Macular Anatomy Differs in Dyslexic Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment
2.2. Ophthalmic Examinations
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association (Ed.) Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013; ISBN 9780890425541. [Google Scholar]
- Soriano-Ferrer, M.; Piedra Martínez, E. A Review of the Neurobiological Basis of Dyslexia in the Adult Population. Neurologia 2017, 32, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Stein, J. What Is Developmental Dyslexia? Brain Sci. 2018, 8, E26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werth, R. Is Developmental Dyslexia Due to a Visual and Not a Phonological Impairment? Brain Sci. 2021, 11, 1313. [Google Scholar] [CrossRef]
- Wandell, B.A.; Le, R.K. Diagnosing the Neural Circuitry of Reading. Neuron 2017, 96, 298–311. [Google Scholar] [CrossRef] [Green Version]
- Shaywitz, S.E.; Shaywitz, J.E.; Shaywitz, B.A. Dyslexia in the 21st Century. Curr. Opin. Psychiatry 2021, 34, 80–86. [Google Scholar] [CrossRef]
- Perdue, M.V.; Mahaffy, K.; Vlahcevic, K.; Wolfman, E.; Erbeli, F.; Richlan, F.; Landi, N. Reading Intervention and Neuroplasticity: A Systematic Review and Meta-Analysis of Brain Changes Associated with Reading Intervention. Neurosci. Biobehav. 2022, 132, 465–494. [Google Scholar] [CrossRef]
- Braid, J.; Richlan, F. The Functional Neuroanatomy of Reading Intervention. Front. Neurosci. 2022, 16, 921931. [Google Scholar] [CrossRef] [PubMed]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Hall, W.C.; LaMantia, A.-S.; Mooney, R.D.; Platt, M.L.; White, L.E. (Eds.) Neuroscience, 6th ed.; Oxford University Press: New York, NY, USA, 2018; ISBN 9781605353807. [Google Scholar]
- Bringmann, A.; Wiedemann, P. The Fovea: Structure, Function, Development, and Tractional Disorders, 1st ed.; Elsevier: Waltham, MA, USA, 2021; ISBN 9780323904674. [Google Scholar]
- Vajzovic, L.; Hendrickson, A.E.; O’Connell, R.V.; Clark, L.A.; Tran-Viet, D.; Possin, D.; Chiu, S.J.; Farsiu, S.; Toth, C.A. Maturation of the Human Fovea: Correlation of Spectral-Domain Optical Coherence Tomography Findings with Histology. Am. J. Ophthalmol. 2012, 154, 779–789.e2. [Google Scholar] [CrossRef] [Green Version]
- Vujosevic, S.; Parra, M.M.; Hartnett, M.E.; O’Toole, L.; Nuzzi, A.; Limoli, C.; Villani, E.; Nucci, P. Optical Coherence Tomography as Retinal Imaging Biomarker of Neuroinflammation/Neurodegeneration in Systemic Disorders in Adults and Children. Eye 2023, 37, 203–219. [Google Scholar] [CrossRef]
- Xie, J.S.; Donaldson, L.; Margolin, E. The Use of Optical Coherence Tomography in Neurology: A Review. Brain 2022, 145, 4160–4177. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, G.R.; Kosmorsky, G.S. The Neurophysiology of Reading. Int. Ophthalmol. Clin. 1989, 29, 16–19. [Google Scholar] [CrossRef]
