Long-Term Consequences of COVID-19: A 1-Year Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting
2.2. Study Design and Participants
2.3. Inclusion and Data Collection
2.4. Statistics
2.5. Ethics
3. Results
3.1. Demographics
3.2. Risks Factors Associated with Hospital Admission
3.3. Cardio-Pulmonary Evaluation
3.4. Thrombotic Events
3.5. Neurologic Evaluation
3.6. Psychological Evaluation
3.7. Clustering
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCI | Charlson Comorbidity Index |
AKI | Acute Kidney Injury |
ARDS | Acute Respiratory Distress Syndrome |
CHUV | Lausanne University Hospital |
EHR | Electronic Health Records |
CRP | C-Reactive Protein |
PCT | Procalcitonin |
MV | Mechanical Ventilation |
SOFA score | Sequential Organ Failure Assessment Score |
qSOFA score | Quick SOFA Score |
CRB-65 score | Confusion–Respiratory Rate–Blood Pressure–Age ≥ 65 Years Score |
NEWS score | National Early Warning Score |
NYHA classification | New York Heart Association Classification (of Heart Failure) |
CCS grade | Canadian Cardiovascular Society (Angina) Grade |
WHO | World Health Organization |
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Coronavirus Disease (COVID-19) Dashboard 2022. Available online: https://covid19.who.int/ (accessed on 14 February 2022).
- Zhang, J.J.; Dong, X.; Cao, Y.Y.; Yuan, Y.D.; Yang, Y.B.; Yan, Y.Q.; Akdis, C.A.; Gao, Y.D. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2019, 75, 1730–1741. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Qie, S.; Liu, Z.; Ren, J.; Li, K.; Xi, J. Clinical characteristics of 50,466 hospitalized patients with 2019-nCoV infection. J. Med. Virol. 2020, 92, 612–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.W.; Wu, X.X.; Jiang, X.G.; Xu, K.J.; Ying, L.J.; Ma, C.L.; Li, S.B.; Wang, H.Y.; Zhang, S.; Gao, H.N.; et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. BMJ 2019, 368, m606. [Google Scholar] [CrossRef] [Green Version]
- Cheng, P.; Zhu, H.; Witteles, R.M.; Wu, J.C.; Quertermous, T.; Wu, S.M.; Rhee, J.W. Cardiovascular Risks in Patients with COVID-19: Potential Mechanisms and Areas of Uncertainty. Curr. Cardiol. Rep. 2020, 22, 34. [Google Scholar] [CrossRef]
- Ellul, M.A.; Benjamin, L.; Singh, B.; Lant, S.; Michael, B.D.; Easton, A.; Kneen, R.; Defres, S.; Sejvar, J.; Solomon, T. Neurological associations of COVID-19. Lancet Neurol. 2020, 19, 767–783. [Google Scholar] [CrossRef]
- Ciechanowicz, P.; Lewandowski, K.; Szymańska, E.; Kaniewska, M.; Rydzewska, G.M.; Walecka, I. Skin and gastrointestinal symptoms in COVID-19. Przegląd Gastroenterol. 2020, 15, 301–308. [Google Scholar] [CrossRef]
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef]
- Chen, R.; Liang, W.; Jiang, M.; Guan, W.; Zhan, C.; Wang, T.; Tang, C.; Sang, L.; Liu, J.; Ni, Z.; et al. Risk Factors of Fatal Outcome in Hospitalized Subjects with Coronavirus Disease 2019 from a Nationwide Analysis in China. Chest 2015, 158, 97–105. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Jia, X.; Li, J.; Hu, K.; Chen, G.; Wei, J.; Gong, Z.; Zhou, C.; Yu, H.; et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin. Microbiol. Infect. 2020, 26, 767–772. [Google Scholar] [CrossRef]
- Honigsbaum, M.; Krishnan, L. Taking pandemic sequelae seriously: From the Russian influenza to COVID-19 long-haulers. Lancet 2020, 396, 1389–1391. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Patel, K.; Greenwood, D.; Halpin, S.; Lewthwaite, P.; Salawu, A.; Eyre, L.; Breen, A.; O’Connor, R.; Jones, A.; et al. Long-term Clinical Outcomes in Survivors of Coronavirus Outbreaks after Hospitalisation or ICU Admission: A Systematic Review and Meta-Analysis of Follow-Up Studies. medRxiv 2020. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. Eclinicalmedicine 2021, 38, 101019. [Google Scholar] [CrossRef] [PubMed]
