Optimizing Adjuvant Therapy after Surgery for Colorectal Cancer Liver Metastases: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Study Selection and Data Abstraction
2.4. Risk of Bias Assessment
3. Results
3.1. Selection of Studies
3.2. Patients Characteristics
3.3. Survival Outcomes
3.3.1. Post-Metastasectomy Adjuvant Systemic Chemotherapy
3.3.2. Post-Metastasectomy Adjuvant Hepatic Artery Infusion Chemotherapy
3.4. Side Effects
3.4.1. Post-Metastasectomy Adjuvant Systemic Chemotherapy
3.4.2. Post-Metastasectomy Adjuvant Hepatic Artery Infusion Chemotherapy
3.5. Risk of Bias Assessment
- One non-randomized clinical study in which the risk of bias was judged as serious [50] (Appendix A Table A2).
4. Discussion
Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Risk of Bias Assessment
Study | Randomization Process | Deviation from Intended Interventions | Missing Outcome Data | Measurement of Outcome | Selection of Reported Result | Overall |
---|---|---|---|---|---|---|
Kokudo et al., 2021 [34] | 1.2 Y, 1.1 Y, 1.3 N LR | Part1: 2.1/2.2 Y, 2.3 PY, 2.4 PN SC Part2: 2.6Y LR | 3.1 Y LR | 4.1 N, 4.2 N, 4.3 Y, 4.4 PN LR | 5.2/5.3 N 5.1 Y LR | SC |
Kanemitsu et al., 2021 [33] | 1.2 Y, 1.1 Y/PY, 1.3 N/PN LR | Part1: 2.1/2.2 Y, 2.3 PY, 2.4 PN SC Part2: 2.6Y LR | 3.1 Y LR | 4.1 N, 4.2 N, 4.3 Y, 4.4 PN LR | 5.2/5.3 N 5.1 Y LR | SC |
Kemeny et al., 2011 [43] | 1.2 NI, 1.3 PN SC | Part1: 2.1/2.2 NI, 2.3 N LR Part2: 2.6 Y LR | 3.1 Y LR | 4.1 N, 4.2 N, 4.3 Y, 4.4 PN LR | 5.2/5.3 N 5.1 Y LR | SC |
Ychou et al., 2009 [46] | 1.2 NI, 1.3 PN SC | Part1: 2.1/2.2 Y, 2.3 PY, 2.4 PN SC Part2: 2.6N, 2.7 PN SC | 3.1 Y LR | 4.1 N, 4.2 N, 4.3 Y, 4.4 PN LR | 5.2/5.3 N 5.1 Y LR | HR |
Portier et al., 2006 [48] | 1.2 NI, 1.3 PN SC | Part1: 2.1/2.2 Y, 2.3 PY, 2.4 PN SC Part2: 2.6Y LR | 3.1 Y LR | 4.1 PY HR | 5.2/5.3 N 5.1 Y LR | HR |
Kemeny et al., 2002 [56] | 1.2 NI, 1.3 PN SC | Part1: 2.1/2.2 Y, 2.3 Y, 2.4 PN SC Part2: 2.6 N, 2.7 PY HR | 3.1 Y LR | 4.1 NI, 4.2 N, 4.3 Y, 4.4 PN LR | 5.2/5.3 N 5.1 Y LR | HR |
Tono et al., 2000 [57] | 1.2 Y, 1.1 Y, 1.3 N LR | Part1: 2.1/2.2 Y, 2.3 N LR Part2: 2.6 PY LR | 3.1 Y LR | 4.1 N, 4.2 N, 4.3 Y, 4.4 PN LR | 5.2/5.3 N 5.1 Y LR | LR |
Kemeny et al., 1999 [58] | 1.2 NI, 1.3 PN SC | Part1: 2.1/2.2 Y, 2.3 Y, 2.4 NI, 2.5 NI HR Part2: 2.6 Y, 2.7 PY HR | 3.1 Y LR | 4.1 N, 4.2 N, 4.3 Y, 4.4 PN LR | 5.2/5.3 N 5.1 Y LR | HR |
Rudroff et al., 1998 [59] ¹ | 1.2 NI, 1.3 PN SC | Part1: 2.1/2.2 Y, 2.3 PN LR Part2: 2.6 PY LR | 3.1 Y LR | 4.1 NI, 4.2 Y HR | 5.2/5.3 N 5.1 Y LR | HR |
Lorenz et al., 1998 [60] | 1.2 Y, 1.1 NI, 1.3 PN LR | Part1: 2.1/2.2 Y, 2.3 PY, 2.4 PN SC Part2: 2.6Y LR | 3.1 Y LR | 4.1 N, 4.2 N, 4.3 Y, 4.4 PN LR | 5.2/5.3 N 5.1 Y LR | SC |
Study | Confounding | Selection of Participants | Classifications of Interventions | Deviations from Intended Intervention | Missing Data | Measurement of Outcomes | Selection of Reported Result |
---|---|---|---|---|---|---|---|
Gardini et al. [50] | 1.1 Y/1.2 N/1.4 N/1.6 N/1.7 N | 2.1 Y/2.2 Y/2.3 PN | 3.1 Y/3.2 Y/3.3 PN | 4.1 Y/4.2 Y/4.3 NI/4.4 N/4.5 PY/4.6 N | 5.1 Y/5.2 PN/5.3 PN | 6.1 PN/6.2 PY/6.3 NI/6.4 PN | 7.1 N/7.2 N/7.3 PN |
Risk of bias judgement: Serious | Risk of bias judgement: Serious | Risk of bias judgement: Low | Risk of bias judgement: Serious | Risk of bias judgement: Low | Risk of bias judgement: No information | Risk of bias judgement: Low |
Study | Selection | Comparability | Outcome | Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Representativeness of the Exposure Cohort | Selection of the Non-Exposure Cohort | Ascertainment of Exposure | Outcome of Interest Not Present at the Start of the Study | Most Important Factor | Additional Factors | Assessment of Outcome | Follow-Up Was Long Enough | Adequacy of Follow-Up | ||
Sugimoto et al., 2021 [36] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 8 (good) |
Gholami et al., 2020 [51] | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 (good) |
Buisman et al., 2020 [52] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 (good) |
Kobayashi et al., 2019 [37] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 8 (good) |
Nishioka et al., 2017 [38] | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 6 (poor) |
Goéré et al., 2013 [53] | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 (good) |
Hsu et al., 2013 [40] | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 (good) |
Turan et al., 2013 [41] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 (good) |
House et al., 2011 [54] | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 7 (good) |
Liu et al., 2010 [45] | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 (good) |
Kim et al., 2009 [47] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 (good) |
Kokudo et al., 1998 [61] | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 6 (poor) |
Study | Selection | Outcomes | Exposure | Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Adequate Definition of Cases | Representativeness of the Cases | Selection of Controls | Definition of Controls | Most Important/Additional Factors | Ascertainment of Exposure | Same Method of Ascertainment | Non-Response Rate | |||
Kim et al., 2011 [44] | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 4 (poor) |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Cheng, K.-C.; Yip, A.S.-M. Prognostic Factors of Survival and a New Scoring System for Liver Resection of Colorectal Liver Metastasis. World J. Hepatol. 2022, 14, 209–223. [Google Scholar] [CrossRef]
