Prognostic Optical Coherence Tomography Biomarkers in Neovascular Age-Related Macular Degeneration
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Central Retinal Thickness
3.2. Retinal Fluid
3.2.1. Intra-Retinal
3.2.2. Sub-Retinal
3.3. Outer-Retinal Damage
3.4. Hyper-Reflective Material
3.5. Hyperreflecive Foci (HRF)
3.6. Pigment Epithelial Detatchment
3.7. RPE Rips
3.8. Choroidal Thickness
3.9. Choroidal Layers
3.10. Drusen Measurements
3.11. Vitreomacular Interface
3.12. Non-Exudative Lesions
4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [PubMed]
- Chappelow, A.V.; Kaiser, P.K. Neovascular age-related macular degeneration: Potential therapies. Drugs 2008, 68, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Regatieri, C.; Branchini, L.; Duker, J.S. The role of spectral-domain OCT in the diagnosis and management of neovascular age-related macular degeneration. Ophthalmic Surg. Lasers Imaging Retin. 2011, 42, S56–S66. [Google Scholar] [CrossRef] [PubMed]
- Lanzetta, P.; Loewenstein, A. Vision Academy Steering Committee. Fundamental principles of an anti-VEGF treatment regimen: Optimal application of intravitreal anti–vascular endothelial growth factor therapy of macular diseases. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 1259–1273. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.-T.; Hsieh, Y.-T.; Yang, C.-M.; Ho, T.-C.; Yang, C.-H. Biomarkers of optical coherence tomography in evaluating the treatment outcomes of neovascular age-related macular degeneration: A real-world study. Sci. Rep. 2019, 9, 529. [Google Scholar] [CrossRef]
- Gualino, V.; Tadayoni, R.; Cohen, S.Y.; Erginay, A.; Fajnkuchen, F.; Haouchine, B.; Krivosic, V.; Quentel, G.; Vicaut, E.; Gaudric, A. Optical coherence tomography, fluorescein angiography, and diagnosis of choroidal neovascularization in age-related macular degeneration. Retina Phila. Pa. 2019, 39, 1664. [Google Scholar] [CrossRef]
- Usman, M.; Iqbal, K.; Ali, M.H.; Nafees, K. Features and diagnostic accuracy of optical coherence tomography angiography in neovascular age-related macular degeneration. Cureus 2019, 28, 12. [Google Scholar] [CrossRef]
- Sivaprasad, S.; Banister, K.; Azuro-Blanco, A.; Goulao, B.; Cook, J.A.; Hogg, R.; Scotland, G.; Heimann, H.; Lotery, A.; Ghanchi, F.; et al. Diagnostic Accuracy of Monitoring Tests of Fellow Eyes in Patients with Unilateral Neovascular Age-Related Macular Degeneration: Early Detection of Neovascular Age-Related Macular Degeneration Study. Ophthalmology 2021, 128, 1736–1747. [Google Scholar] [CrossRef]
- Schmidt-Erfurth, U.; Waldstein, S.M. A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Prog. Retin. Eye Res. 2016, 50, 1–24. [Google Scholar] [CrossRef]
- Phadikar, P.; Saxena, S.; Ruia, S.; Lai, T.Y.Y.; Meyer, C.H.; Eliott, D. The potential of spectral domain optical coherence tomography imaging based retinal biomarkers. Int. J. Retin. Vitr. 2017, 3, 1. [Google Scholar] [CrossRef]
- Ciucci, F.; Ioele, G.; Bardocci, A.; Lofoco, G.; Antonelli, B.; De Gaetano, C.; Polimanti, G.; De Luca, M.; Ragno, G.; Gattegna, R. Central retinal thickness fluctuations in patients treated with anti-VEGF for neovascular age related macular degeneration. Eur. J. Ophthalmol. 2021, 32, 2388–2394. [Google Scholar] [CrossRef] [PubMed]
- Holz, F.G.; Amoaku, W.; Donate, J.; Guymer, R.; Kellner, U.; Schlingemann, R.O.; Weichselberger, A.; Staurenghi, G. SUSTAIN Study Group. Safety and efficacy of a flexible dosing regimen of ranibizumab in neovascular age-related macular degeneration: The SUSTAIN study. Ophthalmology 2011, 118, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Lalwani, G.A.; Rosenfeld, P.J.; Fung, A.E.; Dubovy, S.R.; Michels, S.; Feuer, W.; Davis, J.L.; Flynn, H.W., Jr.; Esquiabro, M. A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: Year 2 of the PrONTO Study. Am. J. Ophthalmol. 2009, 148, 43–58. [Google Scholar] [CrossRef]