- Garcia-Medina, J.J.; del-Rio-Vellosillo, M.; Palazón-Cabanes, A.; Tudela-Molino, M.; Gómez-Molina, C.; Guardiola-Fernández, A.; Villegas-Pérez, M.P. Mapping the thickness changes on retinal layers segmented by spectral-domain optical coherence tomography using the posterior pole program in glaucoma. Arch. Soc. Esp. Oftalmol. 2018, 93, 263–273. [Google Scholar] [CrossRef]
- Garcia-Medina, J.J.; Del-Rio-Vellosillo, M.; Palazon-Cabanes, A.; Pinazo-Duran, M.D.; Zanon-Moreno, V.; Villegas-Perez, M.P. Glaucomatous Maculopathy: Thickness Differences on Inner and Outer Macular Layers between Ocular Hypertension and Early Primary Open-Angle Glaucoma Using 8 × 8 Posterior Pole Algorithm of SD-OCT. J. Clin. Med. 2020, 9, E1503. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Medina, J.J.; Rotolo, M.; Rubio-Velazquez, E.; Pinazo-Duran, M.D.; Del-Rio-Vellosillo, M. Macular Structure-Function Relationships of All Retinal Layers in Primary Open-Angle Glaucoma Assessed by Microperimetry and 8 × 8 Posterior Pole Analysis of OCT. J. Clin. Med. 2021, 10, 5009. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Medina, J.J.; García-Piñero, M.; Del-Río-Vellosillo, M.; Fares-Valdivia, J.; Ragel-Hernández, A.B.; Martínez-Saura, S.; Cárcel-López, M.D.; Zanon-Moreno, V.; Pinazo-Duran, M.D.; Villegas-Pérez, M.P. Comparison of Foveal, Macular, and Peripapillary Intraretinal Thicknesses Between Autism Spectrum Disorder and Neurotypical Subjects. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5819–5826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curcio, C.A.; Sloan, K.R.; Kalina, R.E.; Hendrickson, A.E. Human Photoreceptor Topography. J. Comp. Neurol. 1990, 292, 497–523. [Google Scholar] [CrossRef]
- Hussey, K.A.; Hadyniak, S.E.; Johnston, R.J. Patterning and Development of Photoreceptors in the Human Retina. Front. Cell Dev. Biol. 2022, 10, 878350. [Google Scholar] [CrossRef]
- Rothman, K.J. No Adjustments Are Needed for Multiple Comparisons. Epidemiology 1990, 1, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Sjöstrand, J.; Rosén, R.; Nilsson, M.; Popovic, Z. Arrested Foveal Development in Preterm Eyes: Thickening of the Outer Nuclear Layer and Structural Redistribution Within the Fovea. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4948. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, R.M.; Legrand, L.N.; Iacono, W.G.; McGue, M. A Twin and Adoption Study of Reading Achievement: Exploration of Shared-Environmental and Gene-Environment-Interaction Effects. Learn. Individ. Differ. 2011, 21, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Astrom, R.L.; Wadsworth, S.J.; Olson, R.K.; Willcutt, E.G.; DeFries, J.C. Genetic and Environmental Etiologies of Reading Difficulties: DeFries–Fulker Analysis of Reading Performance Data from Twin Pairs and Their Non-Twin Siblings. Learn. Individ. Differ. 2012, 22, 365–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erbeli, F.; Rice, M.; Paracchini, S. Insights into Dyslexia Genetics Research from the Last Two Decades. Brain Sci. 2021, 12, 27. [Google Scholar] [CrossRef] [PubMed]