- Adam, R.; De Gramont, A.; Figueras, J.; Guthrie, A.; Kokudo, N.; Kunstlinger, F.; Loyer, E.; Poston, G.; Rougier, P.; Rubbia-Brandt, L.; et al. The Oncosurgery Approach to Managing Liver Metastases from Colorectal Cancer: A Multidisciplinary International Consensus. Oncologist 2012, 17, 1225–1239. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, S.; Tranchart, H.; Buell, J.F.; Eretta, C.; Patriti, A.; Spampinato, M.G.; Huh, J.W.; Vigano, L.; Han, H.S.; Ettorre, G.M.; et al. Laparoscopic Simultaneous Resection of Colorectal Primary Tumor and Liver Metastases: Results of a Multicenter International Study. World J. Surg. 2015, 39, 2052–2060. [Google Scholar] [CrossRef]
- Feng, Q.; Wei, Y.; Zhu, D.; Ye, L.; Lin, Q.; Li, W.; Qin, X.; Lyu, M.; Xu, J. Timing of Hepatectomy for Resectable Synchronous Colorectal Liver Metastases: For Whom Simultaneous Resection Is More Suitable—A Meta-Analysis. PLoS ONE 2014, 9, e104348. [Google Scholar] [CrossRef]
- Viganò, L.; Russolillo, N.; Ferrero, A.; Langella, S.; Sperti, E.; Capussotti, L. Evolution of Long-Term Outcome of Liver Resection for Colorectal Metastases: Analysis of Actual 5-Year Survival Rates over Two Decades. Ann. Surg. Oncol. 2012, 19, 2035–2044. [Google Scholar] [CrossRef]
- Kopetz, S.; Chang, G.J.; Overman, M.J.; Eng, C.; Sargent, D.J.; Larson, D.W.; Grothey, A.; Vauthey, J.-N.; Nagorney, D.M.; McWilliams, R.R. Improved Survival in Metastatic Colorectal Cancer Is Associated With Adoption of Hepatic Resection and Improved Chemotherapy. J. Clin. Oncol. 2009, 27, 3677–3683. [Google Scholar] [CrossRef]
- Chun, Y.S.; Vauthey, J.-N.; Ribero, D.; Donadon, M.; Mullen, J.T.; Eng, C.; Madoff, D.C.; Chang, D.Z.; Ho, L.; Kopetz, S.; et al. Systemic Chemotherapy and Two-Stage Hepatectomy for Extensive Bilateral Colorectal Liver Metastases: Perioperative Safety and Survival. J. Gastrointest. Surg. 2007, 11, 1498–1505. [Google Scholar] [CrossRef]
- House, M.G.; Ito, H.; Gönen, M.; Fong, Y.; Allen, P.J.; DeMatteo, R.P.; Brennan, M.F.; Blumgart, L.H.; Jarnagin, W.R.; D’Angelica, M.I. Survival after Hepatic Resection for Metastatic Colorectal Cancer: Trends in Outcomes for 1,600 Patients during Two Decades at a Single Institution. J. Am. Coll. Surg. 2010, 210, 744–752. [Google Scholar] [CrossRef]
- Andres, A.; Majno, P.E.; Morel, P.; Rubbia-Brandt, L.; Giostra, E.; Gervaz, P.; Terraz, S.; Allal, A.S.; Roth, A.D.; Mentha, G. Improved Long-Term Outcome of Surgery for Advanced Colorectal Liver Metastases: Reasons and Implications for Management on the Basis of a Severity Score. Ann. Surg. Oncol. 2008, 15, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, T.M.; Scoggins, C.R.; Zorzi, D.; Abdalla, E.K.; Andres, A.; Eng, C.; Curley, S.A.; Loyer, E.M.; Muratore, A.; Mentha, G.; et al. Effect of Surgical Margin Status on Survival and Site of Recurrence After Hepatic Resection for Colorectal Metastases. Ann. Surg. 2005, 241, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, J.S.; Jarnagin, W.R.; DeMatteo, R.P.; Fong, Y.; Kornprat, P.; Gonen, M.; Kemeny, N.; Brennan, M.F.; Blumgart, L.H.; D’Angelica, M. Actual 10-Year Survival After Resection of Colorectal Liver Metastases Defines Cure. J. Clin. Oncol. 2007, 25, 4575–4580. [Google Scholar] [CrossRef] [PubMed]
- For the European EOB-Study group; Hammerstingl, R.; Huppertz, A.; Breuer, J.; Balzer, T.; Blakeborough, A.; Carter, R.; Fusté, L.C.; Heinz-Peer, G.; Judmaier, W.; et al. Diagnostic Efficacy of Gadoxetic Acid (Primovist)-Enhanced MRI and Spiral CT for a Therapeutic Strategy: Comparison with Intraoperative and Histopathologic Findings in Focal Liver Lesions. Eur. Radiol. 2008, 18, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Selzner, M.; Hany, T.F.; Wildbrett, P.; McCormack, L.; Kadry, Z.; Clavien, P.-A. Does the Novel PET/CT Imaging Modality Impact on the Treatment of Patients With Metastatic Colorectal Cancer of the Liver? Ann. Surg. 2004, 240, 1027–1036. [Google Scholar] [CrossRef]
- Bipat, S.; van Leeuwen, M.S.; Comans, E.F.I.; Pijl, M.E.J.; Bossuyt, P.M.M.; Zwinderman, A.H.; Stoker, J. Colorectal Liver Metastases: CT, MR Imaging, and PET for Diagnosis—Meta-Analysis. Radiology 2005, 237, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, G.M.; Herman, P.; Faraj, S.F.; Kruger, J.A.P.; Coelho, F.F.; Jeismann, V.B.; Cecconello, I.; Alves, V.A.F.; Pawlik, T.M.; de Mello, E.S. Pathological Factors and Prognosis of Resected Liver Metastases of Colorectal Carcinoma: Implications and Proposal for a Pathological Reporting Protocol. Histopathology 2018, 72, 377–390. [Google Scholar] [CrossRef]
- De Jong, M.C.; Pulitano, C.; Ribero, D.; Strub, J.; Mentha, G.; Schulick, R.D.; Choti, M.A.; Aldrighetti, L.; Capussotti, L.; Pawlik, T.M. Rates and Patterns of Recurrence Following Curative Intent Surgery for Colorectal Liver Metastasis: An International Multi-Institutional Analysis of 1669 Patients. Ann. Surg. 2009, 250, 440–448. [Google Scholar] [CrossRef] [Green Version]
- Douillard, J.Y.; V-303 Study Group. Irinotecan and High-Dose Fluorouracil/Leucovorin for Metastatic Colorectal Cancer. Oncology 2000, 14, 51–55. [Google Scholar] [PubMed]
- De Gramont, A.; Figer, A.; Seymour, M.; Homerin, M.; Hmissi, A.; Cassidy, J.; Boni, C.; Cortes-Funes, H.; Cervantes, A.; Freyer, G.; et al. Leucovorin and Fluorouracil With or Without Oxaliplatin as First-Line Treatment in Advanced Colorectal Cancer. J. Clin. Oncol. 2000, 18, 2938–2947. [Google Scholar] [CrossRef]
- Shimada, Y.; Hamaguchi, T.; Mizusawa, J.; Saito, N.; Kanemitsu, Y.; Takiguchi, N.; Ohue, M.; Kato, T.; Takii, Y.; Sato, T.; et al. Randomised Phase III Trial of Adjuvant Chemotherapy with Oral Uracil and Tegafur plus Leucovorin versus Intravenous Fluorouracil and Levofolinate in Patients with Stage III Colorectal Cancer Who Have Undergone Japanese D2/D3 Lymph Node Dissection: Final Results of JCOG0205. Eur. J. Cancer 2014, 50, 2231–2240. [Google Scholar] [CrossRef]
