Clinical Usefulness of Right Ventricle–Pulmonary Artery Coupling in Cardiovascular Disease
Abstract
:1. Introduction
2. Measurement of Right Ventricular–Pulmonary Artery Coupling
2.1. End-Systolic Elastance/Effective Arterial Elastance
2.2. Noninvasive Methods
2.2.1. Tricuspid Annular Plane Systolic Excursion/Pulmonary Arterial Systolic Pressure
2.2.2. Tricuspid Annular Systolic Velocity/Right Ventricular Systolic Pressure
2.2.3. Right Ventricular Fractional Area Change/Right Ventricular Systolic Pressure
2.2.4. Stroke Volume/End-Systolic Volume
2.2.5. Right Ventricular Longitudinal Strain/Right Ventricular Systolic Pressure
2.2.6. Right Ventricular Ejection Fraction/Pulmonary Arterial Systolic Pressure
3. Clinical Applications of RV-PA Coupling
3.1. Pulmonary Arterial Hypertension
3.2. Heart Failure
3.2.1. Heart Failure with Preserved Ejection Fraction
3.2.2. Heart Failure with Mid-Range Ejection Fraction
3.3. Hypertension
3.4. Valvular Heart Disease
3.5. Congenital Heart Disease
3.6. Cardiomyopathy
4. Summary and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jone, P.N.; Ivy, D.D. Comprehensive Noninvasive Evaluation of Right Ventricle-Pulmonary Circulation Axis in Pediatric Patients with Pulmonary Hypertension. Curr. Treat. Options Cardiovasc. Med. 2019, 21, 6. [Google Scholar] [CrossRef]
- Kubba, S.; Davila, C.D.; Forfia, P.R. Methods for Evaluating Right Ventricular Function and Ventricular–Arterial Coupling. Prog. Cardiovasc. Dis. 2016, 59, 42–51. [Google Scholar] [CrossRef]
- Monge García, M.I.; Santos, A. Understanding ventriculo-arterial coupling. Ann. Transl. Med. 2020, 8, 795. [Google Scholar] [CrossRef]
- Naeije, R.; Brimioulle, S.; Dewachter, L. Biomechanics of the right ventricle in health and disease (2013 grover conference series). Pulm. Circ. 2014, 4, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Amsallem, M.; Mercier, O.; Kobayashi, Y.; Moneghetti, K.; Haddad, F. Forgotten No More: A Focused Update on the Right Ventricle in Cardiovascular Disease. JACC Heart Fail. 2018, 6, 891–903. [Google Scholar] [CrossRef]
- Hsu, S.; Simpson, C.E.; Houston, B.A.; Wand, A.; Sato, T.; Kolb, T.M.; Mathai, S.C.; Kass, D.A.; Hassoun, P.M.; Damico, R.L.; et al. Multi-beat right ventricular-arterial coupling predicts clinical worsening in pulmonary arterial hypertension. J. Am. Heart Assoc. 2020, 9, e016031. [Google Scholar] [CrossRef]
- Inuzuka, R.; Hsu, S.; Tedford, R.J.; Senzaki, H. Single-beat estimation of right ventricular contractility and its coupling to pulmonary arterial load in patients with pulmonary hypertension. J. Am. Heart Assoc. 2018, 7, e007929. [Google Scholar] [CrossRef]
- Richter, M.J.; Hsu, S.; Yogeswaran, A.; Husain-Syed, F.; Vadász, I.; Ghofrani, H.A.; Naeije, R.; Harth, S.; Grimminger, F.; Seeger, W.; et al. Right ventricular pressure-volume loop shape and systolic pressure change in pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 320, L715–L725. [Google Scholar] [CrossRef]
- Newman, J.H.; Brittain, E.L.; Robbins, I.M.; Hemnes, A.R. Effect of acute arteriolar vasodilation on capacitance and resistance in pulmonary arterial hypertension. Chest 2015, 147, 1080–1085. [Google Scholar] [CrossRef] [Green Version]
- Noordegraaf, A.V.; Chin, K.M.; Haddad, F.; Hassoun, P.M.; Hemnes, A.R.; Hopkins, S.R.; Kawut, S.M.; Langleben, D.; Lumens, J.; Naeije, R.; et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: An update. Eur. Respir. J. 2019, 53, 1801900. [Google Scholar] [CrossRef]
- Deng, Y.; Guo, S.L. Research progress of stress ultrasonography and its evaluation of right ventricular-pulmonary artery coupling. Guangxi Med. 2019, 41, 617–623. [Google Scholar]
- Antonini-Canterin, F.; Di Nora, C. Arrhythmogenic right ventricular cardiomyopathy or athlete’s heart? Challenges in assessment of right heart morphology and function. Monaldi Arch. Chest Dis. 2019, 89, 1047. [Google Scholar] [CrossRef]
- Tello, K.; Dalmer, A.; Vanderpool, R.; Ghofrani, H.A.; Naeije, R.; Roller, F.; Seeger, W.; Wilhelm, J.; Gall, H.; Richter, M.J. Cardiac Magnetic Resonance Imaging-Based Right Ventricular Strain Analysis for Assessment of Coupling and Diastolic Function in Pulmonary Hypertension. JACC Cardiovasc. Imaging 2019, 12, 2155–2164. [Google Scholar] [CrossRef]
