Novel Time-Lapse Parameters Correlate with Embryo Ploidy and Suggest an Improvement in Non-Invasive Embryo Selection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ovarian Stimulation
2.3. Oocyte Retrieval and Embryo Culture
2.4. Trophectoderm Biopsy and PGT
2.5. Time-Lapse Analysis and Recording of Kinetic and Morphological Parameters
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dayan, N.; Joseph, K.S.; Fell, D.B.; Laskin, C.A.; Basso, O.; Park, A.L.; Luo, J.; Guan, J.; Ray, J.G. Infertility treatment and risk of severe maternal morbidity: A propensity score-matched cohort study. Can. Med. Assoc. J. 2019, 191, E118–E127. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.D.; Jamieson, D.J.; Jones, H.W., Jr.; Kissin, D.M.; Gallo, M.F.; Macaluso, M.; Adashi, E.Y. Fertility treatments and multiple births in the United States. N. Engl. J. Med. 2013, 369, 2218–2225. [Google Scholar] [CrossRef] [PubMed]
- Machtinger, R.; Racowsky, C. Morphological systems of human embryo assessment and clinical evidence. Reprod. Biomed. Online 2013, 26, 210–221. [Google Scholar] [CrossRef]
- Gardner, D.; Schoolcraft, W. In vitro culture of human blastocysts. In Towards Reproductive Certainty; CRC Press: Boca Raton, FL, USA, 1999; pp. 378–388. [Google Scholar]
- Gardner, D.K.; Lane, M.; Stevens, J.; Schlenker, T.; Schoolcraft, W.B. Blastocyst score affects implantation and pregnancy outcome: Towards a single blastocyst transfer. Fertil. Steril. 2000, 73, 1155–1158. [Google Scholar] [CrossRef]
- Gardner, D.K.; Schoolcraft, W.B. Culture and transfer of human blastocysts. Curr. Opin. Obstet. Gynecol. 1999, 11, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Del Carmen Nogales, M.; Bronet, F.; Basile, N.; Martinez, E.M.; Linan, A.; Rodrigo, L.; Meseguer, M. Type of chromosome abnormality affects embryo morphology dynamics. Fertil. Steril. 2017, 107, 229–235.e222. [Google Scholar] [CrossRef]
- ESHRE Working Group on Time-Lapse Technology; Apter, S.; Ebner, T.; Freour, T.; Guns, Y.; Kovacic, B.; Le Clef, N.; Marques, M.; Meseguer, M.; Montjean, D.; et al. Good practice recommendations for the use of time-lapse technology. Hum. Reprod. Open 2020, 2020, 8. [Google Scholar] [CrossRef]
- Minasi, M.G.; Colasante, A.; Riccio, T.; Ruberti, A.; Casciani, V.; Scarselli, F.; Spinella, F.; Fiorentino, F.; Varricchio, M.T.; Greco, E. Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: A consecutive case series study. Hum. Reprod. 2016, 31, 2245–2254. [Google Scholar] [CrossRef]
- Zaninovic, N.; Irani, M.; Meseguer, M. Assessment of embryo morphology and developmental dynamics by time-lapse microscopy: Is there a relation to implantation and ploidy? Fertil. Steril. 2017, 108, 722–729. [Google Scholar] [CrossRef]
- ESHRE. European pregnancy rates from IVF and ICSI ‘appear to have reached a peak’. In Proceedings of the 35th ESHRE Annual Meeting, Vienna, Austria, 23–26 June 2019. [Google Scholar]
- Munne, S. Chromosome abnormalities and their relationship to morphology and development of human embryos. Reprod. Biomed. Online 2006, 12, 234–253. [Google Scholar] [CrossRef]
- Phan, V.; Littman, E.; Harris, D.; Severino, M.; La, A. Correlation between aneuploidy and blastocyst quality. Fertil. Steril. 2013, 100, S525–S526. [Google Scholar] [CrossRef]