- Lembersky, B.C.; Wieand, H.S.; Petrelli, N.J.; O’Connell, M.J.; Colangelo, L.H.; Smith, R.E.; Seay, T.E.; Giguere, J.K.; Marshall, M.E.; Jacobs, A.D.; et al. Oral Uracil and Tegafur Plus Leucovorin Compared With Intravenous Fluorouracil and Leucovorin in Stage II and III Carcinoma of the Colon: Results From National Surgical Adjuvant Breast and Bowel Project Protocol C-06. J. Clin. Oncol. 2006, 24, 2059–2064. [Google Scholar] [CrossRef] [PubMed]
- Douillard, J.-Y.; Hoff, P.M.; Skillings, J.R.; Eisenberg, P.; Davidson, N.; Harper, P.; Vincent, M.D.; Lembersky, B.C.; Thompson, S.; Maniero, A.; et al. Multicenter Phase III Study of Uracil/Tegafur and Oral Leucovorin Versus Fluorouracil and Leucovorin in Patients With Previously Untreated Metastatic Colorectal Cancer. J. Clin. Oncol. 2002, 20, 3605–3616. [Google Scholar] [CrossRef]
- Borner, M.M.; Schöffski, P.; de Wit, R.; Caponigro, F.; Comella, G.; Sulkes, A.; Greim, G.; Peters, G.J.; van der Born, K.; Wanders, J.; et al. Patient Preference and Pharmacokinetics of Oral Modulated UFT versus Intravenous Fluorouracil and Leucovorin. Eur. J. Cancer 2002, 38, 349–358. [Google Scholar] [CrossRef]
- Cutsem, E.V.; Hoff, P.M.; Harper, P.; Bukowski, R.M.; Cunningham, D.; Dufour, P.; Graeven, U.; Lokich, J.; Madajewicz, S.; Maroun, J.A.; et al. Oral Capecitabine vs Intravenous 5-Fluorouracil and Leucovorin: Integrated Efficacy Data and Novel Analyses from Two Large, Randomised, Phase III Trials. Br. J. Cancer 2004, 90, 1190–1197. [Google Scholar] [CrossRef]
- Cassidy, J.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.-S.; Rivera, F.; et al. Randomized Phase III Study of Capecitabine plus Oxaliplatin Compared with Fluorouracil/Folinic Acid plus Oxaliplatin as First-Line Therapy for Metastatic Colorectal Cancer. J. Clin. Oncol. 2008, 26, 2006–2012. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, C.S.; Marshall, J.; Mitchell, E.; Wierzbicki, R.; Ganju, V.; Jeffery, M.; Schulz, J.; Richards, D.; Soufi-Mahjoubi, R.; Wang, B.; et al. Randomized, Controlled Trial of Irinotecan Plus Infusional, Bolus, or Oral Fluoropyrimidines in First-Line Treatment of Metastatic Colorectal Cancer: Results From the BICC-C Study. J. Clin. Oncol. 2007, 25, 4779–4786. [Google Scholar] [CrossRef]
- Breedis, C.; Young, G. The Blood Supply of Neoplasms in the Liver. Am. J. Pathol. 1954, 30, 969–977. [Google Scholar]
- Ensminger, W.D.; Gyves, J.W. Clinical Pharmacology of Hepatic Arterial Chemotherapy. Semin. Oncol. 1983, 10, 176–182. [Google Scholar] [PubMed]
- Dizon, D.S.; Schwartz, J.; Kemeny, N. Regional Chemotherapy: A Focus on Hepatic Artery Infusion for Colorectal Cancer Liver Metastases. Surg. Oncol. Clin. N. Am. 2008, 17, 759–771. [Google Scholar] [CrossRef]
- Xing, M.; Kooby, D.A.; El-Rayes, B.F.; Kokabi, N.; Camacho, J.C.; Kim, H.S. Locoregional Therapies for Metastatic Colorectal Carcinoma to the Liver-An Evidence-Based Review: Locoregional Therapies for CRLM. J. Surg. Oncol. 2014, 110, 182–196. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Curley, S.A.; Hohn, D.C.; Roh, M.S. Hepatic Artery Infusion Pumps: Cannulation Techniques and Other Surgical Considerations. Langenbecks Archiv fuer Chirurgie 1990, 375, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Kanemitsu, Y.; Shimizu, Y.; Mizusawa, J.; Inaba, Y.; Hamaguchi, T.; Shida, D.; Ohue, M.; Komori, K.; Shiomi, A.; Shiozawa, M.; et al. Hepatectomy Followed by MFOLFOX6 Versus Hepatectomy Alone for Liver-Only Metastatic Colorectal Cancer (JCOG0603): A Phase II or III Randomized Controlled Trial. J. Clin. Oncol. 2021, 39, 3789–3799. [Google Scholar] [CrossRef]
- Kokudo, T.; Saiura, A.; Takayama, T.; Miyagawa, S.; Yamamoto, J.; Ijichi, M.; Teruya, M.; Yoshimi, F.; Kawasaki, S.; Koyama, H.; et al. Adjuvant Chemotherapy Can Prolong Recurrence-Free Survival but Did Not Influence the Type of Recurrence or Subsequent Treatment in Patients with Colorectal Liver Metastases. Surgery 2021, 170, 1151–1154. [Google Scholar] [CrossRef] [PubMed]
- Satake, H.; Hashida, H.; Tanioka, H.; Miyake, Y.; Yoshioka, S.; Watanabe, T.; Matsuura, M.; Kyogoku, T.; Inukai, M.; Kotake, T.; et al. Hepatectomy Followed by Adjuvant Chemotherapy with 3-Month Capecitabine Plus Oxaliplatin for Colorectal Cancer Liver Metastases. Oncologist 2021, 26, e1125–e1132. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, K.; Sakamoto, K.; Ii, Y.; Amemiya, K.; Sugo, H.; Ito, T.; Munakata, S.; Takahashi, M.; Kojima, Y.; Tomiki, Y.; et al. Significance of Postoperative Adjuvant Chemotherapy with an Oxaliplatin-Based Regimen after Simultaneous Curative Resection for Colorectal Cancer and Synchronous Colorectal Liver Metastasis: A Propensity Score Matching Analysis. BMC Surg. 2021, 21, 188. [Google Scholar] [CrossRef]
- Kobayashi, S.; Beppu, T.; Honda, G.; Yamamoto, M.; Takahashi, K.; Endo, I.; Hasegawa, K.; Kotake, K.; Itabashi, M.; Hashiguchi, Y.; et al. Survival Benefit of and Indications for Adjuvant Chemotherapy for Resected Colorectal Liver Metastases—A Japanese Nationwide Survey. J. Gastrointest. Surg. 2020, 24, 1244–1260. [Google Scholar] [CrossRef]
- Nishioka, Y.; Moriyama, J.; Matoba, S.; Kuroyanagi, H.; Hashimoto, M.; Shindoh, J. Prognostic Impact of Adjuvant Chemotherapy after Hepatic Resection for Synchronous and Early Metachronous Colorectal Liver Metastases. Dig. Surg. 2018, 35, 187–195. [Google Scholar] [CrossRef]
