A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.1.1. Study Participants
2.1.2. Study Assessments
2.1.3. Data Collection
2.1.4. Grading of OCT Images
2.1.5. Outcome Definition
2.2. AI System Development
2.2.1. Data Splitting
2.2.2. Pre-Processing
2.2.3. Augmentation
2.2.4. Model Pipeline
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Treatment Response Prediction Using the AI System
3.3. Comparison of Cohort Selection Methods
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedman, D.S.; O’Colmain, B.J.; Muñoz, B.; Tomany, S.C.; McCarty, C.; De Jong, P.T.V.M.; Nemesure, B.; Mitchell, P.; Kempen, J.; Congdon, N. Prevalence of Age-Related Macular Degeneration in the United States. Arch. Ophthalmol. 2004, 122, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef]
- Ishikawa, M.; Jin, D.; Sawada, Y.; Abe, S.; Yoshitomi, T. Future Therapies of Wet Age-Related Macular Degeneration. J. Ophthalmol. 2015, 2015, 138070. [Google Scholar] [CrossRef]
- Finger, R.P.; Wickremasinghe, S.S.; Baird, P.N.; Guymer, R.H. Predictors of anti-VEGF treatment response in neovascular age-related macular degeneration. Surv. Ophthalmol. 2014, 59, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, P.K. Emerging therapies for neovascular age-related macular degeneration: Drugs in the pipeline. Ophthalmology 2013, 120, S11–S15. [Google Scholar] [CrossRef]
- CATT Research Group; Martin, D. F.; Maguire, M.G.; Ying, G.-S.; Grunwald, E.J.; Fine, S.L.; Jaffe, G.J. Ranibizumab and Bevacizumab for Neovascular Age-Related Macular Degeneration. N. Engl. J. Med. 2011, 364, 1897–1908. [Google Scholar] [CrossRef]
- Hsu, J.; Regillo, C.D. Poorer Outcomes in Real-World Studies of Anti–Vascular Endothelial Growth Factor Therapy for Neovascular Age-Related Macular Degeneration. Ophthalmology 2020, 127, 1189–1190. [Google Scholar] [CrossRef]
- Chopra, R.; Preston, G.C.; Keenan, T.D.L.; Mulholland, P.; Patel, P.J.; Balaskas, K.; Hamilton, R.D.; Keane, P.A. Intravitreal injections: Past trends and future projections within a UK tertiary hospital. Eye 2021, 36, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Lanzetta, P.; Lee, W.K.; Lai, C.-C.; Chan, W.-M.; Yang, C.-M.; Cheung, C.M.G.; Koh, A. Recommended Guidelines for Use of Intravitreal Aflibercept With a Treat-and-Extend Regimen for the Management of Neovascular Age-Related Macular Degeneration in the Asia-Pacific Region: Report From a Consensus Panel. Asia-Pac. J. Ophthalmol. 2017, 6, 296–302. [Google Scholar] [CrossRef]
- Harrer, S.; Shah, P.; Antony, B.; Hu, J. Artificial Intelligence for Clinical Trial Design. Trends Pharmacol. Sci. 2019, 40, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, A. Artificial intelligence in managing clinical trial design and conduct: Man and machine still on the learning curve? Perspect. Clin. Res. 2021, 12, 1–3. [Google Scholar] [CrossRef]
- Maharjan, J.; Ektefaie, Y.; Ryan, L.; Mataraso, S.; Barnes, G.; Shokouhi, S.; Green-Saxena, A.; Calvert, J.; Mao, Q.; Das, R. Enriching the Study Population for Ischemic Stroke Therapeutic Trials Using a Machine Learning Algorithm. Front. Neurol. 2022, 12, 784250. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Spaide, R.F.; Jaffe, G.J.; Sarraf, D.; Freund, K.B.; Sadda, S.R.; Staurenghi, G.; Waheed, N.K.; Chakravarthy, U.; Rosenfeld, P.J.; Holz, F.G.; et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data. Ophthalmology 2020, 127, 616–636. [Google Scholar] [CrossRef] [PubMed]
- Daubechies, I. Ten Lectures on Wavelets; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1992. [Google Scholar]
- Golts, A.; Raboh, M.; Polaczek, S.; Hazan, L.; itaijj; Yoel, S.; Dekel, A.; Shats, D.; Ozery-Flato, M.; Rodríguez, A.F.; et al. IBM/fuse-med-ml: 0.1.12. Zenodo, 2022. Available online: https://zenodo.org/record/7684099 (accessed on 19 December 2022).