- EEvans, R.N.; Reeves, B.C.; Maguire, M.G.; Martin, D.F.; Muldrew, A.; Peto, T.; Rogers, C.; Chakravarthy, U. Associations of variation in retinal thickness with visual acuity and anatomic outcomes in eyes with neovascular age-related macular degeneration lesions treated with anti–vascular endothelial growth factor agents. JAMA Ophthalmol. 2020, 138, 1043–1051. [Google Scholar] [CrossRef]
- Kaiser, P.K.; Wykoff, C.C.M.; Singh, R.P.; Khanani, A.M.M.; Do, D.V.; Patel, H.O.; Patel, N. Retinal fluid and thickness as measures of disease activity in neovascular age-related macular degeneration. Retina 2021, 41, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Ying, G.S.; Maguire, M.G.; Daniel, E.; Ferris, F.L.; Jaffe, G.J.; Grunwald, J.E.; Toth, C.A.; Huang, J.; Martin, D.F. Comparison of Age-Related Macular Degeneration Treatments Trials (CATT) Research Group. Association of baseline characteristics and early vision response with 2-year vision outcomes in the Comparison of AMD Treatments Trials (CATT). Ophthalmology 2015, 122, 2523–2531. [Google Scholar] [CrossRef] [PubMed]
- Simader, C.; Ritter, M.; Bolz, M.; Deák, G.G.; Mayr-Sponer, U.; Golbaz, I.; Kundi, M.; Schmidt-Erfurth, U.M. Morphologic parameters relevant for visual outcome during anti-angiogenic therapy of neovascular age-related macular degeneration. Ophthalmology 2014, 121, 1237–1245. [Google Scholar] [CrossRef]
- Chaudhary, V.; Holz, F.G.; Wolf, S.; Midena, E.; Souied, E.H.; Allmeier, H.; Lambrou, G.; Machewitz, T.; Mitchell, P. Association between Visual Acuity and Fluid Compartments with Treat-and-Extend Intravitreal Aflibercept in Neovascular Age-Related Macular Degeneration: An ARIES Post Hoc Analysis. Ophthalmol. Ther. 2022, 11, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Rashno, A.; Nazari, B.; Koozekanani, D.D.; Drayna, P.M.; Sadri, S.; Rabbani, H.; Parhi, K.K. Fully-automated segmentation of fluid regions in exudative age-related macular degeneration subjects: Kernel graph cut in neutrosophic domain. PLoS ONE 2017, 12, e0186949. [Google Scholar] [CrossRef]
- Riedl, S.; Vogl, W.-D.; Waldstein, S.M.; Schmidt-Erfurth, U.; Bogunović, H. Impact of intra-and subretinal fluid on vision based on volume quantification in the HARBOR trial. Ophthalmol. Retin. 2022, 6, 291–297. [Google Scholar] [CrossRef]
- Sadda, S.; Holekamp, N.M.; Sarraf, D.; Ebraheem, A.; Fan, W.; Hill, L.; Blotner, S.; Spicer, G.; Gune, S. Relationship between retinal fluid characteristics and vision in neovascular age-related macular degeneration: HARBOR post hoc analysis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 3781–3789. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, N.; Parachuri, N.; Bandello, F.; Kuppermann, B.D.; Loewenstein, A.; Sadda, S.R.; Sarraf, D. Understanding the Mechanisms of Fluid Development in Age-Related Macular Degeneration. Ophthalmol. Retin. 2021, 5, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, G.J.; Martin, D.F.; Toth, C.A.; Daniel, E.; Maguire, M.G.; Ying, G.-S.; Grunwald, J.E.; Huang, J. Macular Morphology and Visual Acuity in the Comparison of Age-related Macular Degeneration Treatments Trials. Ophthalmology 2013, 120, 1860–1870. [Google Scholar] [CrossRef]
- Waldstein, S.M.; Wright, J.; Warburton, J.; Margaron, P.; Simader, C.; Schmidt-Erfurth, U. Predictive Value of Retinal Morphology for Visual Acuity Outcomes of Different Ranibizumab Treatment Regimens for Neovascular AMD. Ophthalmology 2015, 123, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Ritter, M.; Simader, C.; Bolz, M.; Deák, G.G.; Mayr-Sponer, U.; Sayegh, R.; Kundi, M.; Schmidt-Erfurth, U. Intraretinal cysts are the most relevant prognostic biomarker in neovascular age-related macular degeneration independent of the therapeutic strategy. Br. J. Ophthalmol. 2014, 98, 1629–1635. [Google Scholar] [CrossRef]
- Chakravarthy, U.; Pillai, N.; Syntosi, A.; Barclay, L.; Best, C.; Sagkriotis, A. Association between visual acuity, lesion activity markers and retreatment decisions in neovascular age-related macular degeneration. Eye 2020, 34, 2249–2256. [Google Scholar] [CrossRef] [PubMed]