- Hellmuth, J.; Barnett, T.A.; Asken, B.M.; Kelly, J.D.; Torres, L.; Stephens, M.L.; Greenhouse, B.; Martin, J.N.; Chow, F.C.; Deeks, S.G.; et al. Persistent COVID-19-associated neurocognitive symptoms in non-hospitalized patients. J. Neurovirol. 2021, 27, 191–195. [Google Scholar] [CrossRef]
- Fisicaro, F.; Napoli, M.D.; Liberto, A.; Fanella, M.; Stasio, F.D.; Pennisi, M.; Bella, R.; Lanza, G.; Mansueto, G. Neurological Sequelae in Patients with COVID-19: A Histopathological Perspective. Int. J. Environ. Res. Public Health 2021, 18, 1415. [Google Scholar] [CrossRef] [PubMed]
- Salehi, S.; Reddy, S.; Gholamrezanezhad, A. Long-term Pulmonary Consequences of Coronavirus Disease 2019 (COVID-19). J. Thorac. Imag. 2020, 35, W87–W89. [Google Scholar] [CrossRef]
- Wu, X.; Liu, X.; Zhou, Y.; Yu, H.; Li, R.; Zhan, Q.; Ni, F.; Fang, S.; Lu, Y.; Ding, X.; et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: A prospective study. Lancet Respir. Med. 2021, 9, 747–754. [Google Scholar] [CrossRef]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef]
- The Writing Committee for the COMEBAC Study Group; Morin, L.; Savale, L.; Pham, T.; Colle, R.; Figueiredo, S.; Harrois, A.; Gasnier, M.; Lecoq, A.-L.; Meyrignac, O.; et al. Four-Month Clinical Status of a Cohort of Patients After Hospitalization for COVID-19. JAMA 2021, 325, 1525–1534. [Google Scholar] [CrossRef]
- Chevinsky, J.R.; Tao, G.; Lavery, A.M.; Kukielka, E.A.; Click, E.S.; Malec, D.; Kompaniyets, L.; Bruce, B.B.; Yusuf, H.; Goodman, A.B.; et al. Late conditions diagnosed 1–4 months following an initial COVID-19 encounter: A matched cohort study using inpatient and outpatient administrative data—United States, 1 March–30 June 2020. Clin. Infect. Dis. 2021, 73, ciab338. [Google Scholar] [CrossRef]
- Blomberg, B.; Mohn, K.G.-I.; Brokstad, K.A.; Zhou, F.; Linchausen, D.W.; Hansen, B.-A.; Lartey, S.; Onyango, T.B.; Kuwelker, K.; Sævik, M.; et al. Long COVID in a prospective cohort of home-isolated patients. Nat. Med. 2021, 27, 1607–1613. [Google Scholar] [CrossRef] [PubMed]
- Rogers-Brown, J.S.; Wanga, V.; Okoro, C.; Brozowsky, D.; Evans, A.; Hopwood, D.; Cope, J.R.; Jackson, B.R.; Bushman, D.; Hernandez-Romieu, A.C.; et al. Outcomes Among Patients Referred to Outpatient Rehabilitation Clinics After COVID-19 diagnosis—United States, January 2020–March 2021. Morb. Mortal Wkly Rep. MMWR 2021, 70, 967–971. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Yao, Q.; Gu, X.; Wang, Q.; Ren, L.; Wang, Y.; Hu, P.; Guo, L.; Liu, M.; Xu, J.; et al. 1-year outcomes in hospital survivors with COVID-19: A longitudinal cohort study. Lancet 2021, 398, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Frontera, J.A.; Sabadia, S.; Yang, D.; de Havenon, A.; Yaghi, S.; Lewis, A.; Lord, A.S.; Melmed, K.; Thawani, S.; Balcer, L.J.; et al. Life stressors significantly impact long-term outcomes and post-acute symptoms 12-months after COVID-19 hospitalization. J. Neurol. Sci. 2022, 443, 120487. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, T.; Knight, M.; A’Court, C.; Buxton, M.; Husain, L. Management of post-acute covid-19 in primary care. BMJ 2020, 370, m3026. [Google Scholar] [CrossRef]
- Baig, A.M. Chronic COVID syndrome: Need for an appropriate medical terminology for long-COVID and COVID long-haulers. J. Med. Virol. 2021, 93, 2555–2556. [Google Scholar] [CrossRef]
