Stress during the COVID-19 Pandemic Moderates Pain Perception and Momentary Oxytocin Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Measurements
2.2.1. Subjective Ratings of Ecological Momentary Assessment in t1 and t2
2.2.2. Neuroendocrine Measures
2.3. Statistical Analyses
3. Results
3.1. Self-Reported Stress Levels as Predictors for Physical and Emotional Pain Intensity
3.2. Associations of Oxytocin Levels with the Intensity of Pain, and Its Interaction with Self-Reported Stress (t2)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mata, J.; Wenz, A.; Rettig, T.; Reifenscheid, M.; Möhring, K.; Krieger, U.; Friedel, S.; Fikel, M.; Cornesse, C.; Blom, A.G.; et al. Health behaviors and mental health during the COVID-19 pandemic: A longitudinal population-based survey in Germany. Soc. Sci. Med. 2021, 287, 114333. [Google Scholar] [CrossRef] [PubMed]
- Pierce, M.; Hope, H.; Ford, T.; Hatch, S.; Hotopf, M.; John, A.; Kontopantelis, E.; Webb, R.; Wessely, S.; McManus, S.; et al. Mental health before and during the COVID-19 pandemic: A longitudinal probability sample survey of the UK population. Lancet Psychiatry 2020, 7, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Fancourt, D.; Steptoe, A.; Bu, F. Trajectories of anxiety and depressive symptoms during enforced isolation due to COVID-19 in England: A longitudinal observational study. Lancet Psychiatry 2021, 8, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Rogowska, A.M.; Kuśnierz, C.; Pavlova, I.; Chilicka, K. A Path Model for Subjective Well-Being during the Second Wave of the COVID-19 Pandemic: A Comparative Study among Polish and Ukrainian University Students. J. Clin. Med. 2022, 11, 4726. [Google Scholar] [CrossRef]
- Nieto, R.; Pardo, R.; Sora, B.; Feliu-Soler, A.; Luciano, J. Impact of COVID-19 lockdown measures on Spanish people with chronic pain: An online study survey. J. Clin. Med. 2020, 9, 3558. [Google Scholar] [CrossRef]
- Yoshimoto, T.; Fujii, T.; Oka, H.; Kasahara, S.; Kawamata, K.; Matsudaira, K. Pain Status and Its Association with Physical Activity, Psychological Stress, and Telework among Japanese Workers with Pain during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 5595. [Google Scholar] [CrossRef]
- Lacasse, A.; Pagé, M.G.; Dassieu, L.; Sourial, N.; Janelle-Montcalm, A.; Dorais, M.; Nguefack, H.L.N.; Godbout-Parent, M.; Hudspith, M.; Moor, G.; et al. Impact of the COVID-19 pandemic on the pharmacological, physical, and psychological treatments of pain: Findings from the Chronic Pain & COVID-19 Pan-Canadian Study. Pain Rep. 2021, 6, e891. [Google Scholar]
- Lynch, M.E.; Williamson, O.D.; Banfield, J.C. COVID-19 impact and response by Canadian pain clinics: A national survey of adult pain clinics. Can. J. Pain 2020, 4, 204–209. [Google Scholar] [CrossRef]
- Ziadni, M.S.; You, D.S.; Cramer, E.M.; Anderson, S.R.; Hettie, G.; Darnall, B.D.; Mackey, S.C. The impact of COVID-19 on patients with chronic pain seeking care at a tertiary pain clinic. Sci. Rep. 2022, 12, 6435. [Google Scholar] [CrossRef]
