Simultaneous Integrated Boost (SIB) vs. Sequential Boost in Head and Neck Cancer (HNC) Radiotherapy: A Radiomics-Based Decision Proof of Concept
Abstract
:1. Introduction
2. SIB vs. Sequential Boost IMRT/VMAT in HNC—From “In Silico” Treatment Planning to Clinical Results
3. The Radiobiological Implications of SIB-IMRT/SIB-VMAT in HNC
4. Radiomics and Artificial Intelligence (AI)—Perspectives in SIB or Sequential Boost Radiotherapy Decision in HNC
5. Model-Based Treatment Decision Framework: Are We Ready for AI-Based Model Implementation?
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lafond, C.; Jouyaux, F.; Bellec, J.; Henry, O.; Perdrieux, M.; Chajon, E.; Le Prisé, E.; de Crevoisier, R.; Manens, J.P. Quelle RCMI? Du step and shoot au VMAT: Point de vue du physicien [Which IMRT? From “step and shoot” to VMAT: Physicist point of view]. Cancer Radiother. 2010, 14, 539–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rettig, E.M.; D’Souza, G. Epidemiology of head and neck cancer. Surg. Oncol. Clin. N. Am. 2015, 24, 379–396. [Google Scholar] [CrossRef] [PubMed]
- Nissi, L.; Suilamo, S.; Kytö, E.; Vaittinen, S.; Irjala, H.; Minn, H. Recurrence of head and neck squamous cell carcinoma in relation to high-risk treatment volume. Clin. Transl. Radiat. Oncol. 2021, 27, 139–146. [Google Scholar] [CrossRef]
- Hsieh, C.H.; Shueng, P.W.; Wang, L.Y.; Liao, L.J.; Lo, W.C.; Yeh, H.P.; Chou, H.L.; Wu, L.J. Single-Institute Clinical Experiences Using Whole-Field Simultaneous Integrated Boost (SIB) Intensity-Modulated Radiotherapy (IMRT) and Sequential IMRT in Postoperative Patients With Oral Cavity Cancer (OCC). Cancer Control 2020, 27, 1073274820904702. [Google Scholar] [CrossRef] [PubMed]
- Vlacich, G.; Stavas, M.J.; Pendyala, P.; Chen, S.-C.; Shyr, Y.; Cmelak, A.J. A comparative analysis between sequential boost and integrated boost intensity-modulated radiation therapy with concurrent chemotherapy for locally-advanced head and neck cancer. Radiat. Oncol. 2017, 12, 13. [Google Scholar] [CrossRef] [Green Version]
- Grégoire, V.; Levendag, P.; Ang, K.K.; Bernier, J.; Braaksma, M.; Budach, V.; Chao, C.; Coche, E.; Cooper, J.S.; Cosnard, G.; et al. Ct-based delineation of lymph node levels and related ctvs in the node-negative neck: Dahanca, eortc, gortec, ncic, rtog consensus guidelines. Radiother. Oncol. 2003, 69, 227–236. [Google Scholar] [CrossRef]
- Garden, A.; Harris, J.; Eisbruch, A.; Chao, K.; Morrison, W.; Harari, P.; Swanson, T.; Jones, C.; Yom, S.; Spencer, S.; et al. Final Report of NRG Oncology RTOG 0022: A Phase I/II Study of Conformal and Intensity Modulated Radiation for Oropharyngeal Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, S143. [Google Scholar] [CrossRef]
- Mohan, R.; Wu, Q.; Manning, M.; Schmidt-Ullrich, R. Radiobiological considerations in the design of fractionation strategies for intensity-modulated radiation therapy of head and neck cancers. Int. J. Radiat. Oncol. Biol. Phys. 2000, 46, 619–630. [Google Scholar] [CrossRef]
- Eisbruch, A.; Schwartz, M.; Rasch, C.; Vineberg, K.; Damen, E.; Van As, C.J.; Marsh, R.; Pameijer, F.A.; Balm, A.J. Dysphagia and aspiration after chemoradiotherapy for head-and-neck cancer: Which anatomic structures are affected and can they be spared by IMRT? Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 1425–1439. [Google Scholar] [CrossRef]
- Studer, G.; Huguenin, P.U.; Davis, J.B.; Kunz, G.; Lütolf, U.M.; Glanzmann, C. IMRT using simultaneously integrated boost (SIB) in head and neck cancer patients. Radiat. Oncol. 2006, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Mohan, R.; Morris, M.; Lauve, A.; Schmidt-Ullrich, R. Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: Dosimetric results. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 573–585. [Google Scholar] [CrossRef]