- Raveendran, A.V. Long COVID-19: Challenges in the diagnosis and proposed diagnostic criteria. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 15, 145–146. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Palacios-Ceña, D.; Gómez-Mayordomo, V.; Cuadrado, M.L.; Florencio, L.L. Defining Post-COVID Symptoms (Post-Acute COVID, Long COVID, Persistent Post-COVID): An Integrative Classification. Int. J. Environ. Res. Public Health 2021, 18, 2621. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Florencio, L.L.; Gómez-Mayordomo, V.; Cuadrado, M.L.; Palacios-Ceña, D.; Raveendran, A.V. Proposed integrative model for post-COVID symptoms. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102159. [Google Scholar] [CrossRef]
- Michelen, M.; Manoharan, L.; Elkheir, N.; Cheng, V.; Dagens, A.; Hastie, C.; O’Hara, M.; Suett, J.; Dahmash, D.; Bugaeva, P.; et al. Characterising long COVID: A living systematic review. BMJ Glob. Health 2021, 6, e005427. [Google Scholar] [CrossRef]
- Cox, J.; Naylor, C.D. The Canadian Cardiovascular Society Grading Scale for Angina Pectoris: Is It Time for Refinements? Ann. Intern. Med. 1992, 117, 677. [Google Scholar] [CrossRef] [PubMed]
- Fuhrer, R.; Rouillon, F. La version française de l’échelle CES-D (Center for Epidemiologic Studies-Depression Scale). Description et traduction de l’échelle d’autoévaluation. Psychiatr. Psychobiol. 1989, 4, 163–166. [Google Scholar] [CrossRef]
- Radloff, L.S. The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Spielberger, C.D.; Gorsuch, R.L.; Lushene, R.E. Manual for the State-Trait Anxiety Inventory; Consulting Psychologists Press: Polo Alto, CA, USA, 1970. [Google Scholar]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatr. Res. 1989, 28, 193–213. [Google Scholar] [CrossRef] [PubMed]
- Appels, A.; Höppener, P.; Mulder, P. A questionnaire to assess premonitory symptoms of myocardial infarction. Int. J. Cardiol. 1987, 17, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Spec. Commun. 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Bauer, T.T.; Ewig, S.; Marre, R.; Suttorp, N.; Welte, T.; Ggroup T Capnet Study. CRB-65 predicts death from community-acquired pneumonia. J. Intern. Med. 2006, 260, 93–101. [Google Scholar] [CrossRef] [PubMed]
- McGinley, A.; Pearse, R.M. A national early warning score for acutely ill patients. BMJ Br. Med. J. 2012, 345, e5310. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap Consortium: Building an International Community of Software Platform Partners. J. Biomed. Inf. 2019, 95, 103208. [Google Scholar] [CrossRef]
- Firmann, M.; Mayor, V.; Vidal, P.M.; Bochud, M.; Pecoud, A.; Hayoz, D.; Paccaud, F.; Preisig, M.; Song, K.S.; Yuan, X.; et al. The CoLaus study: A population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC Cardiovasc. Disor. 2017, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Preisig, M.; Waeber, G.; Vollenweider, P.; Bovet, P.; Rothen, S.; Vandeleur, C.; Guex, P.; Middleton, L.; Waterworth, D.; Mooser, V.; et al. The PsyCoLaus study: Methodology and characteristics of the sample of a population-based survey on psychiatric disorders and their association with genetic and cardiovascular risk factors. BMC Psychiatr. 2009, 9, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spielberger. Inventaire d’Anxiété Etat-Trait; Les Editions Du Centre de Psychologie Appliquée: Paris, France, 1993. [Google Scholar]
- Von Kanel, R.; Frey, K.; Fischer, J. Independent relation of vital exhaustion and inflammation to fibrinolysis in apparently healthy subjects. Scand. Cardiovasc. J. 2004, 38, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Costello, A.B.; Osborne, J. Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis recommendations for getting the most from your analysis. Pract. Assess. Res. Eval. 2005, 10, 1–9. [Google Scholar]
- Kassambara, A. Practical Guide to Principal Component Methods in R. STHDA. 2017, pp. 17–42. Available online: http://www.sthda.com/english/wiki/practical-guide-to-principal-component-methods-in-r (accessed on 2 March 2023).