- Jeng, Y.T.; Lai, T.T.; Lin, C.W.; Chen, T.C.; Hsieh, Y.T.; Lin, C.P.; Ho, T.C.; Yang, C.M.; Yang, C.H. The impact of retinal fluid tolerance on the outcomes of neovascular age-related macular degeneration treated using aflibercept: A real-world study. PLoS ONE 2022, 17, e0271999. [Google Scholar] [CrossRef]
- Kim, K.T.; Chae, J.B.; Lee, S.; Seo, E.J.; Kim, D.Y. Analyses of the effects of persistent subretinal fluid on visual/anatomic outcomes according to the type of macular neovascularization during the relaxed treat-and-extend protocol in age-related macular degeneration patients. BMC Ophthalmol. 2021, 21, 294. [Google Scholar] [CrossRef]
- Guymer, R.H.; Markey, C.M.; McAllister, I.L.; Gillies, M.C.; Hunyor, A.P.; Arnold, J.J. Tolerating subretinal fluid in neovascular age-related macular degeneration treated with ranibizumab using a treat-and-extend regimen: FLUID study 24-month results. Ophthalmology 2019, 126, 723–734. [Google Scholar] [CrossRef]
- Jaffe, G.J.; Ying, G.-S.; Toth, C.A.; Daniel, E.; Grunwald, J.E.; Martin, D.F.; Maguire, M.G. Macular Morphology and Visual Acuity in Year Five of the Comparison of Age-related Macular Degeneration Treatments Trials. Ophthalmology 2019, 126, 252–260. [Google Scholar] [CrossRef]
- Yildiz, D.; Cakir, A.; Erden, B.; Bolukbasi, S.; Erdenöz, S.; Elcioglu, M.N. Tolerating subretinal fluid in the treatment of neovascular age-related macular degeneration with intravitreal aflibercept. Ther. Adv. Ophthalmol. 2021, 13, 25158414211022874. [Google Scholar] [CrossRef] [PubMed]
- Mitamura, Y.; Mitamura-Aizawa, S.; Katome, T.; Naito, T.; Hagiwara, A.; Kumagai, K.; Yamamoto, S. Photoreceptor impairment and restoration on optical coherence tomographic image. J. Ophthalmol. 2013, 2013, 518170. [Google Scholar] [CrossRef]
- Zweifel, S.A.; Engelbert, M.; Laud, K.; Margolis, R.; Spaide, R.F.; Freund, K.B. Outer retinal tubulation: A novel optical coherence tomography finding. Arch. Ophthalmol. 2009, 127, 1596–1602, Erratum in Arch Ophthalmol. 2012, 130, 856. [Google Scholar] [CrossRef]
- Kurysheva, N.I.; Pererva, O.A.; Ivanova, A.A. Morfologiya naruzhnykh retinal’nykh tubulyatsii v iskhode vlazhnoi formy vozrastnoi makulyarnoi degeneratsii po dannym opticheskoi kogerentnoi tomografii s funktsiei angiografii [Morphology of outer retinal tubulations in the outcome of exudative age-related macular degeneration according to optical coherence tomography angiography]. Vestnik oftal’mologii 2021, 137, 72–80. (In Russian) [Google Scholar] [CrossRef]
- Ooto, S.; Vongkulsiri, S.; Sato, T.; Suzuki, M.; Curcio, C.A.; Spaide, R.F. Outer Retinal Corrugations in Age-Related Macular Degeneration. JAMA Ophthalmol. 2014, 132, 806–813. [Google Scholar] [CrossRef]
- Metrangolo, C.; Donati, S.; Mazzola, M.; Fontanel, L.; Messina, W.; D’alterio, G.; Rubino, M.; Radice, P.; Premi, E.; Azzolini, C. OCT Biomarkers in Neovascular Age-Related Macular Degeneration: A Narrative Review. J. Ophthalmol. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Lee, H.; Kang, K.E.; Chung, H.; Kim, H.C. Automated Segmentation of Lesions Including Subretinal Hyperreflective Material in Neovascular Age-related Macular Degeneration. Am. J. Ophthalmol. 2018, 191, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, A.S.; Ying, G.-S.; Toth, C.A.; Maguire, M.G.; Burns, R.E.; Grunwald, J.E.; Daniel, E.; Jaffe, G.J.; Williams, D.F.; Beardsley, S.; et al. Comparison of Age-Related Macular Degeneration Treatments Trials Research Group. Subretinal Hyperreflective Material in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology 2015, 122, 1846–1853.e5. [Google Scholar] [CrossRef]
- Ehlers, J.P.; Zahid, R.; Kaiser, P.K.; Heier, J.S.; Brown, D.M.; Meng, X.; Reese, J.; Le, T.K.; Lunasco, L.; Hu, M.; et al. Longitudinal Assessment of Ellipsoid Zone Integrity, Subretinal Hyperreflective Material, and Subretinal Pigment Epithelium Disease in Neovascular Age-Related Macular Degeneration. Ophthalmol. Retin. 2021, 5, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.B.; Stinnett, S.; Han, J.I.L.; Jaffe, G.J. Correlation of Subretinal Hyperreflective Material Morphology And Visual Acuity In Neovascular Age-Related Macular Degeneration. Retina 2020, 40, 845–856, Erratum in Retina 2021, 41, e27. [Google Scholar] [CrossRef]