- The Nagoya Surgical Oncology Group; Kato, T.; Uehara, K.; Maeda, A.; Sakamoto, E.; Hiramatsu, K.; Takeuchi, E.; Goto, H.; Tojima, Y.; Yatsuya, H.; et al. Phase II Multicenter Study of Adjuvant S-1 for Colorectal Liver Metastasis: Survival Analysis of N-SOG 01 Trial. Cancer Chemother. Pharmacol. 2015, 75, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.-C.; Chou, W.-C.; Shen, W.-C.; Wu, C.-E.; Chen, J.-S.; Liau, C.-T.; Lin, Y.-C.; Yang, T.-S. Efficacy of Postoperative Oxaliplatin- or Irinotecan-Based Chemotherapy after Curative Resection of Synchronous Liver Metastases from Colorectal Cancer. Anticancer Res. 2013, 33, 3317–3325. [Google Scholar]
- Turan, N.; Benekli, M.; Koca, D.; Ustaalioglu, B.O.; Dane, F.; Ozdemir, N.; Ulas, A.; Oztop, I.; Gumus, M.; Ozturk, M.A.; et al. Adjuvant Systemic Chemotherapy with or without Bevacizumab in Patients with Resected Liver Metastases from Colorectal Cancer. Oncology 2013, 84, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, Y.; Beppu, T.; Miyamoto, Y.; Okabe, H.; Ida, S.; Imai, K.; Chikamoto, A.; Watanabe, M.; Takamori, H.; Baba, H. Feasibility and Short-Term Outcome of Adjuvant FOLFOX after Resection of Colorectal Liver Metastases. J. Hepato-Biliary-Pancreat. Sci. 2013, 20, 307–312. [Google Scholar] [CrossRef]
- Kemeny, N.E.; Jarnagin, W.R.; Capanu, M.; Fong, Y.; Gewirtz, A.N.; DeMatteo, R.P.; D’Angelica, M.I. Randomized Phase II Trial of Adjuvant Hepatic Arterial Infusion and Systemic Chemotherapy With or Without Bevacizumab in Patients With Resected Hepatic Metastases From Colorectal Cancer. J. Clin. Oncol. 2011, 29, 884–889. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.R.; Min, B.S.; Kim, J.S.; Shin, S.J.; Ahn, J.B.; Rho, J.K.; Kim, N.K.; Rha, S.Y. Efficacy of Oxaliplatin-Based Chemotherapy in Curatively Resected Colorectal Cancer with Liver Metastasis. Oncology 2011, 81, 175–183. [Google Scholar] [CrossRef]
- Liu, J.-H.; Hsieh, Y.-Y.; Chen, W.-S.; Hsu, Y.-N.; Chau, G.-Y.; Teng, H.-W.; King, K.-L.; Lin, T.-C.; Tzeng, C.-H.; Lin, J.-K. Adjuvant Oxaliplatin- or Irinotecan-Containing Chemotherapy Improves Overall Survival Following Resection of Metachronous Colorectal Liver Metastases. Int. J. Colorectal Dis. 2010, 25, 1243–1249. [Google Scholar] [CrossRef] [Green Version]
- Ychou, M.; Hohenberger, W.; Thezenas, S.; Navarro, M.; Maurel, J.; Bokemeyer, C.; Shacham-Shmueli, E.; Rivera, F.; Kwok-Keung Choi, C.; Santoro, A. A Randomized Phase III Study Comparing Adjuvant 5-Fluorouracil/Folinic Acid with FOLFIRI in Patients Following Complete Resection of Liver Metastases from Colorectal Cancer. Ann. Oncol. 2009, 20, 1964–1970. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, H.J.; Hong, Y.S.; Jung, K.H.; Park, J.W.; Choi, H.S.; Oh, J.H.; Park, S.-J.; Kim, S.H.; Nam, B.-H.; et al. Resected Colorectal Liver Metastases: Does the Survival Differ According to Postoperative Chemotherapy Regimen? J. Surg. Oncol. 2009, 100, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Portier, G.; Elias, D.; Bouche, O.; Rougier, P.; Bosset, J.-F.; Saric, J.; Belghiti, J.; Piedbois, P.; Guimbaud, R.; Nordlinger, B.; et al. Multicenter Randomized Trial of Adjuvant Fluorouracil and Folinic Acid Compared With Surgery Alone After Resection of Colorectal Liver Metastases: FFCD ACHBTH AURC 9002 Trial. J. Clin. Oncol. 2006, 24, 4976–4982. [Google Scholar] [CrossRef] [PubMed]
- Mackay, H.J.; Billingsley, K.; Gallinger, S.; Berry, S.; Smith, A.; Yeung, R.; Pond, G.R.; Croitoru, M.; Swanson, P.E.; Krishnamurthi, S.; et al. A Multicenter Phase II Study of “Adjuvant” Irinotecan Following Resection of Colorectal Hepatic Metastases. Am. J. Clin. Oncol. 2005, 28, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Gardini, A.; Ercolani, G.; Riccobon, A.; Ravaioli, M.; Ridolfi, L.; Flamini, E.; Ridolfi, R.; Grazi, G.L.; Cavallari, A.; Amadori, D. Adjuvant, Adoptive Immunotherapy with Tumor Infiltrating Lymphocytes plus Interleukin-2 after Radical Hepatic Resection for Colorectal Liver Metastases: 5-Year Analysis. J. Surg. Oncol. 2004, 87, 46–52. [Google Scholar] [CrossRef]
- Gholami, S.; Kemeny, N.E.; Boucher, T.M.; Gönen, M.; Cercek, A.; Kingham, T.P.; Balachandran, V.; Allen, P.; DeMatteo, R.; Drebin, J.; et al. Adjuvant Hepatic Artery Infusion Chemotherapy Is Associated With Improved Survival Regardless of KRAS Mutation Status in Patients With Resected Colorectal Liver Metastases: A Retrospective Analysis of 674 Patients. Ann. Surg. 2020, 272, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Buisman, F.E.; Galjart, B.; van der Stok, E.P.; Kemeny, N.E.; Balachandran, V.P.; Boerner, T.; Cercek, A.; Grünhagen, D.J.; Jarnagin, W.R.; Kingham, T.P.; et al. The Impact of Hepatic Arterial Infusion Pump Chemotherapy on Hepatic Recurrences and Survival in Patients with Resected Colorectal Liver Metastases. HPB 2020, 22, 1271–1279. [Google Scholar] [CrossRef]
- Goéré, D.; Benhaim, L.; Bonnet, S.; Malka, D.; Faron, M.; Elias, D.; Lefèvre, J.H.; Deschamps, F.; Dromain, C.; Boige, V.; et al. Adjuvant Chemotherapy After Resection of Colorectal Liver Metastases in Patients at High Risk of Hepatic Recurrence: A Comparative Study Between Hepatic Arterial Infusion of Oxaliplatin and Modern Systemic Chemotherapy. Ann. Surg. 2013, 257, 114–120. [Google Scholar] [CrossRef] [PubMed]
- House, M.G.; Kemeny, N.E.; Gönen, M.; Fong, Y.; Allen, P.J.; Paty, P.B.; DeMatteo, R.P.; Blumgart, L.H.; Jarnagin, W.R.; D’Angelica, M.I. Comparison of Adjuvant Systemic Chemotherapy With or Without Hepatic Arterial Infusional Chemotherapy After Hepatic Resection for Metastatic Colorectal Cancer. Ann. Surg. 2011, 254, 851–856. [Google Scholar] [CrossRef]