- Buzea, C.; Mirestean, C.; Butuc, I.; Zara, A.; Iancu, D. Radiation-induced biological changes of neural structures in the base of the skull tumours. J. Radiother. Pract. 2017, 16, 183–198. [Google Scholar] [CrossRef]
- Fogliata, A.; Bolsi, A.; Cozzi, L.; Bernier, J. Comparative dosimetric evaluation of the simultaneous integrated boost with photon intensity modulation in head and neck cancer patients. Radiother. Oncol. 2003, 69, 267–275. [Google Scholar] [CrossRef]
- Lauve, A.; Morris, M.; Schmidt-Ullrich, R.; Wu, Q.; Mohan, R.; Abayomi, O.; Buck, D.; Holdford, D.; Dawson, K.; Dinardo, L.; et al. Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas: II—Clinical results. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 374–387. [Google Scholar] [CrossRef]
- Brown, M.L.; Glanzmann, C.; Huber, G.; Bredell, M.; Rordorf, T.; Studer, G. IMRT/VMAT for malignancies in the head-and-neck region: Outcome in patients aged 80. Strahlenther. Onkol. 2016, 192, 526–536. [Google Scholar] [CrossRef] [Green Version]
- Kiprian, D.; Jarząbski, A.; Pawłowska, B.; Michalski, W.; Kawecki, A. Zastosowanie techniki SIB-IMRT w leczeniu skojarzonym z jednoczesną chemioterapią u chorych na nowotwory głowy i szyi w III i IVa stopniu zaawansowania. Ocena wczesnych wyników i tolerancji leczenia [SIB-IMRT radiotherapy given concomitantly with cisplatin for locally advanced squamous cell head and neck cancer (SCHNC). Evaluation of the early results and toxicity]. Otolaryngol. Pol. 2011, 65 (Suppl. 5), 117–125. (In Polish) [Google Scholar] [CrossRef]
- Arora, A.; Purohit, R.; Chigurupalli, K.; Bhandari, M.; Gupta, A.; Peter, S. Sequential Boost Vs Simultaneous Integrated Boost Radiotherapy in HNSCC. J. Clin. Diagn. Res. 2022, 16, XC01–XC05. [Google Scholar]
- Christianen, M.E.; Verdonck-de Leeuw, I.M.; Doornaert, P.; Chouvalova, O.; Steenbakkers, R.J.; Koken, P.W.; Leemans, C.R.; Oosting, S.F.; Roodenburg, J.L.; van der Laan, B.F.; et al. Patterns of long-term swallowing dysfunction after definitive radiotherapy or chemoradiation. Radiother. Oncol. 2015, 117, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Cilla, S.; Deodato, F.; Macchia, G.; Digesù, C.; Ianiro, A.; Piermattei, A.; Valentini, V.; Morganti, A.G. Volumetric modulated arc therapy (VMAT) and simultaneous integrated boost in head-and-neck cancer: Is there a place for critical swallowing structures dose sparing? Br. J. Radiol. 2016, 89, 20150764. [Google Scholar] [CrossRef] [Green Version]
- Peters, L.J.; Ang, K.K. Accelerated Fractionation. In Innovations in Radiation Oncology. Medical Radiology; Withers, H.R., Peters, L.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar] [CrossRef]
- Lee, W.R.; Koontz, B.F. Moderate hypofractionation for prostate cancer. Transl. Androl. Urol. 2018, 7, 321–329. [Google Scholar] [CrossRef]
- Fowler, J.F. Biological factors influencing optimum fractionation in radiation therapy. Acta Oncol. 2001, 40, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.N.; Ang, K.K. Radiotherapy for cancer of the head and neck: Altered fractionation regimens. Lancet Oncol. 2002, 3, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, E.; Palazzi, M.; Pignoli, E.; Fallai, C.; Giostra, A.; Olmi, P. Radiobiological basis and clinical results of the simultaneous integrated boost (SIB) in intensity modulated radiotherapy (IMRT) for head and neck cancer: A review. Crit. Rev. Oncol. Hematol. 2010, 73, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, J.; Durisin, M.; Hermann, R.M.; Merten, R.; Christiansen, H. Moderately Hypofractionated Intensity-modulated Radiotherapy With a Simultaneous Integrated Boost for Locally Advanced Head and Neck Cancer—Do Modern Techniques Fulfil Their Promise? Vivo 2021, 35, 2801–2808. [Google Scholar] [CrossRef] [PubMed]