- Daniel, E.; Toth, C.A.; Grunwald, J.E.; Jaffe, G.J.; Martin, D.F.; Fine, S.L.; Huang, J.; Ying, G.-S.; Hagstrom, S.A.; Winter, K.; et al. Comparison of Age-related Macular Degeneration Treatments Trials Research Group. Risk of scar in the comparison of age-related macular degeneration treatments trials. Ophthalmology 2013, 121, 656–666. [Google Scholar] [CrossRef] [PubMed]
- Coscas, G.; Coscas, F.; Vismara, S.; Zourdani, A.; Li Calzi, C.I.; Coscas, G.; Coscas, F.; Vismara, S.; Zourdani, A.; Li Calzi, C.I. Clinical Features and Natural History of AMD Optical Coherence Tomography in Age-Related Macular Degeneration; Heidelberg Springer: Berlin/Heidelberg, Germany, 2009; pp. 171–174. [Google Scholar]
- Christenbury, J.G.; Folgar, F.A.; O’Connell, R.V.; Chiu, S.J.; Farsiu, S.; Toth, C.A. Age-related Eye Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group. Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci. Ophthalmology 2013, 120, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Coscas, G.; De Benedetto, U.; Coscas, F.; Calzi, C.I.L.; Vismara, S.; Roudot-Thoraval, F.; Bandello, F.; Souied, E. Hyperreflective dots a newspectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration. Ophthalmologica 2013, 229, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Cheong, K.X.; Teo, K.Y.C.; Cheung, C.M.G. Influence of pigment epithelial detachment on visual acuity in neovascular age-related macular degeneration. Surv. Ophthalmol. 2020, 66, 68–97. [Google Scholar] [CrossRef]
- Mrejen, S.; Sarraf, D.; Mukkamala, S.K.; Freund, K.B. Multimodal Imaging of Pigment Epithelial Detachment: A Guide to Evaluation. Retina 2013, 33, 1735–1762. [Google Scholar] [CrossRef]
- Roquet, W.; Roudot-Thoraval, F.; Coscas, G.; Soubrane, G. Clinical features of drusenoid pigment epithelial detachment in age related macular degeneration. Br. J. Ophthalmol. 2004, 88, 638–642. [Google Scholar] [CrossRef] [PubMed]
- Pauleikhoff, D.; Harper, C.A.; Marshall, J.; Bird, A.C. Aging changes in Bruch’s membrane. A histochemical and morphologic study. Ophthalmology 1990, 97, 171–178. [Google Scholar] [CrossRef]
- Lommatzsch, A.; Heimes, B.; Gutfleisch, M.; Spital, G.; Zeimer, M.; Pauleikhoff, D. Serous pigment epithelial detachment in age-related macular degeneration: Comparison of different treatments. Eye 2009, 23, 2163–2168. [Google Scholar] [CrossRef]
- Hoerster, R.; Muether, P.S.; Sitnilska, V.; Kirchhof, B.; Fauser, S. Fibrovascular Pigment Epithelial Detachment is a Risk Factor for Long-Term Visual Decay in Neovascular Age-Related Macular Degeneretion. Retina 2014, 34, 1767–1773. [Google Scholar] [CrossRef]
- Holz, F.G.; Sheraidah, G.; Pauleikhoff, D.; Bird, A.C. Analysis of lipid deposits extracted from human macular and peripheral Bruch’s membrane. Arch. Ophthalmol. 1994, 112, 402–406. [Google Scholar] [CrossRef]
- Curcio, C. Photoreceptor topography in ageing and age-related maculopathy. Eye 2001, 15, 376–383. [Google Scholar] [CrossRef]
- Selvam, A.; Singh, S.R.; Arora, S.; Patel, M.; Kuchhal, A.; Shah, S.; Ong, J.; Rasheed, M.A.; Manne, S.R.; Ibrahim, M.N.; et al. Pigment epithelial detachment composition indices (PEDCI) in neovascular age-related macular degeneration. Sci. Rep. 2023, 13, 68. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, J.Y.; Lee, D.W.; Kim, C.G.; Kim, J.W. Fibrovascular pigment epithelial detachment in eyes with subretinal hemorrhage secondary to neovascular AMD or PCV: A morphologic predictor associated with poor treatment outcomes. Sci. Rep. 2020, 10, 14943. [Google Scholar] [CrossRef]