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. arXiv 2015, arXiv:1512.04150. [Google Scholar]
- Rabinovici-Cohen, S.; Abutbul, A.; Fernández, X.M.; Cubelos, O.H.; Perek, S.; Tlusty, T. Multimodal Prediction of Breast Cancer Relapse Prior to Neoadjuvant Chemotherapy Treatment. In Predictive Intelligence in Medicine; Rekik, I., Adeli, E., Park, S.H., del Valdés Hernández, M.C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 188–199. [Google Scholar]
- Maetschke, S.; Antony, B.; Ishikawa, H.; Wollstein, G.; Schuman, J.; Garnavi, R. A feature agnostic approach for glaucoma detection in OCT volumes. PLoS ONE 2019, 14, e0219126. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Raboh, M.; Levanony, D.; Dufort, P.; Sitek, A. Context in medical imaging: The case of focal liver lesion classification. SPIE Proc. 2022, 12032, 120320O. [Google Scholar]
- Kinga, D.; Adam, J.B. A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Antony, B.J.; Maetschke, S.; Garnavi, R. Automated summarisation of SDOCT volumes using deep learning: Transfer learning vs de novo trained networks. PLoS ONE 2019, 14, e0203726. [Google Scholar] [CrossRef]
- Raschka, S. MLxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing stack. J. Open Source Softw. 2018, 3, 638. [Google Scholar] [CrossRef]
- Schmidt-Erfurth, U.; Waldstein, S.M. A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Prog. Retin. Eye Res. 2016, 50, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Schlegl, T.; Waldstein, S.M.; Bogunovic, H.; Endstraßer, F.; Sadeghipour, A.; Philip, A.-M.; Podkowinski, D.; Gerendas, B.S.; Langs, G.; Schmidt-Erfurth, U. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology 2018, 125, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Bogunović, H.; Waldstein, S.M.; Schlegl, T.; Langs, G.; Sadeghipour, A.; Liu, X.; Gerendas, B.S.; Osborne, A.; Schmidt-Erfurth, U. Prediction of Anti-VEGF Treatment Requirements in Neovascular AMD Using a Machine Learning Approach. Investig. Opthalmology Vis. Sci. 2017, 58, 3240–3248. [Google Scholar] [CrossRef]
- Schmidt-Erfurth, U.; Bogunovic, H.; Sadeghipour, A.; Schlegl, T.; Langs, G.; Gerendas, B.S.; Osborne, A.; Waldstein, S.M. Machine Learning to Analyze the Prognostic Value of Current Imaging Biomarkers in Neovascular Age-Related Macular Degeneration. Ophthalmol. Retin. 2018, 2, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Rakocz, N.; Chiang, J.N.; Nittala, M.G.; Corradetti, G.; Tiosano, L.; Velaga, S.; Thompson, M.; Hill, B.L.; Sankararaman, S.; Haines, J.L.; et al. Automated identification of clinical features from sparsely annotated 3-dimensional medical imaging. NPJ Digit. Med. 2021, 4, 44. [Google Scholar] [CrossRef] [PubMed]
- Burlina, P.; Paul, W.; Liu, T.Y.A.; Bressler, N.M. Detecting Anomalies in Retinal Diseases Using Generative, Discriminative, and Self-supervised Deep Learning. JAMA Ophthalmol. 2022, 140, 185. [Google Scholar] [CrossRef]