- Ikonomidis, I.; Aboyans, V.; Blacher, J.; Brodmann, M.; Brutsaert, D.L.; Chirinos, J.A.; De Carlo, M.; Delgado, V.; Lancellotti, P.; Lekakis, J.; et al. The role of ventricular–arterial coupling in cardiac disease and heart failure: Assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseas. Eur. J. Heart Fail. 2019, 21, 402–424. [Google Scholar] [CrossRef] [Green Version]
- Tello, K.; Wan, J.; Dalmer, A.; Vanderpool, R.; Ghofrani, H.A.; Naeije, R.; Roller, F.; Mohajerani, E.; Seeger, W.; Herberg, U.; et al. Validation of the Tricuspid Annular Plane Systolic Excursion/Systolic Pulmonary Artery Pressure Ratio for the Assessment of Right Ventricular-Arterial Coupling in Severe Pulmonary Hypertension. Circ. Cardiovasc. Imaging 2019, 12, e009047. [Google Scholar] [CrossRef]
- Schmeisser, A.; Rauwolf, T.; Groscheck, T.; Kropf, S.; Luani, B.; Tanev, I.; Hansen, M.; Meißler, S.; Steendijk, P.; Braun-Dullaeus, R.C.; et al. Pressure-volume loop validation of TAPSE/PASP for right ventricular arterial coupling in heart failure with pulmonary hypertension. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 168–176. [Google Scholar] [CrossRef]
- Nguyen, M.; Berhoud, V.; Bartamian, L.; Martin, A.; Ellouze, O.; Bouhemad, B.; Guinot, P.G. Agreement between different non-invasive methods of ventricular elastance assessment for the monitoring of ventricular-arterial coupling in intensive care. J. Clin. Monit. Comput. 2020, 34, 893–901. [Google Scholar] [CrossRef]
- Sanz, J.; Sánchez-Quintana, D.; Bossone, E.; Bogaard, H.J.; Naeije, R. Anatomy, Function, and Dysfunction of the Right Ventricle: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 1463–1482. [Google Scholar] [CrossRef]
- Sandeep, B.; Cheng, H.; Luo, L.; Li, Y.; Xiong, D.; Gao, K.; Xiao, Z. Assessing Right Ventricle Pulmonary Artery Coupling and Uncoupling Using Echocardiography and Cardiopulmonary Exercise Test in Post Operative TOF Patients. Curr. Probl. Cardiol. 2022, 101214. [Google Scholar] [CrossRef]
- Sunagawa, K.; Maughan, W.L.; Burkhoff, D.; Sagawa, K. Coupling Right Ventricular–Pulmonary Arterial Research to the Pulmonary Hypertension Patient Bedside. Am. J. Physiol. Heart Circ. Physiol. 1983, 14, e005715. [Google Scholar] [CrossRef]
- Latus, H.; Binder, W.; Kerst, G.; Hofbeck, M.; Sieverding, L.; Apitz, C. Right ventricular-pulmonary arterial coupling in patients after repair of tetralogy of Fallot. J. Thorac. Cardiovasc. Surg. 2013, 146, 1366–1372. [Google Scholar] [CrossRef] [Green Version]
- Vonk-Noordegraaf, A.; Haddad, F.; Chin, K.M.; Forfia, P.R.; Kawut, S.M.; Lumens, J.; Naeije, R.; Newman, J.; Oudiz, R.J.; Provencher, S.; et al. Right heart adaptation to pulmonary arterial hypertension: Physiology and pathobiology. J. Am. Coll. Cardiol. 2013, 62 (Suppl. S25), 22–33. [Google Scholar] [CrossRef]
- Lahm, T.; Douglas, I.S.; Archer, S.L.; Bogaard, H.J.; Chesler, N.C.; Haddad, F.; Hemnes, A.R.; Kawut, S.M.; Kline, J.A.; Kolb, T.M.; et al. Assessment of right ventricular function in the research setting: Knowledge gaps and pathways forward an official American thoracic society research statement. Am. J. Respir. Crit. Care Med. 2018, 198, e15–e43. [Google Scholar] [CrossRef] [Green Version]
- Richter, M.J.; Peters, D.; Ghofrani, H.A.; Naeije, R.; Roller, F.; Sommer, N.; Gall, H.; Grimminger, F.; Seeger, W.; Tello, K. Evaluation and prognostic relevance of right ventricular-arterial coupling in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2020, 201, 116–119. [Google Scholar] [CrossRef]
- Hsu, S.; Houston, B.A.; Tampakakis, E.; Bacher, A.C.; Rhodes, P.S.; Mathai, S.C.; Damico, R.L.; Kolb, T.M.; Hummers, L.K.; Shah, A.A.; et al. Right ventricular functional reserve in pulmonary arterial hypertension. Circulation 2016, 133, 2413–2422. [Google Scholar] [CrossRef] [Green Version]
- Guazzi, M.; Dixon, D.; Labate, V.; Beussink-Nelson, L.; Bandera, F.; Cuttica, M.J.; Shah, S.J. RV Contractile Function and its Coupling to Pulmonary Circulation in Heart Failure with Preserved Ejection Fraction Stratification of Clinical Phenotypes and Outcomes. JACC Cardiovasc. Imaging 2017, 10, 1211–1221. [Google Scholar] [CrossRef]