- Alex, D.; Giridhar, A.; Gopalakrishnan, M.; Indurkhya, S.; Madan, S. Subretinal hyperreflective material morphology in neovascular age-related macular degeneration: A case control study. Indian J. Ophthalmol. 2021, 69, 1862–1866. [Google Scholar] [CrossRef] [PubMed]
- Chiang, A.; Chang, L.K.; Yu, F.; Sarraf, D. Predictors of anti-VEGF-associated retinal pigment epithelial tear using FA and OCT analysis. Retina 2008, 28, 1265–1269. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.K.; Abraham, P.; Meyer, C.H.; Kokame, G.T.; Kaiser, P.K.; Rauser, M.E.; Gross, J.G.; Nuthi, A.S.; Lin, S.G.; Daher, N.S. Optical coherence tomography-measured pigment epithelial detachment height as a predictor for retinal pigment epithelial tears associated with intravitreal bevacizumab injections. Retina 2010, 30, 203–211. [Google Scholar] [CrossRef]
- Sarraf, D.; Chan, C.; Rahimy, E.; Abraham, P. Prospective evaluation of the incidence and risk factors for the development of RPE tears after high- and low-dose ranibizumab therapy. Retina 2013, 33, 1551–1557. [Google Scholar] [CrossRef]
- Cho, H.J.; Kim, H.S.; Yoo, S.G.; Han, J.I.; Lew, Y.J.; Cho, S.W.; Lee, T.G.; Kim, J.W. Retinal Pigment Epithelial Tear After Intravitreal Ranibizumab Treatment for Neovascular Age-Related Macular Degeneration. Retina 2016, 36, 1851–1859. [Google Scholar] [CrossRef] [PubMed]
- Sastre-Ibáñez, M.; Martínez-Rubio, C.; Molina-Pallete, R.; Martínez-López-Corell, P.; Wu, L.; Arévalo, J.F.; Gallego-Pinazo, R. Retinal pigment epithelial tears. J. Fr. Ophtalmol. 2018, 42, 63–72. [Google Scholar] [CrossRef]
- Moroz, I.; Moisseiev, J.; Alhalel, A. Optical coherence tomography predictors of retinal pigment epithelial tear following intravitreal bevacizumab injection. Ophthalmic Surg. Lasers Imaging Retin. 2009, 40, 570–575. [Google Scholar] [CrossRef]
- Shiraki, K.; Kohno, T.; Ataka, S.; Abe, K.; Inoue, K.; Miki, T. Thinning and small holes at an impending tear of a retinal pigment epithelial detachment. Graefe’s Arch. Clin. Exp. Ophthalmol. 2001, 239, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Rachitskaya, A.V.; Goldhardt, R. Retinal Pigment Epithelium Tear. Curr. Ophthalmol. Rep. 2014, 3, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, A.; Nguyen, V.; Arnold, J.; Young, S.; Barthelmes, D.; Gillies, M.C. Early and Late Retinal Pigment Epithelium Tears after Anti-Vascular Endothelial Growth Factor Therapy for Neovascular Age-Related Macular Degeneration. Ophthalmology 2018, 125, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Manjunath, V.; Goren, J.; Fujimoto, J.G.; Duker, J.S. Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography. Am. J. Ophthalmol. 2011, 152, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.B.; Forster, T.M.; Steinmetz, P.; Schlichtenbrede, F.C.; Harder, B.C. Choroidal thickness in age-related macular degeneration. Retina 2014, 34, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Sigler, E.J.; Randolph, J.C. Comparison of Macular Choroidal Thickness Among Patients Older Than Age 65 With Early Atrophic Age-Related Macular Degeneration and Normals. Investig. Opthalmology Vis. Sci. 2013, 54, 6307–6313. [Google Scholar] [CrossRef] [PubMed]
- Ciulla, T.; Harris, A.; Kagemann, L.; Danis, R.P.; Pratt, L.M.; Chung, H.S.; Weinberger, D.; Garzozi, H.J. Choroidal perfusion perturbations in non-neovascular age related macular degeneration. Br. J. Ophthalmol. 2002, 86, 209–213. [Google Scholar] [CrossRef]
- Fragiotta, S.; Scuderi, L.; Iodice, C.M.; Rullo, D.; Di Pippo, M.; Maugliani, E.; Abdolrahimzadeh, S. Choroidal Vasculature Changes in Age-Related Macular Degeneration: From a Molecular to a Clinical Perspective. Int. J. Mol. Sci. 2022, 23, 12010. [Google Scholar] [CrossRef]
- Yun, C.; Oh, J.; Ahn, J.; Hwang, S.-Y.; Lee, B.; Kim, S.-W.; Huh, K. Comparison of intravitreal aflibercept and ranibizumab injections on subfoveal and peripapillary choroidal thickness in eyes with neovascular age-related macular degeneration. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 1693–1702. [Google Scholar] [CrossRef]
