Impact of Prolonged Cessation of Organized Team Training Due to the COVID-19 Pandemic on the Body Composition of Japanese Elite Female Wheelchair Basketball Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design and Data Collection
2.3. Outcome Measurements
2.4. Statistical Analysis
2.5. Ethics
3. Results
3.1. Participants
3.2. Lean Tissue and Fat Tissue Mass
4. Discussion
4.1. Body Composition Differences between the Groups at Baseline
4.2. Impact of Prolonged Cessation of Organized Team Training on Body Composition
4.3. Limitations
4.4. Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watanabe, T.; Yabu, T. Japan’s voluntary lockdown. PLoS ONE 2021, 16, e0252468. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, J.; Kondo, E.; Takai, E.; Eda, N.; Azuma, Y.; Motonaga, K.; Dohi, M.; Kamei, A. The effects of the COVID-19 environments on changes in body composition in Japanese elite fencing athlete. Sports 2021, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Jagim, A.R.; Luedke, J.; Fitzpatrick, A.; Winkelman, G.; Erickson, J.L.; Askow, A.T.; Camic, C.L. The impact of COVID-19-related shutdown measures on the training habits and perceptions of athletes in the United States: A brief research report. Front Sport. Act Living 2020, 2, 623068. [Google Scholar] [CrossRef]
- Martinez-Patino, M.J.; Blas Lopez, F.J.; Dubois, M.; Vilain, E.; Fuentes-Garcia, J.P. Effects of COVID-19 home confinement on behavior, perception of threat, stress and training patterns of olympic and paralympic athletes. Int. J. Environ. Res. Public Health 2021, 18, 12780. [Google Scholar] [CrossRef] [PubMed]
- Washif, J.A.; Farooq, A.; Krug, I.; Pyne, D.B.; Verhagen, E.; Taylor, L.; Wong, D.P.; Mujika, I.; Cortis, C.; Haddad, M.; et al. Training during the COVID-19 lockdown: Knowledge, beliefs, and practices of 12,526 athletes from 142 countries and six continents. Sport. Med. 2022, 52, 933–948. [Google Scholar] [CrossRef] [PubMed]
- Andreato, L.V.; Coimbra, D.R.; Andrade, A. Challenges to athletes during the home confinement caused by the COVID-19 pandemic. Strength Cond. J. 2020, 42, 1–5. [Google Scholar] [CrossRef]
- Trigo, E.L.; Willig, R.; Melo, G.L.; Ahmadi, S.; Costa, S.G.; Almeida, R.M.; Ferreira, M.; Araújo, V.L.; Castilho, R.; Winckler, C. Effects of COVID-19: Relations of sport and disability on the training load and expectation of athletes on road to Tokyo Paralympic Games. Med. Dello Sport 2022, 75, 69–83. [Google Scholar] [CrossRef]
- di Cagno, A.; Buonsenso, A.; Baralla, F.; Grazioli, E.; Di Martino, G.; Lecce, E.; Calcagno, G.; Fiorilli, G. Psychological impact of the quarantine-induced stress during the coronavirus (COVID-19) outbreak among Italian athletes. Int. J. Environ. Res. Public Health 2020, 17, 8867. [Google Scholar] [CrossRef]
- Fiorilli, G.; Buonsenso, A.; Davola, N.; Di Martino, G.; Baralla, F.; Boutious, S.; Centorbi, M.; Calcagno, G.; di Cagno, A. Stress impact of COVID-19 sports restrictions on disabled athletes. Int. J. Environ. Res. Public Health 2021, 18, 12040. [Google Scholar] [CrossRef]
- Myer, G.D.; Faigenbaum, A.D.; Cherny, C.E.; Heidt, R.S., Jr.; Hewett, T.E. Did the NFL Lockout expose the Achilles heel of competitive sports? J. Orthop. Sport. Phys. Ther. 2011, 41, 702–705. [Google Scholar] [CrossRef] [Green Version]
- Grazioli, R.; Loturco, I.; Baroni, B.M.; Oliveira, G.S.; Saciura, V.; Vanoni, E.; Dias, R.; Veeck, F.; Pinto, R.S.; Cadore, E.L. Coronavirus disease-19 quarantine is more detrimental than traditional off-season on physical conditioning of professional soccer players. J. Strength Cond. Res. 2020, 34, 3316–3320. [Google Scholar] [CrossRef] [PubMed]
- Alvurdu, S.; Baykal, C.; Akyildiz, Z.; Senel, O.; Silva, A.F.; Conte, D.; Clemente, F.M. Impact of prolonged absence of organized training on body composition, neuromuscular performance, and aerobic capacity: A study in youth male soccer players exposed to COVID-19 lockdown. Int. J. Environ. Res. Public Health 2022, 19, 1148. [Google Scholar] [CrossRef] [PubMed]