- Marra, A.M.; Sherman, A.E.; Salzano, A.; Guazzi, M.; Saggar, R.; Squire, I.B.; Cittadini, A.; Channick, R.N.; Bossone, E. Right Side of the Heart Pulmonary Circulation Unit Involvement in Left-Sided Heart Failure: Diagnostic, Prognostic, and Therapeutic Implications. Chest 2022, 161, 535–551. [Google Scholar] [CrossRef]
- Santas, E.; Palau, P.; Guazzi, M.; De La Espriella, R.; Miñana, G.; Sanchis, J.; Bayes-Genís, A.; Lupón, J.; Chorro, F.J.; Núñez, J. Usefulness of Right Ventricular to Pulmonary Circulation Coupling as an Indicator of Risk for Recurrent Admissions in Heart Failure with Preserved Ejection Fraction. Am. J. Cardiol. 2019, 124, 567–572. [Google Scholar] [CrossRef]
- Bragança, B.; Trêpa, M.; Santos, R.; Silveira, I.; Fontes-Oliveira, M.; Sousa, M.J.; Reis, H.; Torres, S.; Santos, M. Echocardiographic assessment of right ventriculo-arterial coupling: Clinical correlates and prognostic impact in heart failure patients undergoing cardiac resynchronization therapy. J. Cardiovasc. Imaging 2020, 28, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Rosa, G.M.; D’Agostino, A.; Giovinazzo, S.; La Malfa, G.; Fontanive, P.; Miccoli, M.; Dini, F.L. Echocardiography of right ventricular-arterial coupling predicts survival of elderly patients with heart failure and reduced to mid-range ejection fraction. Monaldi Arch. Chest Dis. 2020, 90. [Google Scholar] [CrossRef] [PubMed]
- Ghio, S.; Gavazzi, A.; Campana, C.; Inserra, C.; Klersy, C.; Sebastiani, R.; Arbustini, E.; Recusani, F.; Tavazzi, L. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J. Am. Coll. Cardiol. 2001, 37, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Claessen, G.; La Gerche, A.; Voigt, J.U.; Dymarkowski, S.; Schnell, F.; Petit, T.; Willems, R.; Claus, P.; Delcroix, M.; Heidbuchel, H. Accuracy of Echocardiography to Evaluate Pulmonary Vascular and RV Function during Exercise. JACC Cardiovasc. Imaging 2016, 9, 532–543. [Google Scholar] [CrossRef]
- Ghio, S.; Guazzi, M.; Scardovi, A.B.; Klersy, C.; Clemenza, F.; Carluccio, E.; Temporelli, P.L.; Rossi, A.; Faggiano, P.; Traversi, E.; et al. Different correlates but similar prognostic implications for right ventricular dysfunction in heart failure patients with reduced or preserved ejection fraction. Eur. J. Heart Fail. 2017, 19, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Vriz, O.; Pirisi, M.; Bossone, E.; Fadl Elmula, F.E.M.; Palatini, P.; Naeije, R. Right ventricular-pulmonary arterial uncoupling in mild-to-moderate systemic hypertension. J. Hypertens. 2020, 38, 274–281. [Google Scholar] [CrossRef]
- Nie, L.; Li, J.; Zhang, S.; Dong, Y.; Xu, M.; Yan, M.; Zhang, G.; Song, L. Correlation between right ventricular-pulmonary artery coupling and the prognosis of patients with pulmonary arterial hypertension. Medicine 2019, 98, e5353. [Google Scholar] [CrossRef]
- Huston, J.H.; Maron, B.A.; French, J.; Huang, S.; Thayer, T.; Farber-Eger, E.H.; Wells, Q.S.; Choudhary, G.; Hemnes, A.R.; Brittain, E.L. Association of Mild Echocardiographic Pulmonary Hypertension with Mortality and Right Ventricular Function. JAMA Cardiol. 2019, 4, 1112–1121. [Google Scholar] [CrossRef]
- Li, Y.; Guo, D.; Gong, J.; Wang, J.; Huang, Q.; Yang, S.; Zhang, X.; Hu, H.; Jiang, Z.; Yang, Y.; et al. Right Ventricular Function and Its Coupling with Pulmonary Circulation in Precapillary Pulmonary Hypertension: A Three-Dimensional Echocardiographic Study. Front. Cardiovasc. Med. 2021, 8, 690606. [Google Scholar] [CrossRef]
- Jentzer, J.C.; Anavekar, N.S.; Reddy, Y.N.V.; Murphree, D.H.; Wiley, B.M.; Oh, J.K.; Borlaug, B.A. Right ventricular pulmonary artery coupling and mortality in cardiac intensive care unit patients. J. Am. Heart Assoc. 2021, 10, e019015. [Google Scholar] [CrossRef]
- Gao, H.Y.; Wang, X.J.; Deng, A.Y. Progress in echocardiographic evaluation of right ventricular function in patients with pulmonary hypertension. Med. Recapitul. 2018, 24, 1409–1413. [Google Scholar]
- Egbe, A.C.; Kothapalli, S.; Miranda, W.R.; Pislaru, S.; Ammash, N.M.; Borlaug, B.A.; Pellikka, P.A.; Najam, M.; Connolly, H.M. Assessment of Right Ventricular-Pulmonary Arterial Coupling in Chronic Pulmonary Regurgitation. Can. J. Cardiol. 2019, 35, 914–922. [Google Scholar] [CrossRef]