- Savio Figueira Rde, C.; Setti, A.S.; Braga, D.P.; Iaconelli, A., Jr.; Borges, E., Jr. Blastocyst Morphology Holds Clues Concerning the Chromosomal Status of The Embryo. Int. J. Fertil. Steril. 2015, 9, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, M.N.; Wang, T.; Tao, X.; Weatherbee, B.A.T.; Sun, L.; Zhan, Y.; Keller, L.; Smith, G.D.; Pellicer, A.; Scott, R.T., Jr.; et al. Developmental potential of aneuploid human embryos cultured beyond implantation. Nat. Commun. 2020, 11, 3987. [Google Scholar] [CrossRef]
- Pirtea, P.; De Ziegler, D.; Tao, X.; Sun, L.; Zhan, Y.; Ayoubi, J.M.; Seli, E.; Franasiak, J.M.; Scott, R.T., Jr. Rate of true recurrent implantation failure is low: Results of three successive frozen euploid single embryo transfers. Fertil. Steril. 2021, 115, 45–53. [Google Scholar] [CrossRef]
- Basile, N.; Nogales Mdel, C.; Bronet, F.; Florensa, M.; Riqueiros, M.; Rodrigo, L.; Garcia-Velasco, J.; Meseguer, M. Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis. Fertil. Steril. 2014, 101, 699–704. [Google Scholar] [CrossRef]
- Campbell, A.; Fishel, S.; Bowman, N.; Duffy, S.; Sedler, M.; Hickman, C.F. Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics. Reprod. Biomed. Online 2013, 26, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Swain, J.E. Could time-lapse embryo imaging reduce the need for biopsy and PGS? J. Assist. Reprod. Genet. 2013, 30, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Alikani, M.; Cohen, J.; Tomkin, G.; Garrisi, G.J.; Mack, C.; Scott, R.T. Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil. Steril. 1999, 71, 836–842. [Google Scholar] [CrossRef]
- Alpha Scientists in Reproductive Medicine; ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: Proceedings of an expert meeting. Hum. Reprod. 2011, 26, 1270–1283. [Google Scholar] [CrossRef]
- Armstrong, S.; Bhide, P.; Jordan, V.; Pacey, A.; Marjoribanks, J.; Farquhar, C. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst. Rev. 2019, 29, CD011320. [Google Scholar] [CrossRef]
- Feldman, B.; Aizer, A.; Brengauz, M.; Dotan, K.; Levron, J.; Schiff, E.; Orvieto, R. Pre-implantation genetic diagnosis-should we use ICSI for all? J. Assist. Reprod. Genet. 2017, 34, 1179–1183. [Google Scholar] [CrossRef] [PubMed]
- Kemper, J.M.; Wang, R.; Rolnik, D.L.; Mol, B.W. Preimplantation genetic testing for aneuploidy: Are we examining the correct outcomes? Hum. Reprod. 2020, 35, 2408–2412. [Google Scholar] [CrossRef] [PubMed]
- Murphy, L.A.; Seidler, E.A.; Vaughan, D.A.; Resetkova, N.; Penzias, A.S.; Toth, T.L.; Thornton, K.L.; Sakkas, D. To test or not to test? A framework for counselling patients on preimplantation genetic testing for aneuploidy (PGT-A). Hum. Reprod. 2018, 34, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Palini, S.; Galluzzi, L.; De Stefani, S.; Bianchi, M.; Wells, D.; Magnani, M.; Bulletti, C. Genomic DNA in human blastocoele fluid. Reprod. Biomed. Online 2013, 26, 603–610. [Google Scholar] [CrossRef]
- Stigliani, S.; Persico, L.; Lagazio, C.; Anserini, P.; Venturini, P.L.; Scaruffi, P. Mitochondrial DNA in Day 3 embryo culture medium is a novel, non-invasive biomarker of blastocyst potential and implantation outcome. Mol. Hum. Reprod. 2014, 20, 1238–1246. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Fang, R.; Chen, L.; Chen, D.; Xiao, J.P.; Yang, W.; Wang, H.; Song, X.; Ma, T.; Bo, S.; et al. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. Proc. Natl. Acad. Sci. USA 2016, 113, 11907–11912. [Google Scholar] [CrossRef]