- Kassambara, A. Practical Guide to Cluster Analysis in R. SHTDA. 2017. Available online: http://www.sthda.com/english/web/5-bookadvisor/17-practical-guide-to-cluster-analysis-in-r?title=practical-guide-to-cluster-analysis-in-r-book (accessed on 2 March 2023).
- Ko, J.Y.; Danielson, M.L.; Town, M.; Derado, G.; Greenlund, K.J.; Kirley, P.D.; Alden, N.B.; Yousey-Hindes, K.; Anderson, E.J.; Ryan, P.A.; et al. Risk Factors for COVID-19-associated hospitalization: COVID-19-Associated Hospitalization Surveillance Network and Behavioral Risk Factor Surveillance System. Clin. Infect. Dis. 2020, 72, ciaa1419. [Google Scholar] [CrossRef]
- Cui, S.; Chen, S.; Li, X.; Liu, S.; Wang, F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 1421–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.A.M.P.J.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb. Res. 2020, 191, 148–150. [Google Scholar] [CrossRef]
- Bikdeli, B.; Madhavan, M.V.; Jimenez, D.; Chuich, T.; Dreyfus, I.; Driggin, E.; Nigoghossian, C.D.; Ageno, W.; Madjid, M.; Guo, Y.; et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-up. J. Am. Coll. Cardiol. 2020, 75, 2950–2973. [Google Scholar] [CrossRef]
- Munblit, D.; Bobkova, P.; Spiridonova, E.; Shikhaleva, A.; Gamirova, A.; Blyuss, O.; Nekliudov, N.; Bugaeva, P.; Andreeva, M.; DunnGalvin, A.; et al. Incidence and risk factors for persistent symptoms in adults previously hospitalized for COVID-19. Clin. Exp. Allergy 2021, 51, 1107–1120. [Google Scholar] [CrossRef]
- Xu, E.; Xie, Y.; Al-Aly, Z. Long-term neurologic outcomes of COVID-19. Nat. Med. 2022, 28, 2406–2415. [Google Scholar] [CrossRef]
- Seeßle, J.; Waterboer, T.; Hippchen, T.; Simon, J.; Kirchner, M.; Lim, A.; Müller, B.; Merle, U. Persistent symptoms in adult patients one year after COVID-19: A prospective cohort study. Clin. Infect. Dis. 2021, 74, ciab611. [Google Scholar] [CrossRef]
- Ballering, A.V.; van Zon, S.K.R.; Olde Hartman, T.C.; Rosmalen, J.G.M.; Lifelines Corona Research Initiative. Persistence of somatic symptoms after COVID-19 in the Netherlands: An observational cohort study. Lancet 2022, 400, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Taquet, M.; Geddes, J.R.; Husain, M.; Luciano, S.; Harrison, P.J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatr. 2021, 8, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Vindegaard, N.; Benros, M.E. COVID-19 pandemic and mental health consequences: Systematic review of the current evidence. Brain. Behav. Immun. 2020, 89, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Mullins, R.J.; Meeker, T.J.; Vinch, P.M.; Tulloch, I.K.; Saffer, M.I.; Chien, J.