- Song, T.; Gao, X.J.; Zhao, L. The value of right atrial area and two-dimensional right ventricular area change score in the evaluation of right ventricular function. Chin. J. Mod. Drug Appl. 2016, 10, 51–52. [Google Scholar] [CrossRef]
- Sanz, J.; García-Alvarez, A.; Fernández-Friera, L.; Nair, A.; Mirelis, J.G.; Sawit, S.T.; Pinney, S.; Fuster, V. Right ventriculo-arterial coupling in pulmonary hypertension: A magnetic resonance study. Heart 2012, 98, 238–243. [Google Scholar] [CrossRef]
- Brewis, M.J.; Bellofiore, A.; Vanderpool, R.R.; Chesler, N.C.; Johnson, M.K.; Naeije, R.; Peacock, A.J. Imaging right ventricular function to predict outcome in pulmonary arterial hypertension. Int. J. Cardiol. 2016, 218, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Truong, U.; Patel, S.; Kheyfets, V.; Dunning, J.; Fonseca, B.; Barker, A.J.; Ivy, D.; Shandas, R.; Hunter, K. Non-invasive determination by cardiovascular magnetic resonance of right ventricular-vascular coupling in children and adolescents with pulmonary hypertension. J. Cardiovasc. Magn. Reson. 2015, 17, 81. [Google Scholar] [CrossRef] [Green Version]
- Vîjîiac, A.; Onciul, S.; Deaconu, S.; Vătășescu, R.; Guzu, C.; Verinceanu, V.; Scărlătescu, A.; Zamfir, D.; Petre, I.; Scafa-Udriște, A.; et al. Three-dimensional right ventriculo-arterial coupling as an independent determinant of severe heart failure symptoms in patients with dilated cardiomyopathy. Echocardiography 2022, 39, 194–203. [Google Scholar] [CrossRef]
- Aubert, R.; Venner, C.; Huttin, O.; Haine, D.; Filippetti, L.; Guillaumot, A.; Mandry, D.; Marie, P.Y.; Juilliere, Y.; Chabot, F.; et al. Three-Dimensional Echocardiography for the Assessment of Right Ventriculo-Arterial Coupling. J. Am. Soc. Echocardiogr. 2018, 31, 905–915. [Google Scholar] [CrossRef]
- Jone, P.N.; Schäfer, M.; Pan, Z.; Ivy, D.D. Right Ventricular-Arterial Coupling Ratio Derived From 3-Dimensional Echocardiography Predicts Outcomes in Pediatric Pulmonary Hypertension. Circ. Cardiovasc. Imaging 2019, 12, e008176. [Google Scholar] [CrossRef] [Green Version]
- Trip, P.; Kind, T.; Van De Veerdonk, M.C.; Marcus, J.T.; De Man, F.S.; Westerhof, N.; Vonk-Noordegraaf, A. Accurate assessment of load-independent right ventricular systolic function in patients with pulmonary hypertension. J. Heart Lung Transplant. 2013, 32, 50–55. [Google Scholar] [CrossRef]
- Iacoviello, M.; Citarelli, G.; Antoncecchi, V.; Romito, R.; Monitillo, F.; Leone, M.; Puzzovivo, A.; Lattarulo, M.S.; Rizzo, C.; Caldarola, P.; et al. Right Ventricular Longitudinal Strain Measures Independently Predict Chronic Heart Failure Mortality. Echocardiography 2016, 33, 992–1000. [Google Scholar] [CrossRef]
- Brener, M.I.; Grayburn, P.; Lindenfeld, J.A.; Burkhoff, D.; Liu, M.; Zhou, Z.; Alu, M.C.; Medvedofsky, D.A.; Asch, F.M.; Weissman, N.J.; et al. Right Ventricular–Pulmonary Arterial Coupling in Patients with HF Secondary MR: Analysis from the COAPT Trial. JACC Cardiovasc. Interv. 2021, 14, 2231–2242. [Google Scholar] [CrossRef]
- Richter, M.J.; Rako, Z.A.; Tello, K. Ratio between right ventricular strain and systolic pulmonary artery pressure as a surrogate for right ventricular to pulmonary arterial coupling: Validation against the gold standard. Eur. Heart J. -Cardiovasc. Imaging 2022, 24, e50–e52. [Google Scholar] [CrossRef]
- Ünlü, S.; Bézy, S.; Cvijic, M.; Duchenne, J.; Delcroix, M.; Voigt, J.U. Right ventricular strain related to pulmonary artery pressure predicts clinical outcome in patients with pulmonary arterial hypertension. Eur. Heart J. Cardiovasc. Imaging 2022, jeac136. [Google Scholar] [CrossRef]
- Nagata, Y.; Wu, V.C.C.; Kado, Y.; Otani, K.; Lin, F.C.; Otsuji, Y.; Negishi, K.; Takeuchi, M. Prognostic Value of Right Ventricular Ejection Fraction Assessed by Transthoracic 3D Echocardiography. Circ. Cardiovasc. Imaging 2017, 10, e005384. [Google Scholar] [CrossRef] [Green Version]
- Van De Veerdonk, M.C.; Kind, T.; Marcus, J.T.; Mauritz, G.J.; Heymans, M.W.; Bogaard, H.J.; Boonstra, A.; Marques, K.M.; Westerhof, N.; Vonk-Noordegraaf, A. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J. Am. Coll. Cardiol. 2011, 58, 2511–2519. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Juan, L.; Ben-Dov, N.; Goncalves Frazao, C.V.; Tan, N.S.; Singh, S.M.; Dorian, P.; Angaran, P.; Oikonomou, A.; Kha, L.T.; Roifman, I.; et al. Right ventricular function at cardiac MRI predicts cardiovascular events in patients with an implantable cardioverter-defibrillator. Radiology 2021, 301, 322–329. [Google Scholar] [CrossRef]