- Alberts, S.R.; Roh, M.S.; Mahoney, M.R.; O’Connell, M.J.; Nagorney, D.M.; Wagman, L.; Smyrk, T.C.; Weiland, T.L.; Lai, L.L.; Schwarz, R.E.; et al. Alternating Systemic and Hepatic Artery Infusion Therapy for Resected Liver Metastases From Colorectal Cancer: A North Central Cancer Treatment Group (NCCTG)/National Surgical Adjuvant Breast and Bowel Project (NSABP) Phase II Intergroup Trial, N9945/CI-66. J. Clin. Oncol. 2010, 28, 853–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemeny, M.M.; Adak, S.; Gray, B.; Macdonald, J.S.; Smith, T.; Lipsitz, S.; Sigurdson, E.R.; O’Dwyer, P.J.; Benson, A.B. Combined-Modality Treatment for Resectable Metastatic Colorectal Carcinoma to the Liver: Surgical Resection of Hepatic Metastases in Combination With Continuous Infusion of Chemotherapy—An Intergroup Study. J. Clin. Oncol. 2002, 20, 1499–1505. [Google Scholar] [CrossRef] [PubMed]
- Tono, T.; Hasuike, Y.; Ohzato, H.; Takatsuka, Y.; Kikkawa, N. Limited but Definite Efficacy of Prophylactic Hepatic Arterial Infusion Chemotherapy after Curative Resection of Colorectal Liver Metastases: A Randomized Study. Cancer 2000, 88, 1549–1556. [Google Scholar] [CrossRef]
- Kemeny, N.; Huang, Y.; Cohen, A.M.; Shi, W.; Conti, J.A.; Brennan, M.F.; Bertino, J.R.; Turnbull, A.D.M.; Sullivan, D.; Stockman, J.; et al. Hepatic Arterial Infusion of Chemotherapy after Resection of Hepatic Metastases from Colorectal Cancer. N. Engl. J. Med. 1999, 341, 2039–2048. [Google Scholar] [CrossRef]
- Rudroff, C.; Altendorf-Hoffmann, A.; Stangl, R.; Scheele, J. Prospective Randomised Trial on Adjuvant Hepatic-Artery Infusion Chemotherapy after R0 Resection of Colorectal Liver Metastases. Langenbecks Arch. Surg. 1999, 384, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, M.; Müller, H.-H.; Schramm, H.; Gassel, H.-J.; Rau, H.-G.; Ridwelski, K.; Hauss, J.; Stieger, R.; Jauch, K.-W.; Bechstein, W.O.; et al. Randomized Trial of Surgery versus Surgery Followed by Adjuvant Hepatic Arterial Infusion with 5-Fluorouracil and Folinic Acid for Liver Metastases of Colorectal Cancer. Ann. Surg. 1998, 228, 756–762. [Google Scholar] [CrossRef]
- Kokudo, N.; Seki, M.; Ohta, H.; Azekura, K.; Ueno, M.; Sato, T.; Moroguchi, A.; Matsubara, T.; Takahashi, T.; Nakajima, T.; et al. Effects of Systemic and Regional Chemotherapy after Hepatic Resection for Colorectal Metastases. Ann. Surg. Oncol. 1998, 5, 706–712. [Google Scholar] [CrossRef]
- Saiura, A.; Yamamoto, J.; Hasegawa, K.; Oba, M.; Takayama, T.; Miyagawa, S.; Ijichi, M.; Teruya, M.; Yoshimi, F.; Kawasaki, S.; et al. A Combination of Oral Uracil-Tegafur plus Leucovorin (UFT + LV) Is a Safe Regimen for Adjuvant Chemotherapy after Hepatectomy in Patients with Colorectal Cancer: Safety Report of the UFT/LV Study. Drug Discov. Ther. 2014, 8, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Brandi, G. Adjuvant Chemotherapy for Resected Colorectal Cancer Metastases: Literature Review and Meta-Analysis. World J. Gastroenterol. 2016, 22, 519. [Google Scholar] [CrossRef]
- Mitry, E.; Fields, A.L.A.; Bleiberg, H.; Labianca, R.; Portier, G.; Tu, D.; Nitti, D.; Torri, V.; Elias, D.; O’Callaghan, C.; et al. Adjuvant Chemotherapy After Potentially Curative Resection of Metastases From Colorectal Cancer: A Pooled Analysis of Two Randomized Trials. J. Clin. Oncol. 2008, 26, 4906–4911. [Google Scholar] [CrossRef]
- Morris-Stiff, G.; White, A.D.; Gomez, D.; Cameron, I.C.; Farid, S.; Toogood, G.J.; Lodge, J.P.A.; Prasad, K.R. Nodular Regenerative Hyperplasia (NRH) Complicating Oxaliplatin Chemotherapy in Patients Undergoing Resection of Colorectal Liver Metastases. Eur. J. Surg. Oncol. EJSO 2014, 40, 1016–1020. [Google Scholar] [CrossRef]
- Han, N.Y.; Park, B.J.; Kim, M.J.; Sung, D.J.; Cho, S.B. Hepatic Parenchymal Heterogeneity on Contrast-Enhanced CT Scans Following Oxaliplatin-Based Chemotherapy: Natural History and Association with Clinical Evidence of Sinusoidal Obstruction Syndrome. Radiology 2015, 276, 766–774. [Google Scholar] [CrossRef]
- Jurrius, P.; Green, T.; Garmo, H.; Young, M.; Cariati, M.; Gillett, C.; Mera, A.; Harries, M.; Grigoriadis, A.; Pinder, S.; et al. Invasive Breast Cancer over Four Decades Reveals Persisting Poor Metastatic Outcomes in Treatment Resistant Subgroup—The “ATRESS” Phenomenon. Breast 2020, 50, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Moris, D.; Rahnemai-Azar, A.A.; Zhang, X.; Ntanasis-Stathopoulos, I.; Tsilimigras, D.I.; Chakedis, J.; Argyrou, C.; Fung, J.J.; Pawlik, T.M. Program Death-1 Immune Checkpoint and Tumor Microenvironment in Malignant Liver Tumors. Surg. Oncol. 2017, 26, 423–430. [Google Scholar] [CrossRef]
- Tsilimigras, D.I.; Ntanasis-Stathopoulos, I.; Moris, D.; Pawlik, T.M. Liver Tumor Microenvironment. Adv. Exp. Med. Biol. 2020, 1296, 227–241. [Google Scholar] [CrossRef]
- Tsilimigras, D.I.; Ntanasis-Stathopoulos, I.; Paredes, A.Z.; Moris, D.; Gavriatopoulou, M.; Cloyd, J.M.; Pawlik, T.M. Disappearing Liver Metastases: A Systematic Review of the Current Evidence. Surg. Oncol. 2019, 29, 7–13. [Google Scholar] [CrossRef]
- Tsilimigras, D.I.; Ntanasis-Stathopoulos, I.; Bagante, F.; Moris, D.; Cloyd, J.; Spartalis, E.; Pawlik, T.M. Clinical Significance and Prognostic Relevance of KRAS, BRAF, PI3K and TP53 Genetic Mutation Analysis for Resectable and Unresectable Colorectal Liver Metastases: A Systematic Review of the Current Evidence. Surg. Oncol. 2018, 27, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Passiglia, F.; Bronte, G.; Bazan, V.; Galvano, A.; Vincenzi, B.; Russo, A. Can KRAS and BRAF Mutations Limit the Benefit of Liver Resection in Metastatic Colorectal Cancer Patients? A Systematic Review and Meta-Analysis. Crit. Rev. Oncol. Hematol. 2016, 99, 150–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinert, T.; Henriksen, T.V.; Christensen, E.; Sharma, S.; Salari, R.; Sethi, H.; Knudsen, M.; Nordentoft, I.; Wu, H.-T.; Tin, A.S.; et al. Analysis of Plasma Cell-Free DNA by Ultradeep Sequencing in Patients With Stages I to III Colorectal Cancer. JAMA Oncol. 2019, 5, 1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsilimigras, D.I.; Ntanasis-Stathopoulos, I.; Pawlik, T.M. Liquid Biopsies in Colorectal Liver Metastases: Towards the Era of Precision Oncologic Surgery. Cancers 2022, 14, 4237. [Google Scholar] [CrossRef]