- Schenk, M.; Groselj-Strele, A.; Eberhard, K.; Feldmeier, E.; Kastelic, D.; Cerk, S.; Weiss, G. Impact of polar body biopsy on embryo morphokinetics—Back to the roots in preimplantation genetic testing? J. Assist. Reprod. Genet. 2018, 35, 1521–1528. [Google Scholar] [CrossRef]
- Alfarawati, S.; Fragouli, E.; Colls, P.; Stevens, J.; Gutiérrez-Mateo, C.; Schoolcraft, W.B.; Katz-Jaffe, M.G.; Wells, D. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil. Steril. 2011, 95, 520–524. [Google Scholar] [CrossRef]
- Gamiz, P.; Rubio, C.; de los Santos, M.J.; Mercader, A.; Simon, C.; Remohi, J.; Pellicer, A. The effect of pronuclear morphology on early development and chromosomal abnormalities in cleavage-stage embryos. Hum. Reprod. 2003, 18, 2413–2419. [Google Scholar] [CrossRef]
- Nasiri, N.; Eftekhari-Yazdi, P. An overview of the available methods for morphological scoring of pre-implantation embryos in in vitro fertilization. Cell J. 2015, 16, 392–405. [Google Scholar] [CrossRef]
- Sjoblom, P.; Menezes, J.; Cummins, L.; Mathiyalagan, B.; Costello, M.F. Prediction of embryo developmental potential and pregnancy based on early stage morphological characteristics. Fertil. Steril. 2006, 86, 848–861. [Google Scholar] [CrossRef] [PubMed]
- Lagalla, C.; Tarozzi, N.; Sciajno, R.; Wells, D.; Di Santo, M.; Nadalini, M.; Distratis, V.; Borini, A. Embryos with morphokinetic abnormalities may develop into euploid blastocysts. Reprod. Biomed. Online 2017, 34, 137–146. [Google Scholar] [CrossRef]
- Balakier, H.; Sojecki, A.; Motamedi, G.; Librach, C. Impact of multinucleated blastomeres on embryo developmental competence, morphokinetics, and aneuploidy. Fertil. Steril. 2016, 106, 608–614.e2. [Google Scholar] [CrossRef] [PubMed]
- Capalbo, A.; Bono, S.; Spizzichino, L.; Biricik, A.; Baldi, M.; Colamaria, S.; Ubaldi, F.M.; Rienzi, L.; Fiorentino, F. Sequential comprehensive chromosome analysis on polar bodies, blastomeres and trophoblast: Insights into female meiotic errors and chromosomal segregation in the preimplantation window of embryo development. Hum. Reprod. 2013, 28, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Sciorio, R.; Thong, K.J.; Pickering, S.J. Increased pregnancy outcome after day 5 versus day 6 transfers of human vitrified-warmed blastocysts. Zygote 2019, 27, 279–284. [Google Scholar] [CrossRef]
- Stukenberg, P.T.; Burke, D.J. Connecting the microtubule attachment status of each kinetochore to cell cycle arrest through the spindle assembly checkpoint. Chromosoma 2015, 124, 463–480. [Google Scholar] [CrossRef]
- Jacobs, K.; Van de Velde, H.; De Paepe, C.; Sermon, K.; Spits, C. Mitotic spindle disruption in human preimplantation embryos activates the spindle assembly checkpoint but not apoptosis until Day 5 of development. Mol. Hum. Reprod. 2017, 23, 321–329. [Google Scholar] [CrossRef]
- Mesut, N.; Ciray, H.N.; Mesut, A.; Aksoy, T.; Bahceci, M. Cryopreservation of blastocysts is the most feasible strategy in good responder patients. Fertil. Steril. 2011, 96, 1121–1125.e1. [Google Scholar] [CrossRef]
- Xing, W.; Cai, L.; Sun, L.; Ou, J. Comparison of Pregnancy Outcomes of High-Quality D5- and D6-Blastocyst Transfer in Hormone-Replacement Frozen-Thawed Cycles. Int. J. Clin. Med. 2017, 8, 565–571. [Google Scholar] [CrossRef]