- Eccleston, C.; Blyth, F.M.; Dear, B.F.; Fisher, E.A.; Keefe, F.J.; Lynch, M.E.; Palermo, T.M.; Reid, M.C.; Williams, A.C.D.C. Managing patients with chronic pain during the COVID-19 outbreak: Considerations for the rapid introduction of remotely supported (eHealth) pain management services. Pain 2020, 161, 889–893. [Google Scholar] [CrossRef]
- Crofford, L.J. Psychological aspects of chronic musculoskeletal pain. Best Pract. Res. Clin. Rheumatol. 2015, 29, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Abbod, M.; Shieh, J.-S. Pain and stress detection using wearable sensors and devices—A review. Sensors 2021, 21, 1030. [Google Scholar] [CrossRef]
- Li, Y.-X.; An, H.; Wen, Z.; Tao, Z.-Y.; Cao, D.-Y. Can oxytocin inhibit stress-induced hyperalgesia? Neuropeptides 2020, 79, 101996. [Google Scholar] [CrossRef]
- Ahmad, A.H.; Zakaria, R. Pain in times of stress. Malays. J. Med. Sci. MJMS 2015, 22, 52–61. [Google Scholar]
- Geva, N.; Golan, S.; Pinchas, L.; Defrin, R. Sex effects in the interaction of acute stress and pain perception. Pain 2022, 164, 587–597. [Google Scholar] [CrossRef]
- Mogil, J.S. Qualitative sex differences in pain processing: Emerging evidence of a biased literature. Nat. Rev. Neurosci. 2020, 21, 353–365. [Google Scholar] [CrossRef]
- Rhudy, J.L.; Meagher, M.W. Fear and anxiety: Divergent effects on human pain thresholds. Pain 2000, 84, 65–75. [Google Scholar] [CrossRef]
- Tossani, E. The concept of mental pain. Psychother. Psychosom. 2013, 82, 67–73. [Google Scholar] [CrossRef]
- Fava, G.A.; Tomba, E.; Brakemeier, E.-L.; Carrozzino, D.; Cosci, F.; Eöry, A.; Leonardi, T.; Schamong, I.; Guidi, J. Mental pain as a transdiagnostic patient-reported outcome measure. Psychother. Psychosom. 2019, 88, 341–349. [Google Scholar] [CrossRef]
- Sachs-Ericsson, N.J.; Sheffler, J.L.; Stanley, I.H.; Piazza, J.R.; Preacher, K.J. When emotional pain becomes physical: Adverse childhood experiences, pain, and the role of mood and anxiety disorders. J. Clin. Psychol. 2017, 73, 1403–1428. [Google Scholar] [CrossRef]
- Rash, J.A.; Aguirre-Camacho, A.; Campbell, T.S. Oxytocin and pain: A systematic review and synthesis of findings. Clin. J. Pain 2014, 30, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Boll, S.; Ueltzhoeffer, K.; Roth, C.; Bertsch, K.; Desch, S.; Nees, F.; Grinevich, V.; Herpertz, S.C. Pain-modulating effects of oxytocin in patients with chronic low back pain. Neuropharmacology 2020, 171, 108105. [Google Scholar] [CrossRef] [PubMed]