- Burlina, P.; Joshi, N.; Bressler, N.M. AI-based AMD Analysis: A Review of Recent Progress. In Computer Vision—ACCV 2018 Workshops; Carneiro, G., You, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 303–308. [Google Scholar]
- Kodjikian, L.; Decullier, E.; Souied, E.H.; Roux, A.; Aulagner, G.; Huot, L. Predictors of one-year visual outcomes after anti-vascular endothelial growth factor treatment for neovascular age-related macular degeneration. Retina 2018, 38, 1492–1499. [Google Scholar] [CrossRef]
- Heier, J.S.; Khanani, A.M.; Ruiz, C.Q.; Basu, K.; Ferrone, P.J.; Brittain, C.; Figueroa, M.S.; Lin, H.; Holz, F.G.; Patel, V.; et al. Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): Two randomised, double-masked, phase 3, non-inferiority trials. Lancet 2022, 399, 729–740. [Google Scholar] [CrossRef]
- Nicolò, M.; Ferro Desideri, L.; Vagge, A.; Traverso, C.E. Faricimab: An investigational agent targeting the Tie-2/angiopoietin pathway and VEGF-A for the treatment of retinal diseases. Expert Opin. Invest. Drugs 2021, 30, 193–200. [Google Scholar] [CrossRef]
- Dugel, P.U.; Koh, A.; Ogura, Y.; Jaffe, G.J.; Schmidt-Erfurth, U.; Brown, D.M.; Gomes, A.V.; Warburton, J.; Weichselberger, A.; Holz, F.G. HAWK and HARRIER: Phase 3, Multicenter, Randomized, Double-Masked Trials of Brolucizumab for Neovascular Age-Related Macular Degeneration. Ophthalmology 2020, 127, 72–84. [Google Scholar] [CrossRef]
- Temple, R. Enrichment of Clinical Study Populations. Clin. Pharmacol. Ther. 2010, 88, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Woo, M. An AI boost for clinical trials. Nature 2019, 573, S100–S102. [Google Scholar] [CrossRef]
- Liu, R.; Rizzo, S.; Whipple, S.; Pal, N.; Pineda, A.L.; Lu, M.; Arnieri, B.; Lu, Y.; Capra, W.; Copping, R.; et al. Evaluating eligibility criteria of oncology trials using real-world data and AI. Nature 2021, 592, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Kendall, F.; Khozin, S.; Goosen, R.; Hu, J.; Laramie, J.; Ringel, M.; Schork, N. Artificial intelligence and machine learning in clinical development: A translational perspective. NPJ Digit. Med. 2019, 2, 69. [Google Scholar] [CrossRef] [PubMed]
Standard Protocol | Short Protocol | |
---|---|---|
No. of patients | 1103 | 509 |
No. of eyes | 1170 | 550 |
Therapy course, days * | 117 ± 6 | 91 ± 6 |
Last injection to observation, days * | 58 ± 3 | 32 ± 6 |
Age, years * | 80 ± 8 | 79 ± 8 |
Sex: Female, n (%) | 728 (62.2) | 324 (58.9) |
Ethnicity: White, n (%) | 1070 (91.5) | 515 (93.6) |
South Asian, n (%) | 6 (0.5) | 10 (1.8) |
Other, n (%) | 94 (8) | 25 (4.5) |
Remaining retinal fluid post loading-phase | 694 (59.3) | 206 (37.5) |
No. of Eyes | Eyes with no Macular Fluid | Eyes with Macular Fluid | Adjusted p-Value | |
---|---|---|---|---|