- Nochioka, K.; Querejeta Roca, G.; Claggett, B.; Biering-Sørensen, T.; Matsushita, K.; Hung, C.L.; Solomon, S.D.; Kitzman, D.; Shah, A.M. Right Ventricular Function, Right Ventricular-Pulmonary Artery Coupling, and Heart Failure Risk in 4 US Communities: The Atherosclerosis Risk in Communities (ARIC) Study. JAMA Cardiol. 2018, 3, 939–948. [Google Scholar] [CrossRef] [Green Version]
- Hoeper, M.M.; Huscher, D.; Ghofrani, H.A.; Delcroix, M.; Distler, O.; Schweiger, C.; Grunig, E.; Staehler, G.; Rosenkranz, S.; Halank, M.; et al. Elderly patients diagnosed with idiopathic pulmonary arterial hypertension: Results from the COMPERA registry. Int. J. Cardiol. 2013, 168, 871–880. [Google Scholar] [CrossRef]
- Bossone, E.; D’Andrea, A.; D’Alto, M.; Citro, R.; Argiento, P.; Ferrara, F.; Cittadini, A.; Rubenfire, M.; Naeije, R. Echocardiography in pulmonary arterial hypertension: From diagnosis to prognosis. J. Am. Soc. Echocardiogr. 2013, 26, 1–14. [Google Scholar] [CrossRef]
- Vonk Noordegraaf, A.; Westerhof, B.E.; Westerhof, N. The Relationship Between the Right Ventricle and its Load in Pulmonary Hypertension. J. Am. Coll. Cardiol. 2017, 69, 236–243. [Google Scholar] [CrossRef]
- Vonk Noordegraaf, A.; Haddad, F.; Bogaard, H.J.; Hassoun, P.M. Noninvasive imaging in the assessment of the cardiopulmonary vascular unit. Circulation 2015, 131, 899–913. [Google Scholar] [CrossRef] [Green Version]
- Leurent, G.; Auffret, V.; Donal, E. Right Ventricular–Pulmonary Artery Coupling: A Simple Marker to Guide Complex Clinical Decisions? JACC Cardiovasc. Interv. 2022, 15, 1834–1836. [Google Scholar] [CrossRef]
- Yang, Y.H. Interpretation of Chinese guidelines for diagnosis and treatment of Pulmonary Hypertension (2021 Edition)- diagnosis of Pulmonary Hypertension. Chin. J. Pr. Intern. Med. 2021, 41, 696–699. [Google Scholar] [CrossRef]
- Bellettini, M.; Frea, S.; Pidello, S.; Boffini, M.; Boretto, P.; Gallone, G.; Bongiovanni, F.; Masetti, M.; Sabatino, M.; Raineri, C.; et al. Pretransplant Right Ventricular Dysfunction Is Associated with Increased Mortality After Heart Transplantation: A Hard Inheritance to Overcome. J. Card Fail. 2022, 28, 259–269. [Google Scholar] [CrossRef]
- Nazario, R.A.; Goldraich, L.A.; Hastenteufel, L.C.T.; Santos, A.B.S.; Carrion, L.; Clausell, N. Donor-recipient predicted heart mass ratio and right ventricular-pulmonary arterial coupling in heart transplant. Eur. J. Cardiothorac. Surg. 2021, 59, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Lõpez-Candales, A.; Lopez, F.R.; Trivedi, S.; Elwing, J. Right ventricular ejection efficiency: A new echocardiographic measure of mechanical performance in chronic pulmonary hypertension. Echocardiography 2014, 31, 516–523. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef] [Green Version]
- Bauersachs, J.; Bozkurt, B.; Boer, R.A.D.; Lindenfeld, J. The year in cardiovascular medicine 2021: Heart failure and cardiomyopathies. Cardiol. Croat. 2022, 17, 367–376. [Google Scholar] [CrossRef]
- Withaar, C.; Lam, C.S.P.; Schiattarella, G.G.; De Boer, R.A.; Meems, L.M.G. Heart failure with preserved ejection fraction in humans and mice: Embracing clinical complexity in mouse models. Eur. Heart J. 2021, 42, 4420–4430. [Google Scholar] [CrossRef]
- Jering, K.; Claggett, B.; Redfield, M.M.; Shah, S.J.; Anand, I.S.; Martinez, F.; Sabarwal, S.V.; Seferović, P.M.; Kerr Saraiva, J.F.; Katova, T.; et al. Burden of Heart Failure Signs and Symptoms, Prognosis, and Response to Therapy: The PARAGON-HF Trial. JACC Heart Fail. 2021, 9, 386–397. [Google Scholar] [CrossRef]
- Bozkurt, B.; Coats, A.J.S.; Tsutsui, H.; Abdelhamid, C.M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Böhm, M.; Butler, J.; et al. Universal definition and classification of heart failure: A report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. Eur. J. Heart Fail. 2021, 23, 352–380. [Google Scholar] [CrossRef]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 2017, 136, e137–e161. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Stolfo, D.; Sinagra, G.; Lund, L.H. Heart failure with mid-range or mildly reduced ejection fraction. Nat. Rev. Cardiol. 2022, 19, 100–116. [Google Scholar] [CrossRef]