-H.; Bienvenu, O.J.; Lenz, F.A. A Cross-Sectional Time Course of COVID-19 Related Worry, Perceived Stress, and General Anxiety in the Context of Post-Traumatic Stress Disorder-like Symptomatology. Int. J. Environ. Res. Public Health 2022, 19, 7178. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Nirantharakumar, K.; Hughes, S.; Myles, P.; Williams, T.; Gokhale, K.M.; Taverner, T.; Chandan, J.S.; Brown, K.; Simms-Williams, N.; et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat. Med. 2022, 28, 1706–1714. [Google Scholar] [CrossRef]
- Xie, J.; Prats-Uribe, A.; Feng, Q.; Wang, Y.; Gill, D.; Paredes, R.; Prieto-Alhambra, D. Clinical and Genetic Risk Factors for Acute Incident Venous Thromboembolism in Ambulatory Patients With COVID-19. JAMA Intern. Med. 2022, 182, 1063–1070. [Google Scholar] [CrossRef]
- The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Shankar-Hari, M.; Vale, C.L.; Godolphin, P.J.; Fisher, D.; Higgins, J.P.T.; Spiga, F.; Savovic, J.; Tierney, J.; Baron, G.; et al. Association Between Administration of IL-6 Antagonists and Mortality Among Patients Hospitalized for COVID-19. JAMA 2021, 326, 499–518. [Google Scholar] [CrossRef]
Ambulatory, N = 252 1 | Hospitalized, N = 222 1 | Overall, N = 474 1 | p-Value 2 | |
---|---|---|---|---|
Age | 41 (31, 56) | 66 (55, 78) | 55 (38, 69) | <0.001 |
Gender | <0.001 | |||
Men | 34.9% (88) | 55.4% (123) | 44.5% (211) | |
Women | 65.1% (164) | 44.6% (99) | 55.5% (263) | |
Cigarette smoking | <0.001 | |||
Never smoker | 93.5% (229) | 80.2% (178) | 87.2% (407) | |
Former smoker | 4.1% (10) | 17.1% (38) | 10.3% (48) | |
Current smoker | 2.4% (6) | 2.7% (6) | 2.6% (12) | |
Unknown | 7 | 0 | 7 | |
Comorbidities | ||||
Charlson Comorbidity Index | 0.00 (0.00, 2.00) | 3.00 (2.00, 5.00) | 1.50 (0.00, 4.00) | <0.001 |
Diabetes | 4.0% (10) | 19.4% (43) | 11.2% (53) | <0.001 |
Cirrhosis | 0.0% (0) | 0.9% (2) | 0.4% (2) | 0.2 |
Cancer | 3.6% (9) | 6.3% (14) | 4.9% (23) | 0.2 |
Obesity | 2.8% (7) | 30.6% (68) | 15.8% (75) | <0.001 |
Overweight and Obese | 7.1% (18) | 60.8% (135) | 32.3% (153) | <0.001 |
Hypertension | 13.9% (35) | 45.9% (102) | 28.9% (137) | <0.001 |
Atrial Fibrillation | 0.4% (1) | 9.5% (21) | 4.6% (22) | <0.001 |
Coronary Disease | 2.8% (7) | 9.0% (20) | 5.7% (27) | 0.003 |
Stroke | 1.6% (4) | 6.3% (14) | 3.8% (18) | 0.007 |
Chronic Kidney Disease | 0.4% (1) | 8.1% (18) | 4.0% (19) | <0.001 |
COPD | 0.4% (1) | 7.7% (17) | 3.8% (18) | <0.001 |
Asthma | 9.1% (23) | 5.4% (12) | 7.4% (35) | 0.12 |
Ventilation status | <0.001 | |||
Not Ventilated | 100.0% (252) | 87.4% (194) | 94.1% (446) | |