- Jensen, N.F.; Smith, D.H.; Nygård, S.B.; Rømer, M.U.; Nielsen, K.V.; Brünner, N. Predictive Biomarkers with Potential of Converting Conventional Chemotherapy to Targeted Therapy in Patients with Metastatic Colorectal Cancer. Scand. J. Gastroenterol. 2012, 47, 340–355. [Google Scholar] [CrossRef] [PubMed]
- Bohanes, P.; LaBonte, M.J.; Lenz, H.-J. A Review of Excision Repair Cross-Complementation Group 1 in Colorectal Cancer. Clin. Color. Cancer 2011, 10, 157–164. [Google Scholar] [CrossRef] [PubMed]
Reference | Setting | Randomization | Regimens of Chemotherapy | Number of Patients | Age (Range) | Mean Follow-Up | Risk Factors |
---|---|---|---|---|---|---|---|
Kanemitsu et al., 2021 [33] | Phase II/III | YES | FOLFOX6 vs. SA | FOLFOX6 (n = 151), SA (n = 149) | FOLFOX6, 63 y (56–69); SA, 65 y (58–69) | 59.2 mo (IQR 26.5–95.3) | Timing, number and diameter of CRLMs, R0 resections, LNM |
Kokudo et al., 2021 [34] | Phase III | YES | UFT/LV vs. SA | UFT/LV (n = 90), SA (n = 90) | UFT/LV, 62.2 y (SD 8.5); SA, 64.5 y (SD 9.2) | 7.36 y (6.93–7.87) | Timing, number and diameter of CRLMs, R0 resections, LNM |
Satake et al., 2021 [35] | Phase II | NO | CAPOX | 28 | 69.5 y (39–82) | 64.3 mo (26.3–87.5) | Timing, number and diameter of CRLMs, R0 resections, LNM |
Sugimoto et al., 2021 [36] | Retrospective | NO | Oxaliplatin-based vs. fluoropyrimidine regimen | Oxaliplatin-based (n = 47), fluoropyrimidine regimen (n = 47) | Oxaliplatin-based, 61 y (32–78); Fluoropyrimidine, 67 y (37–85) | 64.5 mo (7.5–163.1) | Timing, number and diameter of CRLMs, R0 resections, LNM, CEA levels |
Kobayashi et al., 2019 [37] | Retrospective | NO | AC (FOLFOX, FOLFIRI, CapeOx, 5-FU/LV, UFT/LV, S-1, HAI, doxifluridine) vs. SA | AC (n = 771), SA (n = 374) | AC < 65 y (n = 411); ≥65 y (n = 360); SA, <65 y (n = 145); ≥65 y (n = 229) | 79.4 mo | Timing, number and diameter of CRLMs, R0 resections, LNM, CEA levels |
Nishioka et al., 2017 [38] | Retrospective | NO | UFT/LV or oxaliplatin-based chemotherapy vs. SA | AC (n = 105), SA (n = 104) | AC, 65 y (36–88) SA: 63 y (35–74) | AC: 48 mo, SA: 28 mo | Timing, number and diameter of CRLMs, R0 resections, LNM, CEA levels |
Kato et al., 2015 [39] | Phase II | NO | S-1 | 60 | 64 y (43–78) | 41 mo (5–57) | Timing, number and diameter of CRLMs, R0 resections, LNM, CEA levels |
Hsu et al., 2013 [40] | Retrospective | NO | 5-FU/LV vs. FOLFIRI/IFL vs. FOLFOX | 5-FU/LV (n = 25) FOLFIRI/IFL (n = 21), FOLFOX (n = 26) | 58 y (26–76) | 38.8 mo | Timing, number and diameter of CRLMs, R0 resections, CEA levels |
Turan et al., 2013 [41] | Retrospective | NO | BEV vs. No BEV | BEV (n = 87), No BEV (n = 117) | 56 y (24–82) | 27 mo | Timing, number and diameter of CRLMs, R0 resections, LNM |
Sakamoto et al., 2012 [42] | Single-arm | NO | FOLFOX4/modified FOLFOX6 | 24 | 58 yr (25–77) | 48.4 mo | Timing, number and diameter of CRLMs, LNM |
Kemeny et al., 2011 [43] | Phase II | YES | BEV vs. No BEV | BEV (n = 35), No BEV (n = 38) | Bev, ≥60 y (n = 10); <60 y (n = 25); No Bev, ≥60 y (n = 11) <60 y (n = 27) | 30 mo | Timing, number and diameter of CRLMs, R0 resections, LNM, CEA levels, KRAS status |
Kim et al., 2011 [44] | Retrospective | NO | FOLFOX4/modified FOLFOX6 | 60 | 55 y (31–73) | 33.1 mo (95% CI: 4.1–108.5) | Timing, number and diameter of CRLMs, R0 resections, LNM, CEA levels |
Liu et al., 2010 [45] | Retrospective | NO | FOLFOX/FOLFIRI vs. 5- FU/LV | FOLFOX/FOLFIRI (n = 31), 5-FU/LV (n = 19) | 70 y (47–85) | 35.5 mo (10–96) | Timing, number and diameter of CRLMs, R0 resections, CEA levels |
Ychou et al., 2009 [46] | Phase III | YES | FOLFIRI vs. 5-FU/LV | FOLFIRI (n = 153), 5-FU/LV (n = 153) | FOLFIRI, 63 y (27–75); 5-FU/LV, 61 y (34–76) | FOLFIRI; 41.7 mo, LV5-FU; 42.4 mo | Timing and number of CRLMs, R0 resections, |
Kim et al., 2009 [47] | Retrospective | NO | Oxaliplatin (group 1) vs. irinotecan (group 2) vs. fluoropyrimidine alone (group 3) regimens | group 1 (n = 58), group 2 (n = 48), group 3 (n = 50) | group 1, 61 y (25–78) group 2, 57 y (33–72) group 3, 61 y (32–77) | 44 mo (18.4–86.9) | Number and diameter of CRLMs, R0 resections, LNM CEA levels |
Portier et al., 2006 [48] | Phase III | YES | 5-FU + folinic acid vs. SA | AC (n = 86), SA (n = 85) | AC, <55 y (n = 16); 55–64 y (n = 34); >65 y (n = 36) SA, <55 y (n = 15) 55–64 y (n = 37); >65 y (n = 33) | 87.4 mo (SE = 5.8) | Timing, number and diameter of CRLMs, R0 resections, CEA levels |
Mackay et al., 2005 [49] | Phase II | NO | Irinotecan | 29 | 57 y (40–71) | 27.9 mo (17.4–45.7) | Timing and number of CRLMs |
Gardini et al., 2004 [50] | Clinical trial | NO | TIL+IL-2 vs. SA | TIL+IL-2 (n = 14), SA (n = 22) | TIL+IL-2, 57 y (40–70) SA, 57 y (37–70) | 42 mo | Number and diameter of CRLMs, CEA levels |
Reference | Setting | Randomization | Regimens of Chemotherapy | Number of Patients | Age (Range) | Mean Follow-Up | Risk Factors |
---|---|---|---|---|---|---|---|
Gholami et al., 2020 [51] | Retrospective | NO | HAI (FUDR) vs. No HAI | HAI (n = 366), No HAI (n = 308) | HAI, 55 yr (47–63); No HAI, 62.5 yr (52–71) | 6.5 yr | Timing, number and diameter of CRLMs, R0 resections, LNM, KRAS status |