- Ghio, S.; Temporelli, P.L.; Klersy, C.; Simioniuc, A.; Girardi, B.; Scelsi, L.; Rossi, A.; Cicoira, M.; Genta, F.T.; Dini, F.L. Prognostic relevance of a non-invasive evaluation of right ventricular function and pulmonary artery pressure in patients with chronic heart failure. Eur. J. Heart Fail. 2013, 15, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Oliveira, R.K.F.; Heerdt, P.M.; Pari, R.; Systrom, D.M.; Waxman, A.B. Sex-Related Differences in Dynamic Right Ventricular-Pulmonary Vascular Coupling in Heart Failure with Preserved Ejection Fraction. Chest 2021, 159, 2402–2416. [Google Scholar] [CrossRef]
- Owan, T.E.; Hodge, D.O.; Herges, R.M.; Jacobsen, S.J.; Roger, V.L.; Redfield, M.M. Trends in Prevalence and Outcome of Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2006, 355, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Maeder, M.T.; Thompson, B.R.; Brunner-La Rocca, H.P.; Kaye, D.M. Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. J. Am. Coll. Cardiol. 2010, 56, 855–863. [Google Scholar] [CrossRef] [Green Version]
- Borlaug, B.A.; Nishimura, R.A.; Sorajja, P.; Lam, C.S.P.; Redfield, M.M. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ. Heart Fail. 2010, 3, 588–595. [Google Scholar] [CrossRef] [Green Version]
- Abudiab, M.M.; Redfield, M.M.; Melenovsky, V.; Olson, T.P.; Kass, D.A.; Johnson, B.D.; Borlaug, B.A. Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2013, 15, 776–785. [Google Scholar] [CrossRef] [Green Version]
- Ennezat, P.V.; Lefetz, Y.; Maréchaux, S.; Six-Carpentier, M.; Deklunder, G.; Montaigne, D.; Bauchart, J.J.; Mounier-Véhier, C.; Jude, B.; Nevière, R.; et al. Left Ventricular Abnormal Response During Dynamic Exercise in Patients with Heart Failure and Preserved Left Ventricular Ejection Fraction at Rest. J. Card. Fail. 2008, 14, 475–480. [Google Scholar] [CrossRef]
- Tan, Y.T.; Wenzelburger, F.; Lee, E.; Heatlie, G.; Leyva, F.; Patel, K.; Frenneaux, M.; Sanderson, J.E. The Pathophysiology of Heart Failure with Normal Ejection Fraction. Exercise Echocardiography Reveals Complex Abnormalities of Both Systolic and Diastolic Ventricular Function Involving Torsion, Untwist, and Longitudinal Motion. J. Am. Coll. Cardiol. 2009, 54, 36–46. [Google Scholar] [CrossRef]
- Phan, T.T.; Abozguia, K.; Nallur Shivu, G.; Mahadevan, G.; Ahmed, I.; Williams, L.; Dwivedi, G.; Patel, K.; Steendijk, P.; Ashrafian, H.; et al. Heart Failure with Preserved Ejection Fraction Is Characterized by Dynamic Impairment of Active Relaxation and Contraction of the Left Ventricle on Exercise and Associated with Myocardial Energy Deficiency. J. Am. Coll. Cardiol. 2009, 54, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, B.A.; Olson, T.P.; Lam, C.S.P.; Flood, K.S.; Lerman, A.; Johnson, B.D.; Redfield, M.M. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 2010, 56, 845–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, C.S.P.; Roger, V.L.; Rodeheffer, R.J.; Borlaug, B.A.; Enders, F.T.; Redfield, M.M. Pulmonary Hypertension in Heart Failure with Preserved Ejection Fraction. A Community-Based Study. J. Am. Coll. Cardiol. 2009, 53, 1119–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, S.F.; Hussain, I.; Abou Ezzeddine, O.F.; Takahama, H.; Kwon, S.H.; Forfia, P.; Roger, V.L.; Redfield, M.M. Right ventricular function in heart failure with preserved ejection fraction: A community-based study. Circulation 2014, 130, 2310–2320. [Google Scholar] [CrossRef] [Green Version]
- Burke, M.A.; Katz, D.A.; Beussink, L.; Selvaraj, S.; Gupta, D.K.; Fox, J.; Chakrabarti, S.; Sauer, A.J.; Rich, J.D.; Freed, B.H.; et al. Prognostic importance of pathophysiologic markers in patients with heart failure and preserved ejection fraction. Circ. Heart Fail. 2014, 7, 288–299. [Google Scholar] [CrossRef] [Green Version]
