z.; Li, Y.; Cheng, B.; Zhou, T.; Gao, Y. Risk of Severe COVID-19 Increased by Metabolic Dysfunction-associated Fatty Liver Disease: A Meta-analysis. J. Clin. Gastroenterol. 2021, 55, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Marzuillo, P.; Guarino, S.; Di Sessa, A.; Rambaldi, P.F.; Reginelli, A.; Vacca, G.; Cappabianca, S.; Capalbo, D.; Esposito, T.; De Luca Picione, C.; et al. Congenital Solitary Kidney from Birth to Adulthood. J. Urol. 2021, 205, 1466–1475. [Google Scholar] [CrossRef]
- La Scola, C.; Guarino, S.; Pasini, A.; Capalbo, D.; Liguori, L.; Di Sessa, A.; Bertulli, C.; Mencarelli, F.; De Mutiis, C.; Campana, G.; et al. Effect of Body Mass Index on Estimated Glomerular Filtration Rate Levels in Children With Congenital Solitary Kidney: A Cross-Sectional Multicenter Study. J. Ren. Nutr. 2020, 30, 261–267. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, T.; Wang, Y.; Xia, L. The Centrality of Obesity in the Course of Severe COVID-19. Front. Endocrinol. 2021, 12, 620566. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.I.; Gao, F.; Wang, X.B.; Sun, Q.F.; Pan, K.H.; Wang, T.Y.; Ma, H.L.; Chen, Y.P.; Liu, W.Y.; George, J.; et al. Letter to the Editor: Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism 2020, 108, 154244. [Google Scholar] [CrossRef]
- Stefan, N.; Birkenfeld, A.L.; Schulze, M.B. Global pandemics interconnected -obesity, impaired metabolic health and COVID-19. Nat. Rev. Endocrinol. 2021, 17, 135–149. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Zheng, K.I.; Wang, X.B.; Yan, H.D.; Sun, Q.F.; Pan, K.H.; Wang, T.Y.; Ma, H.L.; Chen, Y.P.; George, J.; et al. Younger patients with MAFLD are at increased risk of severe COVID-19 illness: A multicenter preliminary analysis. J. Hepatol. 2020, 73, 719–721. [Google Scholar] [CrossRef]
- Gao, F.; Zheng, K.I.; Wang, X.B.; Sun, Q.F.; Pan, K.H.; Wang, T.Y.; Chen, Y.P.; Targher, G.; Byrne, C.D.; George, J.; et al. Obesity Is a Risk Factor for Greater COVID-19 Severity. Diabetes Care 2020, 43, e72–e74. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.; Qin, E.; Lau, G. Reply to: ‘Younger patients with MAFLD are at increased risk of severe COVID-19 illness: A multicenter preliminary analysis’. J. Hepatol. 2020, 73, 722. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.H.; Rios, R.S.; Zheng, K.I.; Zheng, M.H. Recommendations and Clinical Guidance for Children with Metabolic-associated Fatty Liver Disease during the COVID-19 Pandemic. J. Clin. Transl. Hepatol. 2021, 9, 1–2. [Google Scholar]
- Palma, P.L.; Sessa, A.D.; Passaro, A.P.; Palladino, E.; Furcolo, G.; Barlabà, A.; Rivetti, G.; Lucia, M.; Miraglia Del Giudice, E.; Guarino, S.; et al. Effects of Lockdown for COVID-19 Pandemic on Chronic Kidney Disease Progression in Children with Congenital Anomalies of the Kidney and Urinary Tract: A Retrospective Pilot Study. Children 2023, 10, 123. [Google Scholar] [CrossRef]
- Colasante, A.M.; Bartiromo, M.; Nardolillo, M.; Guarino, S.; Marzuillo, P.; Mangoni di SStefano, G.S.R.C.; Miraglia Del Giudice, E.; Di Sessa, A. Tangled relationship between insulin resistance and microalbuminuria in children with obesity. World J. Clin. Pediatr. 2022, 11, 455–462. [Google Scholar] [CrossRef]