- Dauty, M.; Menu, P.; Fouasson-Chailloux, A. Effects of the COVID-19 confinement period on physical conditions in young elite soccer players. J. Sport. Med. Phys. Fit. 2021, 61, 1252–1257. [Google Scholar] [CrossRef] [PubMed]
- Spyrou, K.; Alcaraz, P.E.; Marín-Cascales, E.; Herrero-Carrasco, R.; Cohen, D.D.; Calleja-Gonzalez, J.; Pereira, L.A.; Loturco, I.; Freitas, T.T. Effects of the COVID-19 lockdown on neuromuscular performance and body composition in elite futsal players. J. Strength Cond. Res 2021, 35, 2309–2315. [Google Scholar] [CrossRef]
- Font, R.; Irurtia, A.; Gutierrez, J.A.; Salas, S.; Vila, E.; Carmona, G. The effects of COVID-19 lockdown on jumping performance and aerobic capacity in elite handball players. Biol. Sport 2021, 38, 753–759. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Rivas, F.; Sánchez-Martínez, G. Effects of COVID-19 lockdown and a subsequent retraining period on elite athletes’ workload, performance, and autonomic responses: A case series. Int. J. Sport. Physiol. Perform. 2021, 16, 1707–1711. [Google Scholar] [CrossRef]
- Gordon, A.N.; Blue, M.N.; Cabre, H.E.; Gould, L.M.; Smith-Ryan, A.E. Body composition of NCAA division I football players pre- and post-COVID-19 stay-at-home advisory. J. Sport. Med. Phys. Fit. 2022, 62, 1662–1667. [Google Scholar] [CrossRef]
- Schipman, J.; Sauliere, G.; Marc, A.; Hamri, I.; Toquin, B.L.E.; Rivallant, Y.; Difernand, A.; Toussaint, J.F.; Sedeaud, A. The COVID-19 pandemic impact on the best performers in athletics and swimming among paralympic and non-disabled athletes. J. Sport. Med. Phys. Fit. 2022, 62, 1605–1614. [Google Scholar] [CrossRef]
- World Health Organization. Disability Considerations During the COVID-19 Outbreak. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Disability-2020-1 (accessed on 10 March 2023).
- Lebrasseur, A.; Fortin-Bédard, N.; Lettre, J.; Bussières, E.-L.; Best, K.; Boucher, N.; Hotton, M.; Beaulieu-Bonneau, S.; Mercier, C.; Lamontagne, M.-E.; et al. Impact of COVID-19 on people with physical disabilities: A rapid review. Disabil. Health J. 2021, 14, 101014. [Google Scholar] [CrossRef]
- Dantas, M.J.B.; Dantas, D.T.; Junior, J.P.; Oliveira Neto, L.; Gorla, J.I. COVID-19: Considerations for the Disabled Athlete. Rev. Bras. Fisiol. Exerc. 2020, 19, S30–S34. [Google Scholar] [CrossRef]
- Cavaggioni, L.; Rossi, A.; Tosin, M.; Scurati, R.; Michielon, G.; Alberti, G.; Merati, G.; Formenti, D.; Trecroci, A. Changes in upper-body muscular strength and power in paralympic swimmers: Effects of training confinement during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 5382. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.A.; Bertrand, L.; Deprez, D.; Ko, J.; Zello, G.A.; Chilibeck, P.D. The impact of the COVID-19 pandemic on diet, fitness, and sedentary behaviour of elite para-athletes. Disabil. Health J. 2021, 14, 101091. [Google Scholar] [CrossRef] [PubMed]
- Peña-González, I.; Sarabia, J.M.; Manresa-Rocamora, A.; Moya-Ramón, M. International football players with cerebral palsy maintained their physical fitness after a self-training program during the COVID-19 lockdown. PeerJ 2022, 10, e13059. [Google Scholar] [CrossRef] [PubMed]
- Puce, L.; Trabelsi, K.; Ammar, A.; Jabbour, G.; Marinelli, L.; Mori, L.; Kong, J.D.; Tsigalou, C.; Cotellessa, F.; Schenone, C.; et al. A tale of two stories: COVID-19 and disability. A critical scoping review of the literature on the effects of the pandemic among athletes with disabilities and para-athletes. Front. Physiol. 2022, 13, 967661. [Google Scholar] [CrossRef] [PubMed]
- IWBF. Official Player Classification Manual 2014. Available online: http://www.kantowbf.sakura.ne.jp/jyhouhou/2014JWBFclass.pdf (accessed on 5 February 2023).