- Bae, K.W.; Kim, D.I.; Hwang, D.D.-J. The effect of intravitreal brolucizumab on choroidal thickness in patients with neovascular age-related macular degeneration. Sci. Rep. 2022, 12, 19855. [Google Scholar] [CrossRef]
- Govetto, A.; Sarraf, D.; Figueroa, M.S.; Pierro, L.; Ippolito, M.; Risser, G.; Bandello, F.; Hubschman, J.P. Choroidal thickness in non-neovascular versus neovascular age-related macular degeneration: A fellow eye comparative study. Br. J. Ophthalmol. 2016, 101, 764–769. [Google Scholar] [CrossRef]
- Kong, M.; Choi, D.Y.; Han, G.; Song, Y.-M.; Park, S.Y.; Sung, J.; Hwang, S.; Ham, D.-I. Measurable Range of Subfoveal Choroidal Thickness with Conventional Spectral Domain Optical Coherence Tomography. Transl. Vis. Sci. Technol. 2018, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Ünlü, C.; Erdogan, G.; Gunay, B.O.; Akcay, B.I.; Kardes, E. Subfoveal choroidal thickness changes after intravitreal bevacizumab therapy for neovascular age-related macular degeneration. Int. J. Ophthalmol. 2015, 8, 849. [Google Scholar] [PubMed]
- Invernizzi, A.; Benatti, E.; Cozzi, M.; Erba, S.; Vaishnavi, S.; Vupparaboina, K.K.; Staurenghi, G.; Chhablani, J.; Gillies, M.; Viola, F. Choroidal structural changes correlate with neovascular activity in neovascular age related macular degeneration. Investig. Opthalmology Vis. Sci. 2018, 59, 3836–3841. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Martínez, P.; Dolz-Marco, R.; Hervás-Marín, D.; Andreu-Fenoll, M.; Gallego-Pinazo, R.; Arévalo, J.F. Choroidal thickness and visual prognosis in type 1 lesion due to neovascular age-related macular degeneration. Eur. J. Ophthalmol. 2016, 27, 196–200. [Google Scholar] [CrossRef]
- Kang, H.M.; Kwon, H.J.; Yi, J.H.; Lee, C.S.; Lee, S.C. Subfoveal choroidal thickness as a potential predictor of visual outcome and treatment response after intravitreal ranibizumab injections for typical exudative age-related macular degeneration. Am. J. Ophthalmol. 2014, 157, 1013–1021.e1. [Google Scholar] [CrossRef]
- Kumar, J.B.; Wai, K.M.; Ehlers, J.P.; Singh, R.P.; Rachitskaya, A.V. Subfoveal choroidal thickness as a prognostic factor in exudative age-related macular degeneration. Br. J. Ophthalmol. 2018, 103, 918–921. [Google Scholar] [CrossRef]
- Ahn, S.J.; Park, K.H.; Woo, S.J. Subfoveal choroidal thickness changes following anti-vascular endothelial growth factor therapy in myopic choroidal neovascularization. Investig. Ophthalmol. Vis. Sci. 2015, 56, 5794–5800. [Google Scholar] [CrossRef]
- Sizmaz, S.; Kucukerdonmez, C.; Kal, A.; Pinarci, E.Y.; Canan, H.; Yilmaz, G. Retinal and choroidal thickness changes after single anti-VEGF injection in neovascular age-related macular degeneration: Ranibizumab vs bevacizumab. Eur. J. Ophthalmol. 2014, 24, 904–910. [Google Scholar] [CrossRef]
- Gharbiya, M.; Iannetti, L.; Parisi, F.; De Vico, U.; Mungo, M.L.; Marenco, M. Visual and anatomical outcomes of intravitreal aflibercept for treatment-resistant neovascular age-related macular degeneration. BioMed Res. Int. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Razavi, S.; Souied, E.H.; Darvizeh, F.; Querques, G. Assessment of Choroidal Topographic Changes by Swept-Source Optical Coherence Tomography After Intravitreal Ranibizumab for Exudative Age-Related Macular Degeneration. Am. J. Ophthalmol. 2015, 160, 1006–1013. [Google Scholar] [CrossRef]
- Lejoyeux, R.; Atia, R.; Vupparaboina, K.K.; Ibrahim, M.N.; Suthaharan, S.; Sahel, J.A.; Dansingani, K.K.; Chhablani, J. En-face analysis of short posterior ciliary arteries crossing the sclera to choroid using wide-field swept-source optical coherence tomography. Sci. Rep. 2021, 11, 8732. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, M.; Prasuhn, M.; Kurz, M.; Holzhey, A.; Rommel, F.; Brinkmann, M.P.; Rades, D.; Grisanti, S. Subfoveal choriocapillaris, Sattler’s and Haller’s layer thickness predict clinical response to stereotactic radiotherapy in neovascular age-related macular degeneration patients. J. Curr. Ophthalmol. 2019, 31, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Nathoo, N.A.; Or, C.; Young, M.; Chui, L.; Fallah, N.; Kirker, A.W.; Albiani, D.A.; Merkur, A.B.; Forooghian, F. Optical coherence tomography-based measurement of drusen load predicts development of advanced age-related macular degeneration. Am. J. Ophthalmol. 2014, 158, 757–761.e1. [Google Scholar] [CrossRef]