- Gu, S.; Wang, A.; Ning, G.; Zhang, L.; Mu, Y. Insulin resistance is associated with urinary albumin-creatinine ratio in normal weight individuals with hypertension and diabetes: The REACTION study. J. Diabetes 2020, 12, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Capra, M.E.; Stanyevic, B.; Giudice, A.; Monopoli, D.; Decarolis, N.M.; Esposito, S.; Biasucci, G. The Effects of COVID-19 Pandemic and Lockdown on Pediatric Nutritional and Metabolic Diseases: A Narrative Review. Nutrients 2022, 15, 88. [Google Scholar] [CrossRef]
- Madjid, M.; Safavi-Naeini, P.; Solomon, S.D.; Vardeny, O. Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA Cardiol. 2020, 5, 831–840. [Google Scholar] [CrossRef] [Green Version]
- Auriemma, R.S.; Pirchio, R.; Liccardi, A.; Scairati, R.; Del Vecchio, G.; Pivonello, R.; Colao, A. Metabolic syndrome in the era of COVID-19 outbreak: Impact of lockdown on cardiometabolic health. J. Endocrinol. Invest. 2021, 44, 2845–2847. [Google Scholar] [CrossRef] [PubMed]
- Bérard, E.; Huo Yung Kai, S.; Coley, N.; Bongard, V.; Ferrières, J. One-Year Impact of COVID-19 Lockdown-Related Factors on Cardiovascular Risk and Mental Health: A Population-Based Cohort Study. Int. J. Environ. Res. Public Health 2022, 19, 1684. [Google Scholar] [CrossRef]
- López-González, Á.A.; Altisench Jané, B.; Masmiquel Comas, L.; Arroyo Bote, S.; González San Miguel, H.M.; Ramírez Manent, J.I. Impact of COVID-19 Lockdown on Non-Alcoholic Fatty Liver Disease and Insulin Resistance in Adults: A before and after Pandemic Lockdown Longitudinal Study. Nutrients 2022, 14, 2795. [Google Scholar] [CrossRef]
- Ojo, O.; Wang, X.H.; Ojo, O.O.; Orjih, E.; Pavithran, N.; Adegboye, A.R.A.; Feng, Q.Q.; McCrone, P. The Effects of COVID-19 Lockdown on Glycaemic Control and Lipid Profile in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 1095. [Google Scholar] [CrossRef] [PubMed]
- Welling, M.S.; Abawi, O.; van den Eynde, E.; van Rossum, E.F.C.; Halberstadt, J.; Brandsma, A.E.; Kleinendorst, L.; van den Akker, E.L.T.; van der Voorn, B. Impact of the COVID-19 Pandemic and Related Lockdown Measures on Lifestyle Behaviors and Well-Being in Children and Adolescents with Severe Obesity. Obes. Facts. 2022, 15, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Sforza, C. COVID-19 Lockdown, Sedentarism, Metabolic Alterations, Obesity: Can We Reverse the Domino Effect in Children? Children 2022, 9, 851. [Google Scholar] [CrossRef] [PubMed]
- Drozdz, D.; Alvarez-Pitti, J.; Wójcik, M.; Borghi, C.; Gabbianelli, R.; Mazur, A.; Herceg-Čavrak, V.; Lopez-Valcarcel, B.G.; Brzeziński, M.; Lurbe, E.; et al. Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients 2021, 13, 4176. [Google Scholar] [CrossRef]
- Marzuillo, P.; Grandone, A.; Perrone, L.; Miraglia Del Giudice, E. Controversy in the diagnosis of pediatric non-alcoholic fatty liver disease. World J. Gastroenterol. 2015, 21, 6444–6450. [Google Scholar] [CrossRef]
Patients with CKD at Baseline | Patients with CKD at Follow-Up | |||||
---|---|---|---|---|---|---|
No MAFLD (n = 14) | MAFLD (n = 7) | p-Value | No MAFLD (n = 14) | MAFLD (n = 7) | p-Value | |
BMI-SDS | 0.04 ± 1.06 | 0.25 ± 1.87 | 0.86 | 0.29 ± 1.08 | 1.17 ± 1.32 | 0.03 |
Sex (male), No. (%) | 8 (57.1) | 3 (42.8) | 0.81 | 9 (64.2%) | 4 (57.1%) | 0.68 |
Stage 1 CKD, No. (%) | 5 (35.7) | 2 (28.5) | 0.92 | 4 (28.5) | 1 (14.2) | 0.77 |
Stage 2 CKD, No. (%) | 9 (64.2) | 3 (42.9) | 0.87 | 10 (71.4) | 3 (42.8) | 0.49 |
Stage 3 CKD, No. (%) | 0 (0) | 1 (14.3) | 0.99 | 0 (0) | 2 (28.5%) | 0.99 |
Stage 4 CKD, No. (%) | 0 (0) | 1 (14.3) | 0.99 | 0 (0) | 1 (14.3) | 0.99 |
Stage 5 CKD, No (%) | 0 (0) | 0 (0) | 0.99 | 0 (0) | 0 (0) | 0.99 |