- Shimizu, Y.; Mutsuzaki, H.; Tachibana, K.; Hotta, K.; Wadano, Y. Investigation of the female athlete triad in Japanese elite wheelchair basketball players. Medicina 2019, 56, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarma, A.; Barman, B.; Das, G.C.; Saikia, H.; Momin, A.D. Correlation between the arm-span and the standing height among males and females of the Khasi tribal population of Meghalaya state of North-Eastern India. J. Fam. Med. Prim. Care 2020, 9, 6125–6129. [Google Scholar] [CrossRef]
- Spungen, A.M.; Adkins, R.H.; Stewart, C.A.; Wang, J.; Pierson, R.N., Jr.; Waters, R.L.; Bauman, W.A. Factors influencing body composition in persons with spinal cord injury: A cross-sectional study. J. Appl. Physiol. (1985) 2003, 95, 2398–2407. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Earlbaum Associates: Mahwah, NJ, USA, 1998. [Google Scholar]
- Willems, A.; Paulson, T.A.; Keil, M.; Brooke-Wavell, K.; Goosey-Tolfrey, V.L. Dual-energy X-ray absorptiometry, skinfold thickness, and waist circumference for assessing body composition in ambulant and non-ambulant wheelchair games players. Front. Physiol. 2015, 6, 356. [Google Scholar] [CrossRef] [Green Version]
- Miyahara, K.; Wang, D.H.; Mori, K.; Takahashi, K.; Miyatake, N.; Wang, B.L.; Takigawa, T.; Takaki, J.; Ogino, K. Effect of sports activity on bone mineral density in wheelchair athletes. J. Bone Miner. Metab. 2008, 26, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Cavedon, V.; Sandri, M.; Peluso, I.; Zancanaro, C.; Milanese, C. Body composition and bone mineral density in athletes with a physical impairment. PeerJ 2021, 9, e11296. [Google Scholar] [CrossRef]
- Singh, R.; Rohilla, R.K.; Saini, G.; Kaur, K. Longitudinal study of body composition in spinal cord injury patients. Indian J. Orthop. 2014, 48, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Flueck, J.L. Body composition in Swiss elite wheelchair athletes. Front. Nutr. 2020, 7, 1. [Google Scholar] [CrossRef]
- Bilsborough, J.C.; Greenway, K.; Livingston, S.; Cordy, J.; Coutts, A.J. Changes in anthropometry, upper-body strength, and nutrient intake in professional Australian football players during a season. Int. J. Sport. Physiol. Perform. 2016, 11, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Gorla, J.I.; Costa e Silva Ade, A.; Borges, M.; Tanhoffer, R.A.; Godoy, P.S.; Calegari, D.R.; Santos Ade, O.; Ramos, C.D.; Nadruz Junior, W.; Cliquet Junior, A. Impact of wheelchair rugby on body composition of subjects with tetraplegia: A pilot study. Arch. Phys. Med. Rehabil. 2016, 97, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Cavedon, V.; Zancanaro, C.; Milanese, C. Body composition assessment in athletes with physical impairment who have been practicing a wheelchair sport regularly and for a prolonged period. Disabil. Health J 2020, 13, 100933. [Google Scholar] [CrossRef]