- Guerrero Urbano, T.; Clark, C.H.; Hansen, V.N.; Adams, E.J.; A’Hern, R.; Miles, E.A.; McNair, H.; Bidmead, M.; Warrington, A.P.; Dearnaley, D.P.; et al. A phase I study of dose-escalated chemoradiation with accelerated intensity modulated radiotherapy in locally advanced head and neck cancer. Radiother. Oncol. 2007, 85, 36–41. [Google Scholar] [CrossRef]
- Schwartz, M.; Té, V.; Ballivy, O.; Parker, W.; Patrocinio, H. Accelerated radiotherapy with simultaneous integrated boost fractionation and intensity-modulated radiotherapy for advanced head and neck cancer. Otolaryngol.-Head Neck Surg. 2007, 136, 549–555. [Google Scholar] [CrossRef]
- Reid, P.; Staudacher, A.H.; Marcu, L.G.; Olver, I.; Moghaddasi, L.; Brown, M.P.; Li, Y.; Bezak, E. Intrinsic Radiosensitivity Is Not the Determining Factor in Treatment Response Differences between HPV Negative and HPV Positive Head and Neck Cancers. Cells 2020, 9, 1788. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures. Are Data. Radiol. 2016, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging-”how-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef]
- Samarasinghe, G.; Jameson, M.; Vinod, S.; Field, M.; Dowling, J.; Sowmya, A.; Holloway, L. Deep learning for segmentation in radiation therapy planning: A review. J. Med. Imaging Radiat. Oncol. 2021, 65, 578–595. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Mühlberg, A.; Katzmann, A.; Heinemann, V.; Kärgel, R.; Wels, M.; Taubmann, O.; Lades, F.; Huber, T.; Maurus, S.; Holch, J.; et al. The Technome—A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research. Sci. Rep. 2020, 10, 1103, Erratum in Sci. Rep. 2020, 10, 11442. [Google Scholar] [CrossRef] [Green Version]
- Chalkidou, A.; O’Doherty, M.J.; Marsden, P.K. False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review. PLoS ONE 2015, 10, e0124165. [Google Scholar] [CrossRef] [Green Version]
- Bibault, J.E.; Xing, L.; Giraud, P.; El Ayachy, R.; Giraud, N.; Decazes, P.; Burgun, A.; Giraud, P. Radiomics: A primer for the radiation oncologist. Cancer Radiother. 2020, 24, 403–410. [Google Scholar] [CrossRef]
- Lohmann, P.; Bousabarah, K.; Hoevels, M.; Treuer, H. Radiomics in radiation oncology-basics, methods, and limitations. Strahlenther Onkol. 2020, 196, 848–855. [Google Scholar] [CrossRef]
- Nioche, C.; Orlhac, F.; Boughdad, S.; Reuzé, S.; Goya-Outi, J.; Robert, C.; Pellot-Barakat, C.; Soussan, M.; Frouin, F.; Buvat, I. LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res. 2018, 78, 4786–4789. [Google Scholar] [CrossRef] [Green Version]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda--a software package for image texture analysis. Comput. Methods Programs Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef]
- Van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [Green Version]
- Iancu, D.T.; Iancu, R.I. Utilizarea simulatorului în determinarea planurilor de tratament şi definirea volumelor ţintă în radioterapie [Use of simulator in treatment planning and determination and definition of treatment volume]. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2004, 108, 580–583. (In Romanian) [Google Scholar]
- Srinivasan, K.; Mohammadi, M.; Shepherd, J. Applications of linac-mounted kilovoltage Cone-beam Computed Tomography in modern radiation therapy: A review. Pol. J. Radiol. 2014, 79, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Mirestean, C.C.; Pagute, O.; Buzea, C.; Iancu, R.I.; Iancu, D.T. Radiomic Machine Learning and Texture Analysis—New Horizons for Head and Neck Oncology. Maedica 2019, 14, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Fh, T.; Cyw, C.; Eyw, C. Radiomics AI prediction for head and neck squamous cell carcinoma (HNSCC) prognosis and recurrence with target volume approach. BJR Open 2021, 3, 20200073. [Google Scholar] [CrossRef] [PubMed]
- Yard, B.; Chie, E.K.; Adams, D.J.; Peacock, C.; Abazeed, M.E. Radiotherapy in the Era of Precision Medicine. Semin. Radiat. Oncol. 2015, 25, 227–236. [Google Scholar] [CrossRef]