Ventilated | 0.0% (0) | 12.6% (28) | 5.9% (28) |
OR 1 | 95% CI 2 | p-Value | |
---|---|---|---|
Age group | |||
18–49 | 1.00 | ||
50–64 | 3.30 | 1.75, 6.25 | <0.001 |
65–79 | 3.19 | 1.24, 8.11 | 0.015 |
>80 | 19.0 | 3.65, 149 | 0.001 |
Charlson comorbidity index | 1.39 | 1.15, 1.72 | 0.001 |
Cigarette smoking | |||
Never smoker | 1.00 | ||
Former smoker | 2.69 | 1.17, 6.60 | 0.024 |
Current smoker | 1.94 | 0.46, 7.79 | 0.4 |
Thrombotic Events | Overall Population (N = 474) 1 | ||
---|---|---|---|
Location | History at Baseline | COVID Occurrence | 1-Year Follow-Up |
No embolism | 91.4% (433) | 94.5% (448) | 96.6% (458) |
Pulmonary | 2.1% (10) | 3.8% (18) | 0.8% (4) |
Upper limbs | 0.4% (2) | 0 | 0.4% (2) |
Central nervous system | 1.5% (7) | 0.4% (2) | 0 |
Coronary | 1.7% (8) | 0.8% (4) | 0.6% (3) |
Lower limbs | 4.6% (22) | 1.5% (7) | 1.5% (7) |
Embolism or thrombosis of other location | 0.8% (4) | 0.2% (1) | 0.4% (2) |
Thrombotic events | Hospitalized patients (N = 222) 1 | ||
Location | History at baseline | COVID occurrence | 1-year follow-up |
No embolism | 87.4% (194) | 90.1% (200) | 93.7% (208) |
Pulmonary | 3.6% (8) | 7.2% (16) | 1.8% (4) |
Upper limbs | 0.5% (1) | 0 | 0.9% (2) |
Central nervous system | 2.3% (5) | 0.9% (2) | 0 |
Coronary | 1.8% (4) | 1.8% (4) | 1.4% (3) |
Lower limbs | 6.8% (15) | 2.3% (5) | 2.7% (6) |
Embolism or thrombosis of other location | 1.4% (3) | 0.5% (1) | 0.5% (1) |
Thrombotic events | Ambulatory patients (N = 252) 1 | ||
Location | History at baseline | COVID occurrence | 1-year follow-up |
No embolism | 94.8% (239) | 98.4% (248) | 99.2% (250) |
Pulmonary | 0.8% (2) | 0.8% (2) | 0 |
Upper limbs | 0.4% (1) | 0 | 0 |
Central nervous system | 0.8% (2) | 0 | 0 |
Coronary | 1.6% (4) | 0 | 0 |
Lower limbs | 2.8% (7) | 0.8% (2) | 0.4% (1) |
Embolism or thrombosis of other location | 0.4% (1) | 0 | 0.4% (1) |
Ambulatory, N = 252 1 | Hospitalized, N = 222 1 | Overall, N = 474 1 | p-Value 2 | |
---|---|---|---|---|
Fatigue | 90.8% (229) | 83.7% (186) | 87.5% (415) | 0.3 |
Anosmia | 75.8% (191) | 43.6% (97) | 60.7% (288) | <0.001 |
Dysgeusia | 70.2% (177) | 41.8% (93) | 56.9% (270) | <0.001 |
Headaches | 76.9% (194) | 59.0% (131) | 68.5% (325) | <0.001 |
Feeling slowed down | 71.0% (179) | 72.0% (160) | 71.5% (339) | 0.4 |
Sleepiness | 56.7% (143) | 60.3% (134) | 58.4% (277) | >0.9 |
“Pressure in the head” | 57.1% (144) | 41.4% (92) | 49.7% (236) | 0.032 |
“Feeling as if in a fog” | 46.0% (116) | 54.9% (122) | 50.2% (238) | 0.2 |
Difficulty focusing | 61.1% (154) | 59.4% (132) | 60.3% (286) | >0.9 |
Confusion | 22.2% (56) | 39.6% (88) | 30.3% (144) | 0.001 |