- Inukai, Y.; Takahashi, K.; Wang, D.H.; Kira, S. Assessment of total and segmental body composition in spinal cord-injured athletes in Okayama prefecture of Japan. Acta Med. Okayama 2006, 60, 99–106. [Google Scholar]
- Matthew, H.; Gretchen, O. Muscle activation patterns in wheelchair basketball athletes with and without physical disability. Int. J. Physiatry 2018, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.T.; Chen, S.; Limroongreungrat, W.; Change, L.S. Contributions of selected fundamental factors to wheelchair basketball performance. Med. Sci. Sports Exerc. 2005, 37, 130–137. [Google Scholar] [CrossRef]
- Santos, S.D.S.; Monteiro, C.B.D.M.; Cantelli, B.; Alonso, A.C.; Mochizuki, L.; Ré, A.H.N.; Greve, J.M.D.A. Analysis of velocity and direction of trunk movement in wheelchair basketball athletes. Medical Express 2014, 1, 77–80. [Google Scholar] [CrossRef]
- Urbański, P.; Szeliga, Ł.; Tasiemski, T. Impact of COVID-19 pandemic on athletes with disabilities preparing for the paralympic games in Tokyo. BMC Res. Notes 2021, 14, 233. [Google Scholar] [CrossRef]
- McMillan, D.W.; Nash, M.S.; Gater, D.R.; Valderrabano, R.J. Neurogenic obesity and skeletal pathology in spinal cord injury. Top. Spinal Cord Inj. Rehabil. 2021, 27, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Raguindin, P.F.; Bertolo, A.; Zeh, R.M.; Frankl, G.; Itodo, O.A.; Capossela, S.; Bally, L.; Minder, B.; Brach, M.; Eriks-Hoogland, I.; et al. Body composition according to spinal cord injury level: A systematic review and meta-analysis. J. Clin. Med. 2021, 10, 3911. [Google Scholar] [CrossRef] [PubMed]
Entire | WC Non-Users | WC Users | Neurological | Skeletal | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n = 14 (100%) | n = 8 (57%) | n = 6 (43%) | n = 7 (50%) | n = 7 (50%) | ||||||||||||
Mean | ±SD | Mean | ±SD | Mean | ±SD | p | d | Mean or Median | ±SD or (IQR) | Mean or Median | ±SD or (IQR) | p | d/r | |||
Age (y) | 29.2 | ±6.7 | 31.9 | ±6.2 | 25.7 | ±6.0 | 0.084 | a | 1.02 | 27.9 | ±6.7 | 30.6 | ±6.9 | 0.469 | a | 0.40 |
Anthropometrics | ||||||||||||||||