- Dieaconescu, D.A.; Dieaconescu, I.M.; Williams, M.A.; Hogg, R.E. Usha Chakravarthy; Drusen Height and Width Are Highly Predictive Markers For Progression To Neovascular AMD. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2910. [Google Scholar]
- Folgar, F.A.; Yuan, E.L.; Sevilla, M.B.; Chiu, S.J.; Farsiu, S.; Chew, E.Y.; Toth, C.A. Age Related Eye Disease Study 2 Ancillary Spectral-Domain Optical Coherence Tomography Study Group. Drusen Volume and Retinal Pigment Epithelium Abnormal Thinning Volume Predict 2-Year Progression of Age-Related Macular Degeneration. Ophthalmology 2015, 123, 39–50.e1. [Google Scholar] [CrossRef]
- Abdelfattah, N.S.; Zhang, H.; Boyer, D.S.; Rosenfeld, P.J.; Feuer, W.J.; Gregori, G.; Sadda, S.R. Drusen Volume as a Predictor of Disease Progression in Patients with Late Age-Related Macular Degeneration in the Fellow Eye. Investig. Ophthalmol. Vis. Sci. 2016, 57, 1839–1846. [Google Scholar] [CrossRef] [PubMed]
- Zweifel, S.A.; Imamura, Y.; Spaide, T.C.; Fujiwara, T.; Spaide, R.F. Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration. Ophthalmology 2010, 117, 1775–1781. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Liu, L.; Liang, X.; Yu, Y.; Liu, X.; Liu, W. Influence of vitreomacular interface on anti-vascular endothelial growth factor treatment outcomes in neovascular age-related macular degeneration: A MOOSE-compliant meta-analysis. Medicine 2017, 96, e9345. [Google Scholar] [CrossRef]
- Xie, P.; Zheng, X.; Yu, Y.; Ye, X.; Hu, Z.; Yuan, D.; Liu, Q. Vitreomacular adhesion or vitreomacular traction may affect antivascular endothelium growth factor treatment for neovascular age-related macular degeneration. Br. J. Ophthalmol. 2017, 101, 1003–1010. [Google Scholar] [CrossRef]
- Kimura, S.; Morizane, Y.; Toshima, S.; Hosogi, M.; Kumase, F.; Hosokawa, M.; Shiode, Y.; Fujiwara, A.; Shiraga, F. Efficacy of vitrectomy and inner limiting membrane peeling in age-related macular degeneration resistant to anti-vascular endothelial growth factor therapy, with vitreomacular traction or epiretinal membrane. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 1731–1736. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, R.; Arora, R.; De Salvo, G.; Stinghe, A.; Severn, P.S.; Pal, B.; Goverdhan, S. Vitreomacular traction affects anti-vascular endothelial growth factor treatment outcomes for exudative age-related macular degeneration. Retina 2015, 35, 1750–1756. [Google Scholar] [CrossRef] [PubMed]
- Laiginhas, R.; Yang, J.; Rosenfeld, P.J.; Falcão, M. Nonexudative Macular Neovascularization—A Systematic Review of Prevalence, Natural History, and Recent Insights from OCT Angiography. Ophthalmol. Retin. 2020, 4, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Querques, G.; Srour, M.; Massamba, N.; Georges, A.; Ben Moussa, N.; Rafaeli, O.; Souied, E.H. Functional characterization and multimodal imaging of treatment-naive “quiescent” choroidal neovascularization. Investig. Ophthalmol. Vis. Sci. 2013, 54, 6886–6892. [Google Scholar] [CrossRef]
- De Fauw, J.; Ledsam, J.R.; Romera-Paredes, B.; Nikolov, S.; Tomasev, N.; Blackwell, S.; Askham, H.; Glorot, X.; O’donoghue, B.; Visentin, D.; et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 2018, 24, 1342–1350. [Google Scholar] [CrossRef]
- Hanson, R.L.W.; Airody, A.; Sivaprasad, S.; Gale, R.P. Optical coherence tomography imaging biomarkers associated with neovascular age-related macular degeneration: A systematic review. Eye 2022, 1–16. [Google Scholar] [CrossRef]