Memory problems | 32.5% (82) | 53.6% (119) | 42.4% (201) | <0.001 |
Insomnia | 27.3% (69) | 47.7% (106) | 36.9% (175) | <0.001 |
OR 1 | 95% CI 2 | p-Value | |
---|---|---|---|
Headaches | |||
● Age | 1.02 | 1, 1.04 | 0.015 |
● Sex | |||
○ Men | 1.00 | ||
○ Women | 0.88 | 0.58, 1.35 | 0.6 |
● Charlson Comorbidity Index | 1.21 | 1.05, 1.40 | 0.012 |
Anosmia | |||
● Age | 1.02 | 1.01, 1.04 | <0.001 |
● Status | |||
○ Ambulatory | 1.00 | ||
○ Hospitalized | 2.77 | 1.75, 4.34 | <0.001 |
Dysgeusia | |||
● Age | 1.02 | 1.01, 1.03 | <0.001 |
● Status | |||
○ Ambulatory | 1.00 | ||
○ Hospitalized | 2.27 | 1.45, 3.57 | <0.001 |
Feeling slowed down | |||
● Age | 1.01 | 1, 1.02 | 0.005 |
Fatigue | |||
● Age | 1.02 | 1.01, 1.03 | <0.001 |
Predictive Variable | Odds Ratio | 95% Confidence Interval | p-Value | |
---|---|---|---|---|
Male | 0.89 | (0.84–0.95) | <0.001 | |
Baseline: | ||||
| 1.14 | (1.06–1.23) | <0.001 | |
| 1.07 | (1.006–1.15) | 0.03 | |
| 1.23 | (1.04–1.45) | 0.01 | |
| 1.19 | (1.03–1.39) | 0.02 | |
During COVID infection | ||||
| 1.06 | (1.03–1.08) | <0.001 | |
| 1.02 | (1.003–1.04) | 0.02 | |
| 1.03 | (1.01–1.05) | 0.001 | |
| 1.04 | (1.02–1.07) | <0.001 | |
| 1.02 | (1.007–1.04) | 0.006 | |
| 1.23 | (1.07–1.41) | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bamps, L.; Armenti, J.-P.; Bojan, M.; Grandbastien, B.; von Garnier, C.; Du Pasquier, R.; Desgranges, F.; Papadimitriou-Olivgeris, M.; Alberio, L.; Preisig, M.; et al. Long-Term Consequences of COVID-19: A 1-Year Analysis. J. Clin. Med. 2023, 12, 2673. https://doi.org/10.3390/jcm12072673
Bamps L, Armenti J-P, Bojan M, Grandbastien B, von Garnier C, Du Pasquier R, Desgranges F, Papadimitriou-Olivgeris M, Alberio L, Preisig M, et al. Long-Term Consequences of COVID-19: A 1-Year Analysis. Journal of Clinical Medicine. 2023; 12(7):2673. https://doi.org/10.3390/jcm12072673
Chicago/Turabian StyleBamps, Laurence, Jean-Philippe Armenti, Mirela Bojan, Bruno Grandbastien, Christophe von Garnier, Renaud Du Pasquier, Florian Desgranges, Matthaios Papadimitriou-Olivgeris, Lorenzo Alberio, Martin Preisig, and et al. 2023. "Long-Term Consequences of COVID-19: A 1-Year Analysis" Journal of Clinical Medicine 12, no. 7: 2673. https://doi.org/10.3390/jcm12072673
APA StyleBamps, L., Armenti, J. -P., Bojan, M., Grandbastien, B., von Garnier, C., Du Pasquier, R., Desgranges, F., Papadimitriou-Olivgeris, M., Alberio, L., Preisig, M., Schwitter, J., Guery, B., & The RegCOVID Study Group. (2023). Long-Term Consequences of COVID-19: A 1-Year Analysis. Journal of Clinical Medicine, 12(7), 2673. https://doi.org/10.3390/jcm12072673