- Paloyelis, Y.; Krahe, C.; Maltezos, S.; Williams, S.C.; Howard, M.A.; Fotopoulou, A. The analgesic effect of oxytocin in humans: A double-blind, placebo-controlled cross-over study using laser-evoked potentials. J. Neuroendocrinol. 2016, 28, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zunhammer, M.; Sandra, G.; Volker, B.; Mark, W.G.; Peter, E. Effects of intranasal oxytocin on thermal pain in healthy men: A randomized functional magnetic resonance imaging study. Psychosom. Med. 2015, 77, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, A.-C.; Schroeder-Pfeifer, P.; Schneider, E.; Schick, M.; Heinrichs, M.; Bodenmann, G.; Ehlert, U.; Herpertz, S.C.; Läuchli, S.; Eckstein, M.; et al. Oxytocin and positive couple interaction affect the perception of wound pain in everyday life. Mol. Pain 2020, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kreuder, A.; Wassermann, L.; Wollseifer, M.; Ditzen, B.; Eckstein, M.; Stoffel-Wagner, B.; Hennig, J.; Hurlemann, R.; Scheele, D. Oxytocin enhances the pain-relieving effects of social support in romantic couples. Hum. Brain Mapp. 2019, 40, 242–251. [Google Scholar] [CrossRef] [Green Version]
- You, D.S.; Haney, R.; Albu, S.; Meagher, M.W. Generalized Pain Sensitization and Endogenous Oxytocin in Individuals With Symptoms of Migraine: A Cross-Sectional Study. Headache J. Head Face Pain 2017, 58, 62–77. [Google Scholar] [CrossRef]
- Alfvén, G. Plasma oxytocin in children with recurrent abdominal pain. J. Pediatr. Gastroenterol. Nutr. 2004, 38, 513–517. [Google Scholar] [CrossRef]
- Yang, J. Intrathecal administration of oxytocin induces analgesia in low back pain involving the endogenous opiate peptide system. Spine 1994, 19, 867–871. [Google Scholar] [CrossRef]
- Grewen, K.M.; Light, K.C.; Mechlin, B.; Girdler, S.S. Ethnicity is associated with alterations in oxytocin relationships to pain sensitivity in women. Ethn. Health 2008, 13, 219–241. [Google Scholar] [CrossRef] [Green Version]
- Brockington, G.; Moreira, A.P.G.; Buso, M.S.; Da Silva, S.G.; Altszyler, E.; Fischer, R.; Moll, J. Storytelling increases oxytocin and positive emotions and decreases cortisol and pain in hospitalized children. Proc. Natl. Acad. Sci. USA 2021, 118, e2018409118. [Google Scholar] [CrossRef]
- Filippa, M.; Monaci, M.G.; Spagnuolo, C.; Serravalle, P.; Daniele, R.; Grandjean, D. Maternal speech decreases pain scores and increases oxytocin levels in preterm infants during painful procedures. Sci. Rep. 2021, 11, 17301. [Google Scholar] [CrossRef]
- Hopf, D.; Schneider, E.; Aguilar-Raab, C.; Scheele, D.; Morr, M.; Klein, T.; Ditzen, B.; Eckstein, M. Loneliness and diurnal cortisol levels during COVID-19 lockdown: The roles of living situation, relationship status and relationship quality. Sci. Rep. 2022, 12, 15076. [Google Scholar] [CrossRef]
- Schneider, E.; Hopf, D.; Aguilar-Raab, C.; Scheele, D.; Neubauer, A.; Sailer, U.; Hurlemann, R.; Eckstein, M.; Eckstein, M.; Ditzen, B. Using Citizen Science During COVID-19 to Illuminate the Stress-Alleviating Effects of Daily Touch on Hormonal Biomarkers and Subjective Measures of Well-Being. Available online: https://ssrn.com/abstract=4068369 (accessed on 5 December 2022).
- Vinstrup, J.; Jakobsen, M.D.; Andersen, L.L. Perceived stress and low-back pain among healthcare workers: A multi-center prospective cohort study. Front. Public Health 2020, 8, 297. [Google Scholar] [CrossRef]