- Keenan, T.D.; Goldstein, M.; Goldenberg, D.; Zur, D.; Shulman, S.; Loewenstein, A. Prospective, longitudinal pilot study: Daily self-imaging with patient-operated home OCT in neovascular age-related macular degeneration. Ophthalmol. Sci. 2021, 1, 100034. [Google Scholar] [CrossRef]
- Kim, J.E.; Tomkins-Netzer, O.; Elman, M.J.; Lally, D.R.; Goldstein, M.; Goldenberg, D.; Shulman, S.; Benyamini, G.; Loewenstein, A. Evaluation of a self-imaging SD-OCT system designed for remote home monitoring. BMC Ophthalmol. 2022, 22, 261. [Google Scholar] [CrossRef]
- Liu, Y.; Holekamp, N.M.; Heier, J.S. Prospective, longitudinal study: Daily self-imaging with home OCT for neovascular age-related macular degeneration. Ophthalmol. Retin. 2022, 6, 575–585. [Google Scholar] [CrossRef]
- Nagiel, A.; Lalane, R.A.; Sadda, S.R.; Schwartz, S.D. Ultra-widefield fundus imaging: A review of clinical applications and future trends. Retina 2016, 36, 660–678. [Google Scholar] [CrossRef]
- Maruyama-Inoue, M.; Kitajima, Y.; Mohamed, S.; Inoue, T.; Sato, S.; Ito, A.; Yamane, S.; Kadonosono, K. Sensitivity and specificity of high-resolution wide field fundus imaging for detecting neovascular age-related macular degeneration. PLoS ONE 2020, 15, e0238072. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Clinical Prognostic Association | Additional Comments |
---|---|---|
Intraretinal fluid (IRF) | Presence associated with poor visual acuity (VA) outcomes | Strong relationship |
Subretinal fluid (SRF) | SRF associated with an improved VA | |
Subretinal hyper-reflective material (SHRM) | Poor VA outcomes with the presence of subretinal hyper-reflective material (HRM) | Increased size and width highly correlated with worse best-corrected visual acuity (BCVA) |
Outer retinal damage | Poor and worsening VA with outer retinal tubulations, but this same relationship is not seen in outer retinal corrugations | |
RPE Rips | Associated with poor VA outcomes at the fovea | |
Hyper-reflective foci (HRF) | HRF following anti-vascular epithelial growth factor (VEGF) treatment associated with a poor VA | |
Choroidal thickness | Better VA if subfoveal choroidal thickness (SFCT) is increased at baseline | No clear consensus on relationship of thickness with VA during treatment |
Central retinal thickness (CRT) | Increased CRT can lead to a decreased BCVA | Variable interpretation of CRT as predictor of outcomes |
Pigment epithelial detachment (PED) | Fibrovascular PED associated with poor VA prognosis | No clear relationship among PED and VA |
Choroidal Layers | Can aid in treatment regimen determination | |
Drusen | Increases can predict age-related macular degeneration (AMD) progression to neovascular (nAMD) | |
Vitreomacular interface abnormalities | Increased abnormalities associated with increased anti-VEGF injections | |
Neovascular lesions with no fluid | If found in the fellow eye of patient with nAMD, increased risk of progression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawash, B.; Ong, J.; Driban, M.; Hwang, J.; Chen, J.; Selvam, A.; Mohan, S.; Chhablani, J. Prognostic Optical Coherence Tomography Biomarkers in Neovascular Age-Related Macular Degeneration. J. Clin. Med. 2023, 12, 3049. https://doi.org/10.3390/jcm12093049
Nawash B, Ong J, Driban M, Hwang J, Chen J, Selvam A, Mohan S, Chhablani J. Prognostic Optical Coherence Tomography Biomarkers in Neovascular Age-Related Macular Degeneration. Journal of Clinical Medicine. 2023; 12(9):3049. https://doi.org/10.3390/jcm12093049
Chicago/Turabian StyleNawash, Baraa, Joshua Ong, Matthew Driban, Jonathan Hwang, Jeffrey Chen, Amrish Selvam, Sashwanthi Mohan, and Jay Chhablani. 2023. "Prognostic Optical Coherence Tomography Biomarkers in Neovascular Age-Related Macular Degeneration" Journal of Clinical Medicine 12, no. 9: 3049. https://doi.org/10.3390/jcm12093049
APA StyleNawash, B., Ong, J., Driban, M., Hwang, J., Chen, J., Selvam, A., Mohan, S., & Chhablani, J. (2023). Prognostic Optical Coherence Tomography Biomarkers in Neovascular Age-Related Macular Degeneration. Journal of Clinical Medicine, 12(9), 3049. https://doi.org/10.3390/jcm12093049