Age * | 1170 (100) | 82 [77, 87] | 79 [73, 84] | 2.97 × 10−11 |
Sex | 1170 (100) | 67% | 59% | 3.93 × 10−3 |
CST * | 1169 (99.9) | 0.34 [0.27, 0.43] | 0.38 [0.31, 0.48] | 1.23 × 10−6 |
Visual acuity * | 1125 (96.2) | 60 [50.00, 68.25] | 60 [48.00, 70.00] | 0.271 |
Standard | Standard Applied to Short | Standard Tuned on Short | |
---|---|---|---|
Logistic regression | 0.63 [0.56, 0.71] | 0.60 [0.55, 0.65] | 0.64 [0.55, 0.72] |
Convolutional neural network | 0.70 [0.63, 0.77] | 0.60 [0.55, 0.65] | 0.67 [0.59, 0.75] |
Final ensemble score | 0.71 [0.64, 0.78] | 0.62 [0.57, 0.66] | 0.68 [0.61, 0.76] |
90% sensitivity operating point | |||
Sensitivity | 0.87 [0.81, 0.92] | 0.86 [0.81, 0.91] | 0.89 [0.82, 0.97] |
Specificity | 0.38 [0.29, 0.49] | 0.23 [0.19, 0.28] | 0.31 [0.23, 0.39] |
90% specificity operating point | |||
Sensitivity | 0.26 [0.17, 0.32] | 0.26 [0.19, 0.31] | 0.20 [0.16, 0.37] |
Specificity | 0.94 [0.88, 0.98] | 0.85 [0.81, 0.88] | 0.93 [0.85, 0.96] |
Cohort Size (No. of Eyes) | AI | CST | Age | Random | % AI Increase | % AI Increase from Random |
---|---|---|---|---|---|---|
20 | 0.93 | 0.81 | 0.71 | 0.59 | 14.81 | 57.63 |
50 | 0.82 | 0.65 | 0.66 | 0.59 | 24.24 | 38.98 |
70 | 0.78 | 0.66 | 0.62 | 0.59 | 18.18 | 32.20 |
100 | 0.74 | 0.65 | 0.64 | 0.59 | 13.85 | 25.42 |
120 | 0.72 | 0.64 | 0.63 | 0.59 | 12.50 | 22.03 |
150 | 0.70 | 0.64 | 0.61 | 0.59 | 9.37 | 18.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chorev, M.; Haderlein, J.; Chandra, S.; Menon, G.; Burton, B.J.L.; Pearce, I.; McKibbin, M.; Thottarath, S.; Karatsai, E.; Chandak, S.; et al. A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1. J. Clin. Med. 2023, 12, 3013. https://doi.org/10.3390/jcm12083013
Chorev M, Haderlein J, Chandra S, Menon G, Burton BJL, Pearce I, McKibbin M, Thottarath S, Karatsai E, Chandak S, et al. A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1. Journal of Clinical Medicine. 2023; 12(8):3013. https://doi.org/10.3390/jcm12083013
Chicago/Turabian StyleChorev, Michal, Jonas Haderlein, Shruti Chandra, Geeta Menon, Benjamin J. L. Burton, Ian Pearce, Martin McKibbin, Sridevi Thottarath, Eleni Karatsai, Swati Chandak, and et al. 2023. "A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1" Journal of Clinical Medicine 12, no. 8: 3013. https://doi.org/10.3390/jcm12083013
APA StyleChorev, M., Haderlein, J., Chandra, S., Menon, G., Burton, B. J. L., Pearce, I., McKibbin, M., Thottarath, S., Karatsai, E., Chandak, S., Kotagiri, A., Talks, J., Grabowska, A., Ghanchi, F., Gale, R., Hamilton, R., Antony, B., Garnavi, R., Mareels, I., ... Sivaprasad, S. (2023). A Multi-Modal AI-Driven Cohort Selection Tool to Predict Suboptimal Non-Responders to Aflibercept Loading-Phase for Neovascular Age-Related Macular Degeneration: PRECISE Study Report 1. Journal of Clinical Medicine, 12(8), 3013. https://doi.org/10.3390/jcm12083013