Height (cm) | 155.8 | ±12.9 | 164.2 | ±4.5 | 144.6 | ±11.9 | 0.008 | b * | 2.34 | 150.2 | ±15.4 | 161.4 | ±7.1 | 0.107 | a | 0.93 |
Body mass (kg) | 51.5 | ±7.4 | 56.1 | ±3.7 | 45.3 | ±6.4 | 0.002 | a * | 2.16 | 46.9 | ±7.4 | 56.0 | ±3.9 | 0.013 | a * | 1.55 |
BMI (kg/m2) | 21.2 | ±1.9 | 20.9 | ±1.7 | 21.7 | ±2.2 | 0.444 | a | 0.43 | 20.9 | (18.8–23.9) | 22.2 | (20.4–22.4) | 0.535 | c | 0.19 |
n | % | n | % | n | % | p | φ | n | % | n | % | p | φ | |||
Underlying health conditions | ||||||||||||||||
Neurological | 7 | (50%) | 2 | (25%) | 5 | (83%) | 0.051 | e | 0.58 | - | - | - | ||||
Skeletal | 7 | (50%) | 6 | (75%) | 1 | (17%) | - | - | - | |||||||
WC use status | ||||||||||||||||
WC non-users | 8 | (57%) | - | - | - | 2 | (29%) | 6 | (86%) | 0.051 | e | 0.58 | ||||
WC users | 6 | (43%) | - | - | - | 5 | (71%) | 1 | (14%) | |||||||
IWBF classification | ||||||||||||||||
Low-point players (Classification 1.0–2.5) | 8 | (57%) | 1 | (13%) | 6 | (100%) | 0.002 | e * | 0.89 | 6 | (86%) | 1 | (14%) | 0.015 | e * | 0.71 |
High-point players (Classification 3.0–4.5) | 7 | (50%) | 7 | (88%) | 0 | (0%) | 1 | (14%) | 6 | (86%) |
WC Non-Users n = 8 | WC Users n = 6 | Neurological n = 7 | Skeletal n = 7 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | ±SD | Mean | ±SD | p | d | Mean or Median | ±SD or (IQR) | Mean or Median | ±SD or (IQR) | p | d/r | |||
Whole-body | ||||||||||||||
Lean mass (kg) | 40.0 | ±2.1 | 28.0 | ±4.0 | <0.001 | a * | 3.97 | 30.8 | ±6.8 | 38.9 | ±3.9 | 0.019 | a * | 1.45 |
% Lean mass | 70.3 | ±5.0 | 61.4 | ±1.0 | 0.001 | b * | 2.27 | 62.2 | (60.8–71.3) | 66.2 | (63.4–75.4) | 0.128 | c | 0.43 |
Fat mass (kg) | 14.8 | ±4.0 | 15.8 | ±2.5 | 0.590 | a | 0.20 | 14.5 | ±2.9 | 15.9 | ±3.9 | 0.441 | a | 0.43 |
% Fat mass | 25.6 | ±5.2 | 34.6 | ±1.3 | 0.001 | b * | 2.22 | 34.6 | (24.6–34.9) | 29.5 | (20.1–32.6) | 0.259 | c | 0.33 |
Trunk | ||||||||||||||
Lean mass (kg) | 20.7 | ±1.3 | 15.0 | ±2.4 | 0.001 | b * | 3.07 | 16.1 | ±3.3 | 20.4 | ±1.8 | 0.010 | a * | 1.64 |
% Lean mass | 76.4 | ±5.5 | 69.5 | ±1.6 | 0.008 | b * | 1.62 | 72.6 | ±6.0 | 74.3 | ±5.2 | 0.598 | a | 0.29 |
Fat mass (kg) | 5.9 | ±2.1 | 6.0 | ±1.1 | 0.878 | a | 0.09 | 5.4 | ±1.3 | 6.5 | ±1.9 | 0.220 | a | 0.69 |
% Fat mass | 21.2 | ±5.6 | 27.8 | ±1.6 | 0.012 | b * | 1.50 | 24.6 | ±5.7 | 23.5 | ±5.5 | 0.702 | a | 0.21 |
VAT (cm2) | 46.2 | ±13.0 | 65.0 | ±13.3 | 0.021 | a * | 1.43 | 57.7 | ±17.0 | 50.8 | ±15.1 | 0.443 | a | 0.42 |
SAT (cm2) | 194.6 | ±61.5 | 240.7 | ±55.2 | 0.173 | a | 0.78 | 218.5 | ±68.8 | 210.2 | ±58.2 | 0.812 | a | 0.13 |