- Crettaz, B.; Marziniak, M.; Willeke, P.; Young, P.; Hellhammer, D.; Stumpf, A.; Burgmer, M. Stress-induced allodynia–evidence of increased pain sensitivity in healthy humans and patients with chronic pain after experimentally induced psychosocial stress. PLoS ONE 2013, 8, e69460. [Google Scholar] [CrossRef] [Green Version]
- Caceres, C.; Burns, J.W. Cardiovascular reactivity to psychological stress may enhance subsequent pain sensitivity. Pain 1997, 69, 237–244. [Google Scholar] [CrossRef]
- Anderberg, U.M.; Uvnäs-Moberg, K. Plasma oxytocin levels in female fibromyalgia syndrome patients. Z. Rheumatol. 2000, 59, 373–379. [Google Scholar] [CrossRef]
- Monteros-Zúñiga, A.E.D.L.; Martínez-Lorenzana, G.; Condés-Lara, M.; González-Hernández, A. Intrathecal oxytocin improves spontaneous behavior and reduces mechanical hypersensitivity in a rat model of postoperative pain. Front. Pharmacol. 2020, 11, 581544. [Google Scholar] [CrossRef]
- Eliava, M.; Melchior, M.; Knobloch-Bollmann, H.S.; Wahis, J.; Gouveia, M.D.S.; Tang, Y.; Ciobanu, A.C.; Del Rio, R.T.; Roth, L.C.; Althammer, F.; et al. A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron 2016, 89, 1291–1304. [Google Scholar] [CrossRef] [Green Version]
- Zelkowitz, P.; Gold, I.; Feeley, N.; Hayton, B.; Carter, C.S.; Tulandi, T.; Abenhaim, H.A.; Levin, P. Psychosocial stress moderates the relationships between oxytocin, perinatal depression, and maternal behavior. Horm. Behav. 2014, 66, 351–360. [Google Scholar] [CrossRef]
- Grinevich, V.; Neumann, I.D. Brain oxytocin: How puzzle stones from animal studies translate into psychiatry. Mol. Psychiatry 2021, 26, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Wotjak, C.; Ganster, J.; Kohl, G.; Holsboer, F.; Landgraf, R.; Engelmann, M. Dissociated central and peripheral release of vasopressin, but not oxytocin, in response to repeated swim stress: New insights into the secretory capacities of peptidergic neurons. Neuroscience 1998, 85, 1209–1222. [Google Scholar] [CrossRef] [PubMed]
Ecological Momentary Assessment in 2021 | ||||||
---|---|---|---|---|---|---|
t2 Men (n = 76) | t2 Women (n = 176) | t2 all (n = 254 *) | ||||
M | SD | M | SD | M | SD | |
Age (years) | 33.89 | 13.91 | 34.23 | 12.67 | 34.07 | 13.06 |
Oxytocin (pg/mL) a | 133.66 | 113.61 | 135.27 | 117.31 | 135.437 | 116.95 |
Stress levels b | 32.84 | 18.04 | 39.26 | 19.13 | 37.46 | 18.93 |
Physical pain intensity b | 1.42 | 0.49 | 1.73 | 0.82 | 1.64 | 0.76 |
Emotional pain intensity b | 1.71 | 0.66 | 1.88 | 1 | 1.85 | 0.92 |
Repeated Measures of Ecological Momentary Assessment | ||||||
t1 (n = 196) | t2 (n = 196) | |||||
M | SD | M | SD | |||
Age (years) | 32.72 | 12.94 | 33.86 | 13.05 | ||
Oxytocin (pg/mL) a | 160.02 | 117.56 | 130.05 | 114.24 | ||
Stress levels b | 33.00 | 17.13 | 36.78 | 19.46 | ||
Physical pain intensity b | 1.66 | 0.79 | ||||
Emotional pain intensity b | 1.87 | 0.92 |