- Hashimoto, S.; Amo, A.; Hama, S.; Ito, K.; Nakaoka, Y.; Morimoto, Y. Growth retardation in human blastocysts increases the incidence of abnormal spindles and decreases implantation potential after vitrification. Hum. Reprod. 2013, 28, 1528–1535. [Google Scholar] [CrossRef]
- Sunkara, S.K.; Siozos, A.; Bolton, V.N.; Khalaf, Y.; Braude, P.R.; El-Toukhy, T. The influence of delayed blastocyst formation on the outcome of frozen-thawed blastocyst transfer: A systematic review and meta-analysis. Hum. Reprod. 2010, 25, 1906–1915. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Qiu, S.; Chen, X.; Zhu, S.; Sun, Y.; Zheng, B. D6 blastocyst transfer on day 6 in frozen-thawed cycles should be avoided: A retrospective cohort study. BMC Pregnancy Childbirth 2020, 20, 519. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yang, Q.; Dai, S.; Li, G.; Jin, H.; Yao, G.; Sun, Y. Comparison of differences in development potentials between frozen-thawed D5 and D6 blastocysts and their relationship with pregnancy outcomes. J. Assist. Reprod. Genet. 2016, 33, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Van Blerkom, J.; Davis, P.; Alexander, S. Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: Relationship to microtubular organization, ATP content and competence. Hum. Reprod. 2000, 15, 2621–2633. [Google Scholar] [CrossRef] [PubMed]
- Coticchio, G.; Mignini Renzini, M.; Novara, P.V.; Lain, M.; De Ponti, E.; Turchi, D.; Fadini, R.; Dal Canto, M. Focused time-lapse analysis reveals novel aspects of human fertilization and suggests new parameters of embryo viability. Hum. Reprod. 2018, 33, 23–31. [Google Scholar] [CrossRef]
- Wong, C.C.; Loewke, K.E.; Bossert, N.L.; Behr, B.; De Jonge, C.J.; Baer, T.M.; Reijo Pera, R.A. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat. Biotechnol. 2010, 28, 1115–1121. [Google Scholar] [CrossRef]
- Ezoe, K.; Miki, T.; Okimura, T.; Uchiyama, K.; Yabuuchi, A.; Kobayashi, T.; Kato, K. Characteristics of the cytoplasmic halo during fertilisation correlate with the live birth rate after fresh cleaved embryo transfer on day 2 in minimal ovarian stimulation cycles: A retrospective observational study. Reprod. Biol. Endocrinol. 2021, 19, 172. [Google Scholar] [CrossRef]
- Serrano-Novillo, C. Automatic assessment of Time-Lapse videos using CHLOE-EQ can automate KPI assessment to validate the operational performance of an IVF Clinic. In Proceedings of the ALPHA Biennial Conference, Sevilla, Spain, 6–9 October 2022. [Google Scholar]
- Campbell, A.; Fishel, S.; Bowman, N.; Duffy, S.; Sedler, M.; Thornton, S. Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS. Reprod. Biomed. Online 2013, 27, 140–146. [Google Scholar] [CrossRef]
- Rienzi, L.; Capalbo, A.; Stoppa, M.; Romano, S.; Maggiulli, R.; Albricci, L.; Scarica, C.; Farcomeni, A.; Vajta, G.; Ubaldi, F.M. No evidence of association between blastocyst aneuploidy and morphokinetic assessment in a selected population of poor-prognosis patients: A longitudinal cohort study. Reprod. Biomed. Online 2015, 30, 57–66. [Google Scholar] [CrossRef]
- Kramer, Y.G.; Kofinas, J.D.; Melzer, K.; Noyes, N.; McCaffrey, C.; Buldo-Licciardi, J.; McCulloh, D.H.; Grifo, J.A. Assessing morphokinetic parameters via time lapse microscopy (TLM) to predict euploidy: Are aneuploidy risk classification models universal? J. Assist. Reprod. Genet. 2014, 31, 1231–1242. [Google Scholar] [CrossRef]