- Reddy, Y.N.V.; Obokata, M.; Koepp, K.E.; Egbe, A.C.; Wiley, B.; Borlaug, B.A. The β-Adrenergic Agonist Albuterol Improves Pulmonary Vascular Reserve in Heart Failure with Preserved Ejection Fraction: A Randomized Controlled Trial. Circ. Res. 2019, 124, 306–314. [Google Scholar] [CrossRef]
- Berglund, F.; Piña, P.; Herrera, C.J. Right ventricle in heart failure with preserved ejection fraction. Heart 2020, 106, 1798–1804. [Google Scholar] [CrossRef]
- Singh, I.; Oliveira, R.K.F.; Naeije, R.; Rahaghi, F.N.; Oldham, W.M.; Systrom, D.M.; Waxman, A.B. Pulmonary Vascular Distensibility and Early Pulmonary Vascular Remodeling in Pulmonary Hypertension. Chest 2019, 156, 724–732. [Google Scholar] [CrossRef]
- Singh, I.; Rahaghi, F.N.; Naeije, R.; Oliveira, R.K.F.; Systrom, D.M.; Waxman, A.B. Right Ventricular-Arterial Uncoupling During Exercise in Heart Failure with Preserved Ejection Fraction: Role of Pulmonary Vascular Dysfunction. Chest 2019, 156, 933–943. [Google Scholar] [CrossRef]
- Andersen, M.J.; Hwang, S.J.; Kane, G.C.; Melenovsky, V.; Olson, T.P.; Fetterly, K.; Borlaug, B.A. Enhanced Pulmonary Vasodilator Reserve and Abnormal Right Ventricular: Pulmonary Artery Coupling in Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2015, 8, 542–550. [Google Scholar] [CrossRef] [Green Version]
- Reddy, Y.N.V.; Obokata, M.; Wiley, B.; Koepp, K.E.; Jorgenson, C.C.; Egbe, A.; Melenovsky, V.; Carter, R.E.; Borlaug, B.A. The haemodynamic basis of lung congestion during exercise in heart failure with preserved ejection fraction. Eur. Heart J. 2019, 40, 3721–3730. [Google Scholar] [CrossRef] [PubMed]
- Schmeißer, A.; Rauwolf, T.; Groscheck, T.; Fischbach, K.; Kropf, S.; Luani, B.; Tanev, I.; Hansen, M.; Meißler, S.; Schäfer, K.; et al. Predictors and prognosis of right ventricular function in pulmonary hypertension due to heart failure with reduced ejection fraction. ESC Heart Fail. 2021, 8, 2968–2981. [Google Scholar] [CrossRef] [PubMed]
- Legris, V.; Thibault, B.; Dupuis, J.; White, M.; Asgar, A.W.; Fortier, A.; Pitre, C.; Bouabdallaoui, N.; Henri, C.; O’Meara, E.; et al. Right ventricular function and its coupling to pulmonary circulation predicts exercise tolerance in systolic heart failure. ESC Heart Fail. 2022, 9, 450–464. [Google Scholar] [CrossRef]
- Deaconu, S.; Deaconu, A.; Scarlatescu, A.; Petre, I.; Onciul, S.; Vijiac, A.; Onut, R.; Zamfir, D.; Marascu, G.; Iorgulescu, C.; et al. Right ventricular-arterial coupling—A new perspective for right ventricle evaluation in heart failure patients undergoing cardiac resynchronization therapy. Echocardiography 2021, 38, 1157–1164. [Google Scholar] [CrossRef]
- Hu, M.; Kang, Y.; Jiang, J. Evaluation of right atrial structure and function in patients with chronic Heart failure and Hypertension by Echocardiography. Imaging Res. Med. Appl. 2021, 5, 54–55. [Google Scholar]
- Tadic, M.; Cuspidi, C.; Suzic-Lazic, J.; Andric, A.; Stojcevski, B.; Ivanovic, B.; Hot, S.; Scepanovic, R.; Celic, V. Is there a relationship between right-ventricular and right atrial mechanics and functional capacity in hypertensive patients? J. Hypertens. 2014, 32, 929–937. [Google Scholar] [CrossRef]
- Sciacqua, A.; Perticone, M.; Miceli, S.; Pinto, A.; Cassano, V.; Succurro, E.; Andreozzi, F.; Hribal, M.L.; Sesti, G.; Perticone, F. Elevated 1-h post-load plasma glucose is associated with right ventricular morphofunctional parameters in hypertensive patients. Endocrine 2019, 64, 525–535. [Google Scholar] [CrossRef]
- Sun, H.; Chen, C.H.; Bao, L. Evaluation of right Atrial structure and function in patients with Hypertension and chronic Heart failure by Echocardiography. Chin. J. Geriatr. Cardiovasc. Cerebrovasc. Dis. 2019, 21, 1171–1173. [Google Scholar]
- Fortuni, F.; Butcher, S.C.; Dietz, M.F.; Van der Bijl, P.; Prihadi, E.A.; De Ferrari, G.M.; Ajmone Marsan, N.; Bax, J.J.; Delgado, V. Right Ventricular–Pulmonary Arterial Coupling in Secondary Tricuspid Regurgitation. Am. J. Cardiol. 2021, 148, 138–145. [Google Scholar] [CrossRef]
- Azpiri-Lopez, J.R.; Galarza-Delgado, D.A.; Colunga-Pedraza, I.J.; Arvizu-Rivera, R.I.; Cardenas-de la Garza, J.A.; Vera-Pineda, R.; Davila-Jimenez, J.A.; Martinez-Flores, C.M.; Rodriguez-Romero, A.B.; Guajardo-Jauregui, N. Echocardiographic evaluation of pulmonary hypertension, right ventricular function, and right ventricular-pulmonary arterial coupling in patients with rheumatoid arthritis. Clin. Rheumatol. 2021, 40, 2651–2656. [Google Scholar] [CrossRef]