- Massinen, S.; Hokkanen, M.-E.; Matsson, H.; Tammimies, K.; Tapia-Páez, I.; Dahlström-Heuser, V.; Kuja-Panula, J.; Burghoorn, J.; Jeppsson, K.E.; Swoboda, P.; et al. Increased Expression of the Dyslexia Candidate Gene DCDC2 Affects Length and Signaling of Primary Cilia in Neurons. PLoS ONE 2011, 6, e20580. [Google Scholar] [CrossRef] [Green Version]
- Tarkar, A.; Loges, N.T.; Slagle, C.E.; Francis, R.; Dougherty, G.W.; Tamayo, J.V.; Shook, B.; Cantino, M.; Schwartz, D.; Jahnke, C.; et al. DYX1C1 Is Required for Axonemal Dynein Assembly and Ciliary Motility. Nat. Genet. 2013, 45, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Diaz, R.; Kronenberg, N.M.; Martinelli, A.; Liehm, P.; Riches, A.C.; Gather, M.C.; Paracchini, S. KIAA0319 Influences Cilia Length, Cell Migration and Mechanical Cell-Substrate Interaction. Sci. Rep. 2022, 12, 722. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.; Khalaf, S.; Grigorenko, E.L. A Systematic Review and Meta-Analysis of Imaging Genetics Studies of Specific Reading Disorder. Cogn. Neuropsychol. 2021, 38, 179–204. [Google Scholar] [CrossRef]
- Larson, A.M.; Loschky, L.C. The Contributions of Central versus Peripheral Vision to Scene Gist Recognition. J. Vis. 2009, 9, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loschky, L.C.; Szaffarczyk, S.; Beugnet, C.; Young, M.E.; Boucart, M. The Contributions of Central and Peripheral Vision to Scene-Gist Recognition with a 180° Visual Field. J. Vis. 2019, 19, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schotter, E.R.; Angele, B.; Rayner, K. Parafoveal Processing in Reading. Atten. Percept. Psychophys. 2012, 74, 5–35. [Google Scholar] [CrossRef]
- Pan, Y.; Frisson, S.; Jensen, O. Neural Evidence for Lexical Parafoveal Processing. Nat. Commun. 2021, 12, 5234. [Google Scholar] [CrossRef]
- Bouma, H.; Legein, C.P. Foveal and Parafoveal Recognition of Letters and Words by Dyslexics and by Average Readers. Neuropsychologia 1977, 15, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Geiger, G.; Lettvin, J.Y. Peripheral Vision in Persons with Dyslexia. N. Engl. J. Med. 1987, 316, 1238–1243. [Google Scholar] [CrossRef]
- Geiger, G.; Cattaneo, C.; Galli, R.; Pozzoli, U.; Lorusso, M.L.; Facoetti, A.; Molteni, M. Wide and Diffuse Perceptual Modes Characterize Dyslexics in Vision and Audition. Perception 2008, 37, 1745–1764. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.W.; Ashby, J.; Branigan, H.P. Dyslexia and Fluency: Parafoveal and Foveal Influences on Rapid Automatized Naming. J. Exp. Psychol. Hum. Percept. Perform. 2013, 39, 554–567. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Pan, J.; Laubrock, J.; Kliegl, R.; Shu, H. Parafoveal Processing Efficiency in Rapid Automatized Naming: A Comparison between Chinese Normal and Dyslexic Children. J. Exp. Child Psychol. 2013, 115, 579–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, S.; Faísca, L.; Araújo, S.; Casaca, L.; Carvalho, L.; Petersson, K.M.; Reis, A. Too Little or Too Much? Parafoveal Preview Benefits and Parafoveal Load Costs in Dyslexic Adults. Ann. Dyslexia 2016, 66, 187–201. [Google Scholar] [CrossRef]