Buisman et al., 2020 [52] | Retrospective | NO | HAI (FUDR) + systemic chemotherapy vs. systemic chemotherapy alone | HAI (n = 601), No HAI (n = 1527) | HAI, 57.2 yr (IQR 49–65.5); No HAI, 63 yr (IQR 54.1–70.4) | 96 mo (IQR 61–133) | Number and diameter of CRLMs, LNM, CEA levels |
Goéré et al., 2013 [53] | Cohort study | NO | HAI (oxaliplatin) + systemic 5-FU/LV vs. systemic irinotecan or oxaliplatin regimes alone | HAI (n = 44), No HAI (n = 54) | HAI, 55 yr (47–63); No HAI, 58 yr (49–67) | 60 mo (51–81) | Timing, number and diameter of CRLMs, R0 resections, LNM, CEA levels |
House et al., 2011 [54] | Cohort study | NO | HAI (FUDR) + systemic chemotherapy (5-FU/LV + irinotecan or oxaliplatin) vs. systemic chemotherapy alone | HAI (n = 125), No HAI (n = 125) | HAI, 55 yr (28–80); No HAI, 61 yr (25–84) | 43 mo (0.5–92) | Number and diameter of CRLMs, LNM, CEA levels |
Alberts et al., 2010 [55] | Phase II | NO | HAI (FUDR) + systemic chemotherapy (oxaliplatin+capecitabine) | 55 | capecitabine 2000 mg/m²/d, 55 yr (34–79); capecitabine 1700 mg/m²/d, 60 yr (41–69) | 4.8 yr | R0 resections |
Kemeny et al., 2002 [56] | Phase III | YES | HAI (FUDR) + systemic chemotherapy (5-FU) | AC (n = 30), SA (n = 45) | AC, 59 yr (28–71); SA, 62 yr (29–78) | 51 mo | Timing of CRLMs |
Tono et al., 2000 [57] | Phase III | YES | HAI (5-FU) vs. oral 5-FU | HAI (n = 9), 5-FU (n = 10) | HAI: 59 yr (SD ± 5.8); control: 61.9 y (SD ± 5.0) | 62.2 mo | Timing, number and diameter of CRLMs |
Kemeny et al., 1999 [58] | Phase III | YES | HAI (FUDR) + systemic chemotherapy (5-FU + leucovorin) vs. systemic chemotherapy alone | HAI (n = 74), No HAI (n = 82) | HAI, 59 yr (28–79); No HAI, 59 yr (30–77) | 62.7 mo (range 16–95) | Timing and number of CRLMs, R0 resections, CEA levels |
Rudroff et al., 1999 [59] | Phase III | YES | HAI (mitomycin C/5-FU) vs. SA | Group A (n = 14), Group B (n = 16), Group C (n = 12) | Group A, 58 yr (39–70); Group B, 57 yr (45–76); Group C, 58 yr (46–79) | NR | Timing, number and diameter of CRLMs, LNM, CEA levels |
Lorenz et al., 1998 [60] | Phase III | YES | HAI (5-FU/FA) vs. SA | HAI (n = 108), SA (n = 111) | 61 yr (30–76) | At least 18 mo | Timing and number of CRLMs, LNM |
Kokudo et al., 1998 [61] | Retrospective | NO | Group 1: oral (UTF/5-DFUR) or IV (MMC or 5-FU) systemic chemotherapy vs. group 2: intra-arterial/intraportal regional therapy (5-FU/LV or MMC/5-FU/doxorubicin) vs. group 3: no adjuvant therapy | Group 1 (n = 37) vs. group 2 (n = 38) vs. group 3 (n = 40) | 60 yr (38–79) | NR | Number and diameter of CRLMs, LNM, CEA levels |
Reference | Regimens of Chemotherapy | Outcomes | ||
---|---|---|---|---|
DFS | RFS | OS | ||
Kanemitsu et al., 2021 [33] | FOLFOX6 vs. SA | 5-yr DFS: 49.8% (95% CI, 41.0–58.0) vs. 38.7% (95% CI, 30.4–46.8), HR = 0.67 (95% CI, 0.50–0.92, p = 0.006) | - | 5-yr OS: 71.2% (95% CI, 61.7–78.8) vs. 83.1% (95% CI, 74.9–88.9); HR = 1.25 (95% CI 0.78–2.00, p = 0.42) |
Kokudo et al., 2021 [34] | UFT/LV vs. SA | - | HR = 0.57 (95% CI: 0.39–0.84, p = 0.004) | OS: HR = 0.86 (95% CI, 0.54–1.38, p = 0.54) |
Satake et al., 2021 [35] | CAPOX | - | 5-yr RFS 65.2% (95% CI: 46.48–83.92%) | 5-yr OS: 87.2% |
Sugimoto et al., 2021 [36] | Oxaliplatin-based vs. fluoropyrimidine regimen | - | RFS: HR = 0.80 (95% CI: 0.48–1.32, p = 0.38) | NR |
Kobayashi et al., 2019 [37] | AC (FOLFOX, FOLFIRI, CapeOx, 5-FU/LV, UFT/LV, S-1, HAI, doxifluridine) vs. SA | - | 5-yr RFS: 40.1% (33.4–46.7%) vs. 36.6% (30–43.3%), HR = 0.784 (95% CI 0.618–0.0995) | 5-yr OS: 66.8% (95 CI 59.7–72.9%) vs. 59.6% (52.1–66.2%), HR = 0.716 (95% CI 0.532–0.964) |
Nishioka et al., 2017 [38] | UFT/LV or oxaliplatin-based chemotherapy vs. SA | - | 5-yr RFS: 32.8% vs. 11.2% in S-CLM (p = 0.002), 43.7% vs. 15.2% in EM-CLM (p = 0.002), 44.1% vs. 29.6% LM-CLM (p = 0.411) | 5-yr OS: 77.9% vs. 44.5% in S-CLM (p = 0.021), 81.5% vs. 39.5% in EM-CLM (p = 0.015), 76.1% vs. 65.4% LM-CLM (p = 0.411) |
Kato et al., 2015 [39] | S-1 | 3-yr DFS 47.4% | - | 3-yr OS: 80.0% |
Hsu et al., 2013 [40] | 5-FU/LV vs. FOLFIRI/IFL vs. FOLFOX | - | Median RFS: 14.4, 20.8, 18.8 mo; 4-yr RFS HR (FOLFIRI vs. 5-FU/LV) = 0.421 (95% CI: 0.209-0.847, p = 0.015); HR (FOLFOX vs. 5-FU/LV) = 0.477 (95% CI: 0.230–0.988, p = 0.046) | 5-yr OS 13%, 53% and 63%; HR (FOLFIRI vs. 5-FU/LV) = 0.190 (95% CI: 0.068–0.527, p = 0.001); HR (FOLFOX vs. 5-FU/LV) = 0.365 (95% CI: 0.119–1.119, p = 0.078) |
Turan et al., 2013 [41] | BEV vs. No BEV | - | Median RFS: 14 vs. 18 mo (p = 0.375) | Median OS: 43 vs. 54 mo (p = 0.251) |
Sakamoto et al., 2012 [42] | FOLFOX4/modified FOLFOX6 | 5-yr DFS: 45.1% | - | 5-yr OS: 76% |
Kemeny et al., 2011 [43] | BEV vs. No BEV | - | 4-yr RFS 37% vs. 46%; p = 0.4 | 4-yr OS 81% vs. 85%, p = 0.5 |
Kim et al., 2011 [44] | FOLFOX4/modified FOLFOX6 | - | 5-yr RFS: 39.2% | 5-yr OS: 55.5% |
Liu et al., 2010 [45] | FOLFOX/FOLFIRI vs. FU/LV | 3-yr DFS: 50.8% vs. 21.1%; HR = 0.37 (95% CI: 0.15–0.94, p = 0.022) | - | 3-yr OS: 85.7% vs. 51.8% (p = 0.027); 5-yr OS: 54% vs. 34.6% (p = 0.027); HR = 0.27 (95% CI: 0.083–0.86) |
Ychou et al., 2009 [46] | FOLFIRI vs. FU/LV | 2-yr DFS 50.7% vs. 46.2%; HR = 0.89 (95% CI: 0.66–1.19, p = 0.44) | - | 3-yr OS: 72.7% VS. 71.6%, HR = 1.09 (95% CI: 0.72–1.64, p = 0.69) |
Kim et al., 2009 [47] | Oxaliplatin (group 1) vs. irinotecan (group 2) vs. fluoropyrimidine alone (group 3) regimens | Median DFS: 23.4, 14.1 and 16.3 mo, respectively (p = 0.088); HR group 1 vs. 3 = 0.63 (95% CI 0.39–1.03, p = 0.068); HR group 2 vs. 3 = 0.98 (95% CI 0.61–1.56, p = 0.918) | - | Median OS: 51.2, 47.9 and 60 mo, respectively (p = 0.219) |