SBP-SDS | 0.09 ± 1.17 | 1.04 ± 1.20 | 0.51 | 0.92 ± 1.08 | 0.93 ± 0.93 | 0.96 |
DBP-SDS | 0.07 ± 0.54 | 0.24 ± 0.50 | 0.23 | 0.18 ± 0.75 | 1.03 ± 1.15 | 0.03 |
ALT, U/L, U/L | 18.91 ± 7.19 | 19.20 ± 4.38 | 0.76 | 21.84 ± 6.84 | 21.56 ± 8.32 | 0.87 |
AST, U/L | 20.61 ± 6.1121 | 23 ± 5.05 | 0.62 | 23.45 ± 4.96 | 24.20 ± 7.05 | 0.12 |
Phosphorus, mg/dL | 4.10 ± 0.62 | 4.36 ± 1.38 | 0.80 | 154.44 ± 34.08 | 162.63 ± 26.85 | 0.25 |
Total-Cholesterol, mg/dL | 159.18 ± 14.93 | 172.00 ± 21.32 | 0.34 | 158.58 ± 14.39 | 174.01 ± 20.12 | 0.25 |
Triglycerides, mg/dL | 91.76 ± 45.34 | 98.33 ± 42.18 | 0.04 | 78.01 ± 20.50 | 157.50 ± 15.78 | 0.03 |
Glycemia, mg/dL | 76.89 ± 8.83 | 81.03 ± 7.55 | 0.87 | 77.31 ± 5.91 | 82.11 ± 5.43 | 0.09 |
Uric acid, mg/dl | 5.18 ± 1.62 | 5.48 ± 1.17 | 0.73 | 5.50 ± 1.02 | 7.38 ± 0.84 | 0.01 |
Hemoglobin, g/dl | 13.44 ± 1.51 | 14.38 ± 1.31 | 0.12 | 13.33 ± 1.49 | 14.22 ± 1.31 | 0.16 |
White Blood Cells, ×103/µL | 6988.56 ± 3702.49 | 7412.42 ± 1177.96 | 0.74 | 6813.33 ± 936.52 | 9457.50 ± 2935.17 | 0.01 |
eGFR, mL/min/1.73 m2 | 92.08 ± 9.02 | 85.95 ± 17.55 | 0.33 | 91.55 ± 10.88 | 76.53 ± 17.22 | 0.03 |
Neutrophils, ×103/µL | 4037.50 ± 1487.39 | 3226.00 ± 921.07 | 0.28 | 3815.83 ± 880.77 | 5200.01 ± 1974.84 | 0.06 |
Platelets, ×103/µL | 251,636.36 ± 76,322.04 | 278,750.01 ± 101,032.58 | 0.68 | 25,625.00 ± 74,504.57 | 278,761.00 ± 101,042.65 | 0.63 |
Urea, mg/dl | 48.92 ± 12.46 | 44.60 ± 15.59 | 0.55 | 45.92 ± 11.62 | 53.17 ± 15.96 | 0.28 |
Ferritin, µg/L | 21.01 ± 4.24 | 30.01 ± 5.75 | 0.44 | 12.75 ± 10.46 | 40.67 ± 9.61 | 0.01 |
Parathormone, pg/mL | 21.51 ± 9.42 | 13.83 ± 8.27 | 0.25 | 26.11 ± 6.12 | 17.42 ± 13.06 | 0.12 |
Vitamin D, ng/mL | 29.20 ± 13.89 | 16.10 ± 1.97 | 0.27 | 26.43 ± 9.07 | 27.56 ± 16.55 | 0.87 |
Microalbuminuria, mg/L | 47.30 ± 90.87 | 207.60 ± 411.31 | 0.24 | 115.40 ± 145.28 | 374.67 ± 559.71 | 0.04 |
UPr/UCr, mg/mg | 0.27 ± 0.35 | 0.54 ± 0.81 | 0.40 | 0.31 ± 0.33 | 1.01 ± 1.27 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valentino, M.S.; Marzuillo, P.; Esposito, C.; Bartiromo, M.; Nardolillo, M.; Villani, A.V.; Maresca, A.; Furcolo, G.; Guarino, S.; Miraglia del Giudice, E.; et al. The Impact of COVID-19 Pandemic Lockdown on the Relationship between Pediatric MAFLD and Renal Function. J. Clin. Med. 2023, 12, 2037. https://doi.org/10.3390/jcm12052037
Valentino MS, Marzuillo P, Esposito C, Bartiromo M, Nardolillo M, Villani AV, Maresca A, Furcolo G, Guarino S, Miraglia del Giudice E, et al. The Impact of COVID-19 Pandemic Lockdown on the Relationship between Pediatric MAFLD and Renal Function. Journal of Clinical Medicine. 2023; 12(5):2037. https://doi.org/10.3390/jcm12052037
Chicago/Turabian StyleValentino, Maria Sole, Pierluigi Marzuillo, Claudia Esposito, Mario Bartiromo, Michele Nardolillo, Annalisa Valentina Villani, Alessandro Maresca, Giuseppe Furcolo, Stefano Guarino, Emanuele Miraglia del Giudice, and et al. 2023. "The Impact of COVID-19 Pandemic Lockdown on the Relationship between Pediatric MAFLD and Renal Function" Journal of Clinical Medicine 12, no. 5: 2037. https://doi.org/10.3390/jcm12052037
APA StyleValentino, M. S., Marzuillo, P., Esposito, C., Bartiromo, M., Nardolillo, M., Villani, A. V., Maresca, A., Furcolo, G., Guarino, S., Miraglia del Giudice, E., & Di Sessa, A. (2023). The Impact of COVID-19 Pandemic Lockdown on the Relationship between Pediatric MAFLD and Renal Function. Journal of Clinical Medicine, 12(5), 2037. https://doi.org/10.3390/jcm12052037