- Kirkby, J.A.; Barrington, R.S.; Drieghe, D.; Liversedge, S.P. Parafoveal Processing and Transposed-Letter Effects in Dyslexic Reading. Dyslexia 2022, 28, 359–374. [Google Scholar] [CrossRef]
- Morris, H.J.; Blanco, L.; Codona, J.L.; Li, S.L.; Choi, S.S.; Doble, N. Directionality of Individual Cone Photoreceptors in the Parafoveal Region. Vis. Res. 2015, 117, 67–80. [Google Scholar] [CrossRef]
- Tschulakow, A.V.; Oltrup, T.; Bende, T.; Schmelzle, S.; Schraermeyer, U. The Anatomy of the Foveola Reinvestigated. PeerJ 2018, 6, e4482. [Google Scholar] [CrossRef]
- Campbell, J.P.; Zhang, M.; Hwang, T.S.; Bailey, S.T.; Wilson, D.J.; Jia, Y.; Huang, D. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography. Sci. Rep. 2017, 7, 42201. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.K. Recent Update on Reading Disability (Dyslexia) Focused on Neurobiology. Clin. Exp. Pediatr. 2021, 64, 497–503. [Google Scholar] [CrossRef] [PubMed]
Thickness of the Inner ETDRS Ring Subfield (Parafovea) Comparisons between Normal Controls and Dyslexic Subjects | |||||||||
---|---|---|---|---|---|---|---|---|---|
Right Eyes (24 vs. 21) | Left Eyes (25 vs. 19) | ||||||||
Group | Mean | Std. Dev. | Mean Dif. | p (UTT) | Mean | Std. Dev. | Mean Dif. | p (UTT) | |
Complete retina | Control | 330.63 | 10.25 | −8.16 | 0.011 | 330.33 | 10.36 | −7.93 | 0.019 |
Dyslexia | 338.79 | 10.32 | 338.26 | 11.04 | |||||
Inner retina | Control | 251.08 | 8.72 | −8.49 | 0.004 | 250.50 | 9.11 | −8.82 | 0.006 |
Dyslexia | 259.57 | 10.07 | 259.32 | 10.98 | |||||
Outer retina | Control | 79.48 | 2.12 | 0.30 | 0.599 | 79.87 | 2.46 | 0.94 | 0.176 |
Dyslexia | 79.18 | 1.60 | 78.93 | 1.89 | |||||
GCC | Control | 114.38 | 5.52 | 0.58 | 0.777 | 113.29 | 4.60 | −1.89 | 0.278 |
Dyslexia | 113.80 | 7.97 | 115.18 | 6.82 | |||||
INL + OPL + ONL | Control | 137.31 | 6.73 | −8.46 | 0.0002 | 137.38 | 6.51 | −6.87 | 0.003 |
Dyslexia | 145.77 | 7.67 | 144.25 | 7.70 | |||||
ONNL | Control | 98.19 | 5.73 | −6.66 | 0.001 | 98.45 | 5.63 | −5.18 | 0.010 |
Dyslexia | 104.85 | 6.94 | 103.63 | 7.07 | |||||
IPL + INL | Control | 80.28 | 3.70 | −2.55 | 0.036 | 80.14 | 3.86 | −3.24 | 0.009 |
Dyslexia | 82.83 | 4.22 | 83.38 | 3.92 | |||||
RNFL | Control | 21.01 | 2.59 | 0.99 | 0.142 | 20.24 | 1.33 | 0.17 | 0.681 |
Dyslexia | 20.02 | 1.66 | 20.07 | 1.45 | |||||
GCL | Control | 52.21 | 2.71 | 0.34 | 0.758 | 51.84 | 2.67 | −0.52 | 0.595 |
Dyslexia | 51.87 | 4.33 | 52.36 | 3.71 | |||||
IPL | Control | 41.16 | 1.67 | −0.74 | 0.310 | 41.21 | 1.76 | −1.55 | 0.015 |
Dyslexia | 41.90 | 2.93 | 42.76 | 2.31 | |||||
INL | Control | 39.13 | 2.61 | −1.80 | 0.020 | 38.93 | 2.62 | −1.69 | 0.025 |
Dyslexia | 40.93 | 2.34 | 40.62 | 2.05 |
Thickness of the Outer ETDRS Ring Subfield (Perifovea) Comparisons between Normal Controls and Dyslexic Subjects | |||||||||