- Eleid, M.F.; Padang, R.; Pislaru, S.V.; Greason, K.L.; Crestanello, J.; Nkomo, V.T.; Pellikka, P.A.; Jentzer, J.C.; Gulati, R.; Sandhu, G.S. Effect of Transcatheter Aortic Valve Replacement on Right Ventricular–Pulmonary Artery Coupling. JACC Cardiovasc. Interv. 2019, 12, 2145–2154. [Google Scholar] [CrossRef] [PubMed]
- Egbe, A.C.; Miranda, W.R.; Pellikka, P.A.; Pislaru, S.V.; Borlaug, B.A.; Kothapalli, S.; Ananthaneni, S.; Sandhyavenu, H.; Najam, M.; Farouk Abdelsamid, M. Right ventricular and pulmonary vascular function indices for risk stratification of patients with pulmonary regurgitation. Congenit. Heart Dis. 2019, 14, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Pinto, Y.M.; Elliott, P.M.; Arbustini, E.; Adler, Y.; Anastasakis, A.; Böhm, M.; Duboc, D.; Gimeno, J.; de Groote, P.; Imazio, M. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: A position statement of the ESC working group on myocardial and pericardial diseases. Eur. Heart J. 2016, 37, 1850–1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merlo, M.; Cannatà, A.; Gobbo, M.; Stolfo, D.; Elliott, P.M.; Sinagra, G. Evolving concepts in dilated cardiomyopathy. Eur. J. Heart Fail. 2018, 20, 228–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vîjîiac, A.; Bǎtǎilǎ, V.; Onciul, S.; Verinceanu, V.; Guzu, C.; Deaconu, S.; Petre, I.; Scărlătescu, A.; Zamfir, D.; Dorobanţu, M. Non-invasive right ventriculo-arterial coupling as a rehospitalization predictor in dilated cardiomyopathy: A comparison of five different methods. Kardiol. Pol. 2022, 80, 182–190. [Google Scholar] [CrossRef]
- Hirasawa, K.; Izumo, M.; Mizukoshi, K.; Nishikawa, H.; Sato, Y.; Watanabe, M.; Kamijima, R.; Akashi, Y.J. Prognostic significance of right ventricular function during exercise in asymptomatic/minimally symptomatic patients with nonobstructive hypertrophic cardiomyopathy. Echocardiography 2021, 38, 916–923. [Google Scholar] [CrossRef]
Index | Advantage | Disadvantage | |
---|---|---|---|
Invasive | Ees/Ea (gold standard) | High sensitivity and accuracy. | High technical difficulty; |
Limited bedside application; | |||
False normality; | |||
Expensive. | |||
Noninvasive | TAPSE/PASP | Easily obtained; | Angle dependence; |
Not reliant on image quality; | Low accuracy in case of TR; | ||
Reproducible. | Inability to reflect overall RV function. | ||
RVLS/RVSP | Angle independence; | Relies on image quality; | |
High sensitivity and accuracy; | Presence of out-of-plane motion of speckles. | ||
Reproducible; | |||
Unaffected by surroundings. | |||
RVFAC/RVSP | Easily obtained; | Depends on image quality. | |
Angle independence; | |||
Does not need software analysis. | |||
RVEF/PASP | Does not rely on the RV geometry assumption. | Low temporal resolution on 3 DE; | |
Depends on image quality. | |||
SV/ESV | High reliability | May underestimate real RV-PA coupling. | |
S’/RVSP | Easily obtained; | Angle dependence. | |
Independent of image quality; | Uses single segment to represent overall RV function. | ||
Less dependence on afterload than TAPSE. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Lin, Y.; Zhu, Y.; Gao, L.; Ji, M.; Zhang, L.; Xie, M.; Li, Y. Clinical Usefulness of Right Ventricle–Pulmonary Artery Coupling in Cardiovascular Disease. J. Clin. Med. 2023, 12, 2526. https://doi.org/10.3390/jcm12072526
He Q, Lin Y, Zhu Y, Gao L, Ji M, Zhang L, Xie M, Li Y. Clinical Usefulness of Right Ventricle–Pulmonary Artery Coupling in Cardiovascular Disease. Journal of Clinical Medicine. 2023; 12(7):2526. https://doi.org/10.3390/jcm12072526
Chicago/Turabian StyleHe, Qing, Yixia Lin, Ye Zhu, Lang Gao, Mengmeng Ji, Li Zhang, Mingxing Xie, and Yuman Li. 2023. "Clinical Usefulness of Right Ventricle–Pulmonary Artery Coupling in Cardiovascular Disease" Journal of Clinical Medicine 12, no. 7: 2526. https://doi.org/10.3390/jcm12072526
APA StyleHe, Q., Lin, Y., Zhu, Y., Gao, L., Ji, M., Zhang, L., Xie, M., & Li, Y. (2023). Clinical Usefulness of Right Ventricle–Pulmonary Artery Coupling in Cardiovascular Disease. Journal of Clinical Medicine, 12(7), 2526. https://doi.org/10.3390/jcm12072526