Euploid Embryos | Aneuploid Embryos | p-Value | |||
---|---|---|---|---|---|
Mean (h) ± 95% CI | n | Mean (h) ± 95% CI | n | ||
st2 | 1.5 ± 0.9 | 128 | 1.6 ± 0.7 | 157 | 0.03 |
t2 | 2.6 ± 0.5 | 156 | 2.7 ± 0.6 | 216 | ns |
t3 | 12.9 ± 3.4 | 157 | 13.6 ± 2.6 | 215 | 0.05 |
t4 | 14.4 ± 2.4 | 155 | 14.6 ± 2.2 | 213 | ns |
t5 | 25.5 ± 6.1 | 156 | 27.1 ± 4.5 | 215 | 0.004 |
t8 | 34.8 ± 7.4 | 154 | 35.2 ± 7.3 | 213 | ns |
tSC | 54.2 ± 11.5 | 156 | 54.7 ± 11.3 | 216 | ns |
tSB | 73.8 ± 7.0 | 158 | 76.3 ± 7.5 | 216 | 0.001 |
tB | 83.6 ± 7.4 | 151 | 86.2 ± 7.6 | 212 | 0.001 |
t2–st2 | 1.2 ± 0.9 | 128 | 1.1 ± 0.8 | 157 | ns |
cc2 (t3–t2) | 10.4 ± 3.4 | 156 | 10.8 ± 2.9 | 215 | ns |
cc3 (t5–t3) | 12.5 ± 4.8 | 156 | 13.6 ± 2.9 | 215 | 0.006 |
t5–t2 | 22.9 ± 6.2 | 156 | 24.4 ± 4.7 | 215 | 0.008 |
s2 (t4–t3) | 1.5 ± 1.0 | 155 | 1.2 ± 1.3 | 213 | ns |
s3 (t8–t5) | 9.2 ± 3.7 | 154 | 8.3 ± 3.6 | 213 | ns |
tSC–t8 | 19.6 ± 5.5 | 154 | 19.5 ± 5.8 | 213 | ns |
tB–tSB | 9.9 ± 2.6 | 151 | 10.0 ± 2.9 | 212 | ns |
Euploid Embryos | Aneuploid Embryos | p-Value | |
---|---|---|---|
Pattern 0 | 30 (33.7%) | 59 (66.3%) | <0.0001 |
Pattern 1 | 110 (41.5%) | 155 (58.5%) | |
Pattern 2 | 18 (90.0%) | 2 (10.0%) |
Parameter | Odds Ratio | 95% IC | p-Value |
---|---|---|---|
st2 | 0.763 | 1.017–1.936 | 0.04 |
t2 | 1.265 | 0.887–1.844 | ns |
t3 | 1.061 | 0.990–1.138 | ns |
t4 | 1.014 | 0.926–1.110 | ns |
t5 | 1.058 | 0.017–0.097 | 0.005 |
t8 | 1.008 | 0.980–10.37 | ns |
tSC | 1.005 | 0.988–1.023 | ns |
tSB | 1.051 | 1.021–1.083 | <0.001 |
tB | 1.049 | 1.020–1.081 | <0.001 |
t2–st2 | 0.715 | 0.537–0.899 | <0.0001 |
cc2 (t3–t2) | 1.043 | 0.976–1.115 | ns |
cc3 (t5–t3) | 1.080 | 1.022–1.146 | 0.006 |
t5–t2 | 1.053 | 1.013–1.096 | 0.008 |
s2 (t4–t3) | 0.931 | 0.845–1.023 | ns |
s3 (t8–t5) | 0.983 | 0.955–1.013 | ns |
tSC–t8 | 1.000 | 0.983–1.017 | ns |
tB–tSB | 1.006 | 0.961–1.056 | ns |
st2 pattern | 0.635 | 0.468–0.845 | 0.001 |
Parameter | Odds Ratio | 95% IC | p–Value |
---|---|---|---|
st2 | 0.979 | 0.642–1.493 | ns |
t5 | 0.655 | 0.362–1.143 | ns |
tSB | 0.968 | 0.899–1.044 | ns |
tB | 0.984 | 0.916–1.052 | ns |
cc3 (t5–t3) | 1.380 | 0.820–2.398 | ns |
(t5–t2) | 1.012 | 0.8725–1.167 | ns |
st2 pattern | 1.648 | 1.088–2.539 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano-Novillo, C.; Uroz, L.; Márquez, C. Novel Time-Lapse Parameters Correlate with Embryo Ploidy and Suggest an Improvement in Non-Invasive Embryo Selection. J. Clin. Med. 2023, 12, 2983. https://doi.org/10.3390/jcm12082983
Serrano-Novillo C, Uroz L, Márquez C. Novel Time-Lapse Parameters Correlate with Embryo Ploidy and Suggest an Improvement in Non-Invasive Embryo Selection. Journal of Clinical Medicine. 2023; 12(8):2983. https://doi.org/10.3390/jcm12082983
Chicago/Turabian StyleSerrano-Novillo, Clara, Laia Uroz, and Carmen Márquez. 2023. "Novel Time-Lapse Parameters Correlate with Embryo Ploidy and Suggest an Improvement in Non-Invasive Embryo Selection" Journal of Clinical Medicine 12, no. 8: 2983. https://doi.org/10.3390/jcm12082983
APA StyleSerrano-Novillo, C., Uroz, L., & Márquez, C. (2023). Novel Time-Lapse Parameters Correlate with Embryo Ploidy and Suggest an Improvement in Non-Invasive Embryo Selection. Journal of Clinical Medicine, 12(8), 2983. https://doi.org/10.3390/jcm12082983