---|---|---|---|---|---|---|---|---|---|
Right Eyes (24 vs. 21) | Left Eyes (25 vs. 19) | ||||||||
Group | Mean | Std. Dev. | Mean Dif. | p (UTT) | Mean | Std. Dev. | Mean Dif. | p (UTT) | |
Complete retina | Control | 294.82 | 12.43 | −4.66 | 0.256 | 294.38 | 10.64 | −4.57 | 0.218 |
Dyslexia | 299.48 | 14.67 | 298.95 | 13.62 | |||||
Inner retina | Control | 217.85 | 11.48 | −4.35 | 0.271 | 217.14 | 9.97 | −4.91 | 0.173 |
Dyslexia | 222.20 | 14.62 | 222.05 | 13.54 | |||||
Outer retina | Control | 76.91 | 1.73 | −0.42 | 0.380 | 77.20 | 1.67 | 0.29 | 0.564 |
Dyslexia | 77.33 | 1.46 | 76.91 | 1.62 | |||||
GCC | Control | 100.31 | 6.96 | −0.58 | 0.808 | 100.31 | 6.96 | −0.58 | 0.804 |
Dyslexia | 100.89 | 8.60 | 100.89 | 8.60 | |||||
INL + OPL + ONL | Control | 117.07 | 5.84 | −4.58 | 0.020 | 117.30 | 5.81 | −3.81 | 0.057 |
Dyslexia | 121.65 | 6.90 | 121.11 | 7.06 | |||||
ONP + ONL | Control | 83.07 | 5.03 | −3.31 | 0.051 | 83.27 | 4.97 | −2.93 | 0.083 |
Dyslexia | 86.38 | 6.02 | 86.20 | 5.96 | |||||
IPL + INL | Control | 63.64 | 3.42 | −1.82 | 0.132 | 63.66 | 3.60 | −1.71 | 0.165 |
Dyslexia | 65.46 | 4.55 | 65.37 | 4.41 | |||||
RNFL | Control | 34.81 | 5.25 | 1.30 | 0.331 | 33.79 | 3.99 | 0.41 | 0.718 |
Dyslexia | 33.51 | 3.23 | 33.38 | 3.24 | |||||
GCL | Control | 36.98 | 2.95 | 0.06 | 0.956 | 36.89 | 2.75 | −0.16 | 0.871 |
Dyslexia | 36.92 | 4.38 | 37.05 | 3.87 | |||||
IPL | Control | 29.64 | 1.97 | −0.55 | 0.471 | 29.63 | 1.71 | −0.83 | 0.258 |
Dyslexia | 30.19 | 2.97 | 30.46 | 2.75 | |||||
INL | Control | 34.00 | 1.76 | −1.27 | 0.020 | 34.03 | 2.23 | −0.88 | 0.171 |
Dyslexia | 35.27 | 1.78 | 34.91 | 1.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Medina, J.J.; Bascuñana-Mas, N.; Sobrado-Calvo, P.; Gomez-Molina, C.; Rubio-Velazquez, E.; De-Paco-Matallana, M.; Zanon-Moreno, V.; Pinazo-Duran, M.D.; Del-Rio-Vellosillo, M. Macular Anatomy Differs in Dyslexic Subjects. J. Clin. Med. 2023, 12, 2356. https://doi.org/10.3390/jcm12062356
Garcia-Medina JJ, Bascuñana-Mas N, Sobrado-Calvo P, Gomez-Molina C, Rubio-Velazquez E, De-Paco-Matallana M, Zanon-Moreno V, Pinazo-Duran MD, Del-Rio-Vellosillo M. Macular Anatomy Differs in Dyslexic Subjects. Journal of Clinical Medicine. 2023; 12(6):2356. https://doi.org/10.3390/jcm12062356
Chicago/Turabian StyleGarcia-Medina, Jose Javier, Nieves Bascuñana-Mas, Paloma Sobrado-Calvo, Celia Gomez-Molina, Elena Rubio-Velazquez, Maravillas De-Paco-Matallana, Vicente Zanon-Moreno, Maria Dolores Pinazo-Duran, and Monica Del-Rio-Vellosillo. 2023. "Macular Anatomy Differs in Dyslexic Subjects" Journal of Clinical Medicine 12, no. 6: 2356. https://doi.org/10.3390/jcm12062356
APA StyleGarcia-Medina, J. J., Bascuñana-Mas, N., Sobrado-Calvo, P., Gomez-Molina, C., Rubio-Velazquez, E., De-Paco-Matallana, M., Zanon-Moreno, V., Pinazo-Duran, M. D., & Del-Rio-Vellosillo, M. (2023). Macular Anatomy Differs in Dyslexic Subjects. Journal of Clinical Medicine, 12(6), 2356. https://doi.org/10.3390/jcm12062356