(A) Physical Pain Intensity | ||||
Effects | Stress(t2) → Physical Pain (t2) | Stress(t1) → Physical Pain (t2) | Physical Pain (t2) → Oxytocin (t2) | Physical Pain (t2) × Stress(t2) → Oxytocin (t2) |
Fixed Effects | ||||
Intercept | 2.057 (0.427); p < 0.001 | 1.207 (0.310); p < 0.001 | 4.986 (0.374); p < 0.001 | 4.777 (0.788); p < 0.001 |
Stress (t2) a | 0.004 (0.004); p = 0.319 | --- | --- | −0.010 (0.003); p = 0.003 |
Physical pain b | --- | --- | −0.105 (0.056); p = 0.064 | −0.049 (0.090); p = 0.593 |
Stress (t2) x Physical pain (t2) | --- | --- | --- | −0.011 (0.004); p = 0.040 |
Between-person | ||||
Stress (t1) a | --- | 0.009 (0.004); p = 0.045 | --- | --- |
Stress (t2) a | 0.017 (0.005); p = 0.001 | --- | --- | −0.002 (0.004); p = 0.703 |
Physical pain (t2) b | --- | --- | −0.056 (0.087); p = 0.524 | −0.030 (0.122); p = 0.804 |
Stress (t2) x Physical pain (t2) | --- | --- | --- | −0.000 (0.004); p = 0.982 |
Covariates | ||||
Age (t2) | 0.009 (0.007); p = 0.242 | 0.013 (0.006); p = 0.043 | −0.008 (0.005); p = 0.124 | −0.019 (0.007); p = 0.004 |
Sex c | 0.190 (0.231); p = 0.413 | 0.334 (0.182); p = 0.069 | 0.067 (0.153); p = 0.662 | 0.052 (0.201); p = 0.798 |
Partner (t2) d | −0.315 (0.239); p = 0.191 | −0.268 (0.191); p = 0.164 | 0.143 (0.165); p = 0.387 | 0.481 (0.217); p = 0.029 |
Time point (t2) e | −0.053 (0.021); p = 0.014 | −0.002 (0.014); p = 0.895 | −0.013 (0.012); p = 0.267 | −0.003 (0.017); p = 0.837 |
Body Mass Index (t2) | --- | --- | −0.003 (0.012); p = 0.801 | −0.010 (0.016); p = 0.532 |
Eating (t2) f | --- | --- | 0.197 (0.206); p = 0.341 | 0.197 (0.301); p = 0.519 |
Drinking (t2) f | --- | --- | −0.167 (0.221); p = 0.452 | 0.254 (0.614); p = 0.682 |
Coffein (t2) f | --- | --- | −0.345 (0.154); p = 0.027 | −0.319 (0.178); p = 0.082 |
Alcohol (t2) f | --- | --- | −0.144 (0.157); p = 0.362 | −0.032 (0.169); p = 0.848 |
Cigarettes (t2) f | --- | --- | −0.166 (0.190); p = 0.385 | 0.167 (0.262); p = 0.526 |
Physical activity (t2) f | --- | --- | 0.075 (0.117); p = 0.522 | 0.025 (0.137); p = 0.857 |
Brushing teeth (t2) f | --- | --- | 0.144 (0.119); p = 0.230 | 0.042 (0.131); p = 0.751 |
Medication (t2) f | --- | --- | −0.103 (0.153); p = 0.502 | 0.116 (0.197); p = 0.560 |
Random effects (SD) | ||||
Intercept | 0.76 | 0.585 | 0.636 | 0.691 |
Residual | 0.706 | 0.774 | 0.545 | 0.439 |
(B) Emotional Pain Intensity | ||||
Effects | Stress(t2) → Emotional Pain (t2) | Stress(t1) → Emotional Pain (t2) | Emotional Pain (t2) → Oxytocin (t2) | Emotional Pain (t2) × Stress (t2) → Oxytocin (t2) |
Fixed Effects | ||||
Intercept | 1.625 (0.360); p < 0.001 | 1.378 (0.308); p < 0.001 | 5.235 (0.318); p < 0.001 | 5.244 (0.583); p < 0.001 |
Stress (t2) a | 0.014(0.004); p < 0.001 | --- | --- | −0.002 (0.003); p = 0.474 |
Emotional pain b | --- | --- | −0.120 (0.048); p = 0.014 | −0.151 (0.077); p = 0.058 |
Stress (t2) x Emotional pain (t2) | --- | --- | --- | −0.004 (0.003); p = 0.164 |
Between-person | ||||