Portier et al., 2006 [48] | 5-FU + folinic acid vs. SA | 5-yr DFS: 33.5% vs. 26.7% (p = 0.028) OR = 0.66 (95% CI 0.46–0.96) | - | 5-yr OS: 51.1% vs. 41.9% (p = 0.13); OR = 0.73 (95% CI: 0.48–1.10) |
Mackay et al., 2005 [49] | Irinotecan | - | 18-mo RFS 59% (95% CI: 43–80%) | 2-yr OS 85% (95% CI, 72–99.8) |
Gardini et al., 2004 [50] | TIL+IL-2 vs. SA | 5-yr DSF: 21% vs. 31% (p = 0.27) | - | 5-yr survival rate 25% vs. 38% (p = 0.7) |
Reference | Regimens of Chemotherapy | Outcomes | ||
---|---|---|---|---|
DFS | RFS | OS | ||
Gholami et al., 2020 [51] | HAI (FUDR) vs. No HAI | - | 5-yr RFS: 33% (28–38%) vs. 25% (20–30%) (p < 0.006); HR = 0.68 (95% CI 0.52–0.89); p < 0.005 | 5-yr OS 70% (65–75%) vs. 50% (43–57%), HR = 0.52 (p = 0.0001) |
Buisman et al., 2020 [52] | HAI (FUDR) + systemic chemotherapy vs. systemic chemotherapy alone | median DFS: 20 months vs. 14 months, HR = 0.69 (95% CI 0.62–0.78, p < 0.001) | - | median OS: 84 vs. 57 months (HR 0.65, 95% CI 0.57–0.75, p < 0.001) |
Goéré et al., 2013 [53] | HAI (oxaliplatin) + systemic 5-FU/LV vs. systemic irinotecan or oxaliplatin regimes alone | 3-yr DFS 33% vs. 5% (p < 0.0001) HR = 0.37 (95% CI: 0.23–0.60) | - | 3-yr OS 75% vs. 62% (p = 0.17); 5-yr OS 54% vs. 52% (p = 0.34) |
House et al., 2011 [54] | HAI (FUDR) + systemic chemotherapy (5-FU/LV + irinotecan or oxaliplatin) vs. systemic chemotherapy alone | - | 5-yr RFS: 48% vs. 25% (p < 0.01); HR = 0.71 (95% CI: 0.48–0.96) | 5-yr DSS: 75% vs. 55% (p < 0.01); HR = 0.39 (95% CI: 0.23–0.68) |
Alberts et al., 2010 [55] | HAI (FUDR) + systemic chemotherapy (oxaliplatin + capecitabine) | - | 2-yr RFS 59.7% (48–74.3%) | 2-yr OS 89.1% (81.2–97.7%) |
Kemeny et al., 2002 [56] | HAI (FUDR) + systemic chemotherapy (5-FU) | 4-yr RFS 45.7% vs. 25.2% (p = 0.4) | 4-yr OS 61.5% vs. 52.7% (p = 0.6) | |
Tono et al., 2000 [57] | HAI (5-FU) vs. oral 5-FU | 3-yr DFS: 66.7% vs. 20% (p = 0.045) | 5-yr cumulative survival 77.8% vs. 50% (p = 0.2686) | |
Kemeny et al., 1999 [58] | HAI (FUDR) + systemic chemotherapy (5-FU + leucovorin) vs. systemic chemotherapy alone | - | - | 2-yr OS 72% vs. 86%, p = 0.03; RR = 2.34 (1.10–4.98), p = 0.027 |
Rudroff et al., 1999 [59] ¹ | HAI (mitomycin C/5-FU) vs. SA | Long-term DFS (group A vs. B): 23% vs. 15% | - | 5-yr OS (group A vs. B): 31% vs. 25% |
Lorenz et al., 1998 [60] | HAI (5-FU/FA) vs. SA | Relapse rate (18 m) 33.3% vs. 36.7% (p = 0.715) | - | median survival 34.5 m vs. 40.8 m (HR = 0.76, 95% CI 0.50–1.15, p = 0.1519) |
Kokudo et al., 1998 [61] | Group 1: oral (UTF/5-FUDR) or IV (MMC or 5-FU) systemic chemotherapy vs. group 2: intra-arterial/intraportal regional therapy (5-FU/LV or MMC/5-FU/doxorubicin) vs. group 3: no adjuvant therapy | 5-yr DFS: 33% vs. 26% vs. 19% (p = 0.02) | - | 5-yr OS 51% vs. 49% vs. 37% (p = 0.37), RR (systemic vs. SA) = 0.202, RR (regional vs. SA) = 0.699 (p = 0.041) |
Reference | Severe Toxicities |
---|---|
Kanemitsu et al., 2021 [33] | AC: neutropenia: 50%, neuropathy: 10%, allergic reaction: 4% |
Kokudo et al., 2021 [34] | Total: 12.2%, decreased Hb: 3.7%, diarrhea: 4.9% |
Satake et al., 2021 [35] | Neutropenia: 29% |
Nishioka et al., 2017 [38] | Oxaliplatin group: 50.9% UFT group: 6.8% |
Kato et al., 2015 [39] | Neutropenia: 5%, fatigue: 6.7% |
Kim et al., 2011 [44] | Neutropenia: 13.3%, anemia: 9.9%, thrombocytopenia: 11.6%, stomatitis: 8.3%, peripheral neuropathy: 3.3% |
Alberts et al., 2010 [55] | HAI catheter/pump-related complications |
Ychou et al., 2009 [46] | FOLFIRI: 47% (neutropenia 23%, diarrhea 14%), LV5-FU: 30% (neutropenia 7%, diarrhea 7%) |
Portier et al., 2006 [48] | Diarrhea: 8.6%; hematologic, stomatitis, nausea: 7.4%; neuropathy: 2.47% (adjuvant chemotherapy arm) |
Mackay et al., 2005 [49] | Neutropenia: 20.7%, diarrhea: 17.2%, vomiting: 13.8% |
Gardini et al., 2004 [50] | Hyperpyrexia: 28,5%, oliguria: 14,2% |
Kemeny et al., 2002 [56] | Increased liver enzymes: 30% (HAI arm) |
Kemeny et al., 1999 [58] | Neutropenia: 21 vs. 18%, diarrhea: 14 vs. 29%, vomiting: 5 vs. 10%, bil > 3 mg/dL: 18% (HAI arm) |
Lorenz et al., 1998 [60] | Stomatitis: 57.6 %, nausea: 55.4%, skin reaction: 26.9%, alopecia: 26.9%, pain: 24.9%, diarrhea: 23.6% |
Kokudo et al., 1998 [61] | Unknown staging of complications |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgilis, E.; Gavriatopoulou, M.; Tsilimigras, D.I.; Malandrakis, P.; Theodosopoulos, T.; Ntanasis-Stathopoulos, I. Optimizing Adjuvant Therapy after Surgery for Colorectal Cancer Liver Metastases: A Systematic Review. J. Clin. Med. 2023, 12, 2401. https://doi.org/10.3390/jcm12062401
Georgilis E, Gavriatopoulou M, Tsilimigras DI, Malandrakis P, Theodosopoulos T, Ntanasis-Stathopoulos I. Optimizing Adjuvant Therapy after Surgery for Colorectal Cancer Liver Metastases: A Systematic Review. Journal of Clinical Medicine. 2023; 12(6):2401. https://doi.org/10.3390/jcm12062401
Chicago/Turabian StyleGeorgilis, Emmanouil, Maria Gavriatopoulou, Diamantis I. Tsilimigras, Panagiotis Malandrakis, Theodosios Theodosopoulos, and Ioannis Ntanasis-Stathopoulos. 2023. "Optimizing Adjuvant Therapy after Surgery for Colorectal Cancer Liver Metastases: A Systematic Review" Journal of Clinical Medicine 12, no. 6: 2401. https://doi.org/10.3390/jcm12062401
APA StyleGeorgilis, E., Gavriatopoulou, M., Tsilimigras, D. I., Malandrakis, P., Theodosopoulos, T., & Ntanasis-Stathopoulos, I. (2023). Optimizing Adjuvant Therapy after Surgery for Colorectal Cancer Liver Metastases: A Systematic Review. Journal of Clinical Medicine, 12(6), 2401. https://doi.org/10.3390/jcm12062401