- Traverso, A.; Wee, L.; Dekker, A.; Gillies, R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1143–1158. [Google Scholar] [CrossRef] [Green Version]
- Bogowicz, M.; Pavic, M.; Riesterer, O.; Finazzi, T.; Garcia Schüler, H.; Holz-Sapra, E.; Rudofsky, L.; Basler, L.; Spaniol, M.; Ambrusch, A.; et al. Targeting Treatment Resistance in Head and Neck Squamous Cell Carcinoma—Proof of Concept for CT Radiomics-Based Identification of Resistant Sub-Volumes. Front. Oncol. 2021, 11, 664304. [Google Scholar] [CrossRef] [PubMed]
- Sellami, S.; Bourbonne, V.; Hatt, M.; Tixier, F.; Bouzid, D.; Lucia, F.; Pradier, O.; Goasduff, G.; Visvikis, D.; Schick, U. Predicting response to radiotherapy of head and neck squamous cell carcinoma using radiomics from cone-beam CT images. Acta Oncol. 2022, 61, 73–80. [Google Scholar] [CrossRef]
- Van Beek, S.; Jonker, M.; Hamming-Vrieze, O.; Al-Mamgani, A.; Navran, A.; Remeijer, P.; van de Kamer, J.B. Protocolised way to cope with anatomical changes in head & neck cancer during the course of radiotherapy. Tech. Innov. Patient Support Radiat. Oncol. 2019, 12, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef]
- Fernández-Loría, C.; Provost, F. Causal classification: Treatment effect estimation vs. outcome prediction. J. Mach. Learn. Res. 2022, 23, 1–35. [Google Scholar]
- Available online: https://towardsdatascience.com/be-careful-when-interpreting-predictive-models-in-search-of-causal-insights-e68626e664b6 (accessed on 27 February 2023).
- Prosperi, M.; Guo, Y.; Sperrin, M.; Koopman, J.S.; Min, J.S.; He, X.; Rich, S.; Wang, M.; Buchan, I.E.; Bian, J. Causal inference and counterfactual prediction in machine learning for actionable healthcare. Nat. Mach. Intell. 2020, 2, 369–375. [Google Scholar] [CrossRef]
- Langendijk, J.A.; Lambin, P.; De Ruysscher, D.; Widder, J.; Bos, M.; Verheij, M. Selection of patients for radiotherapy with protons aiming at reduction of side effects: The model-based approach. Radiother. Oncol. 2013, 107, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Tambas, M.; van der Laan, H.P.; Rutgers, W.; van den Hoek, J.G.; Oldehinkel, E.; Meijer, T.W.; van der Schaaf, A.; Scandurra, D.; Free, J.; Both, S.; et al. Development of advanced preselection tools to reduce redundant plancomparisons in model-based selection of head and neck cancer patients for proton therapy. Radiother. Oncol. 2021, 160, 61–68. [Google Scholar] [CrossRef]
- Van der Laan, H.P.; van der Schaaf, A.; Van den Bosch, L.; Korevaar, E.W.; Steenbakkers, R.J.; Both, S.; Langendijk, J.A. Quality of life and toxicity guided treatment plan optimisation for head and neck cancer. Radiother. Oncol. 2021, 162, 85–90. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mireștean, C.C.; Iancu, R.I.; Iancu, D.P.T. Simultaneous Integrated Boost (SIB) vs. Sequential Boost in Head and Neck Cancer (HNC) Radiotherapy: A Radiomics-Based Decision Proof of Concept. J. Clin. Med. 2023, 12, 2413. https://doi.org/10.3390/jcm12062413
Mireștean CC, Iancu RI, Iancu DPT. Simultaneous Integrated Boost (SIB) vs. Sequential Boost in Head and Neck Cancer (HNC) Radiotherapy: A Radiomics-Based Decision Proof of Concept. Journal of Clinical Medicine. 2023; 12(6):2413. https://doi.org/10.3390/jcm12062413
Chicago/Turabian StyleMireștean, Camil Ciprian, Roxana Irina Iancu, and Dragoș Petru Teodor Iancu. 2023. "Simultaneous Integrated Boost (SIB) vs. Sequential Boost in Head and Neck Cancer (HNC) Radiotherapy: A Radiomics-Based Decision Proof of Concept" Journal of Clinical Medicine 12, no. 6: 2413. https://doi.org/10.3390/jcm12062413
APA StyleMireștean, C. C., Iancu, R. I., & Iancu, D. P. T. (2023). Simultaneous Integrated Boost (SIB) vs. Sequential Boost in Head and Neck Cancer (HNC) Radiotherapy: A Radiomics-Based Decision Proof of Concept. Journal of Clinical Medicine, 12(6), 2413. https://doi.org/10.3390/jcm12062413