Stress (t1) a | --- | 0.009 (0.005); p = 0.066 | --- | --- |
Stress (t2) a | 0.026 (0.005); p < 0.001 | --- | --- | 0.001 (0.004); p = 0.834 |
Emotional pain (t2) b | --- | --- | −0.022 (0.060); p = 0.715 | −0.065 (0.094); p = 0.491 |
Stress (t2) x Emotional pain (t2) | --- | --- | --- | 0.002 (0.003); p = 0.579 |
Covariates | ||||
Age (t2) | 0.014 (0.007); p = 0.042 | 0.005 (0.007); p = 0.426 | −0.009 (0.004); p = 0.050 | −0.017 (0.006); p = 0.002 |
Sex c | 0.092 (0.197); p = 0.413 | 0.186 (0.198); p = 0.352 | 0.018 (0.123); p = 0.882 | −0.029 (0.150); p = 0.849 |
Partner (t2) d | −0.315 (0.239); p = 0.641 | 0.034 (0.196); p = 0.864 | 0.210 (0.123); p = 0.091 | 0.342 (0.155); p = 0.033 |
Time point (t2) e | −0.034 (0.022); p = 0.129 | 0.016 (0.016); p = 0.303 | −0.017 (0.011); p = 0.120 | −0.004 (0.015); p = 0.780 |
Body Mass Index (t2) | --- | --- | −0.014 (0.011); p = 0.214 | −0.021 (0.014); p = 0.140 |
Eating (t2) f | --- | --- | 0.462 (0.167); p = 0.006 | 0.250 (0.205); p = 0.228 |
Drinking (t2) f | --- | --- | −0.467 (0.189); p = 0.015 | −0.053(0.417); p = 0.900 |
Coffein (t2) f | --- | --- | −0.208 (0.127); p = 0.105 | −0.179 (0.137); p = 0.200 |
Alcohol (t2) f | --- | --- | −0.158 (0.124); p = 0.204 | −0.131 (0.142); p = 0.362 |
Cigarettes (t2) f | --- | --- | −0.019 (0.146); p = 0.898 | 0.266 (0.189); p = 0.166 |
Physical activity (t2) f | --- | --- | 0.059 (0.103); p = 0.566 | 0.054 (0.118); p = 0.651 |
Brushing teeth (t2) f | --- | --- | 0.173 (0.100); p = 0.085 | 0.127 (0.113); p = 0.268 |
Medication (t2) f | --- | --- | −0.2093 (0.138); p = 0.132 | 0.412 (0.161); p = 0.014 |
Random effects (SD) | ||||
Intercept | 0.683 | 0.658 | 0.504 | 0.6 |
Residual | 0.859 | 0.919 | 0.522 | 0.454 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneider, E.; Hopf, D.; Eckstein, M.; Scheele, D.; Aguilar-Raab, C.; Herpertz, S.C.; Grinevich, V.; Ditzen, B. Stress during the COVID-19 Pandemic Moderates Pain Perception and Momentary Oxytocin Levels. J. Clin. Med. 2023, 12, 2333. https://doi.org/10.3390/jcm12062333
Schneider E, Hopf D, Eckstein M, Scheele D, Aguilar-Raab C, Herpertz SC, Grinevich V, Ditzen B. Stress during the COVID-19 Pandemic Moderates Pain Perception and Momentary Oxytocin Levels. Journal of Clinical Medicine. 2023; 12(6):2333. https://doi.org/10.3390/jcm12062333
Chicago/Turabian StyleSchneider, Ekaterina, Dora Hopf, Monika Eckstein, Dirk Scheele, Corina Aguilar-Raab, Sabine C. Herpertz, Valery Grinevich, and Beate Ditzen. 2023. "Stress during the COVID-19 Pandemic Moderates Pain Perception and Momentary Oxytocin Levels" Journal of Clinical Medicine 12, no. 6: 2333. https://doi.org/10.3390/jcm12062333
APA StyleSchneider, E., Hopf, D., Eckstein, M., Scheele, D., Aguilar-Raab, C., Herpertz, S. C., Grinevich, V., & Ditzen, B. (2023). Stress during the COVID-19 Pandemic Moderates Pain Perception and Momentary Oxytocin Levels. Journal of Clinical Medicine, 12(6), 2333. https://doi.org/10.3390/jcm12062333