Upper limbs | ||||||||||||||
Lean mass (kg) | 5.0 | ±0.3 | 4.9 | ±0.7 | 0.814 | b | 0.15 | 4.9 | ±0.6 | 5.0 | ±0.4 | 0.568 | a | 0.31 |
% Lean mass | 69.1 | ±7.5 | 63.9 | ±2.9 | 0.106 | b | 0.86 | 66.6 | ±5.8 | 67.2 | ±7.3 | 0.871 | a | 0.09 |
Fat mass (kg) | 2.0 | ±0.8 | 2.5 | ±0.5 | 0.201 | a | 0.73 | 2.2 | ±0.6 | 2.2 | ±0.8 | 0.950 | a | 0.03 |
% Fat mass | 26.5 | ±7.7 | 31.9 | ±3.1 | 0.106 | b | 0.86 | 29.1 | ±6.0 | 28.5 | ±7.5 | 0.878 | a | 0.08 |
Lower limbs | ||||||||||||||
Lean mass (kg) | 11.5 | ±1.1 | 5.3 | ±2.0 | <0.001 | a * | 4.02 | 7.1 | ±3.6 | 10.6 | ±2.6 | 0.059 | a | 1.12 |
% Lean mass | 63.5 | ±5.8 | 43.7 | ±5.6 | <0.001 | a * | 3.49 | 50.2 | ±11.4 | 59.9 | ±10.2 | 0.119 | a | 0.90 |
Fat mass (kg) | 5.8 | ±1.3 | 6.3 | ±1.1 | 0.521 | a | 0.36 | 5.9 | ±1.1 | 6.1 | ±1.3 | 0.714 | a | 0.20 |
% Fat mass | 32.1 | ±5.8 | 53.6 | ±5.9 | <0.001 | a * | 3.68 | 46.6 | ±12.2 | 36.0 | ±10.9 | 0.115 | a | 0.91 |
WC Non-Users | WC Users | Neurological | Skeletal | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Δ | Δ | Δ | Δ | |||||||||||
Mean or Median | ±SD or (IQR) | Mean or Median | ±SD or (IQR) | p | d/r | Mean or Median | ±SD or (IQR) | Mean or Median | ±SD or (IQR) | p | d/r | |||
Body mass (kg) | −0.1 | ±2.0 | 0.4 | ±4.0 | 0.778 | a | 0.16 | 0.3 | ±3.7 | −0.1 | ±2.2 | 0.783 | a | 0.15 |
BMI (kg/m2) | −0.1 | ±0.8 | 1.4 | ±3.6 | 0.341 | b | 0.65 | 1.1 | ±3.4 | −0.1 | ±0.9 | 0.378 | a | 0.50 |
Body composition | ||||||||||||||
Whole-body | ||||||||||||||
Lean mass (kg) | −0.8 | ±1.0 | −0.7 | ±1.6 | 0.796 | a | 0.14 | −0.5 | ±1.4 | −1.1 | ±1.0 | 0.386 | a | 0.48 |
% Lean mass | −1.3 | ±1.7 | −2.0 | ±2.7 | 0.569 | a | 0.32 | −1.7 | ±2.5 | −1.5 | ±1.9 | 0.849 | a | 0.10 |
Fat mass (kg) | 0.8 | ±1.5 | 1.0 | ±2.9 | 0.891 | a | 0.08 | 0.9 | ±2.7 | 0.9 | ±1.6 | 0.949 | a | 0.04 |
% Fat mass | 1.3 | ±1.8 | 1.9 | ±3.0 | 0.632 | a | 0.27 | 1.6 | ±2.7 | 1.4 | ±2.0 | 0.864 | a | 0.09 |
Trunk | ||||||||||||||
Lean mass (kg) | −0.6 | ±0.5 | −0.3 | ±1.1 | 0.539 | a | 0.34 | −0.1 | ±0.9 | −0.8 | ±0.6 | 0.127 | a | 0.88 |
% Lean mass | −1.8 | ±2.2 | −2.9 | ±4.0 | 0.522 | a | 0.36 | −2.7 | ±3.7 | −1.8 | ±2.3 | 0.634 | a | 0.26 |
Fat mass (kg) | 0.5 | ±0.8 | 0. | ±1.8 | 0.747 | a | 0.18 | 0.8 | ±1.6 | 0.5 | ±0.9 | 0.700 | a | 0.21 |
% Fat mass | 1.8 | ±2.2 | 2.8 | ±4.3 | 0.562 | a | 0.32 | 2.6 | ±4.0 | 1.9 | ±2.4 | 0.675 | a | 0.23 |
VAT (cm2) | 2.8 | ±9.0 | 9.0 | ±23.2 | 0.559 | b | 0.37 | 7.6 | ±21.7 | 3.3 | ±9.2 | 0.638 | a | 0.26 |
SAT (cm2) | 7.5 | ±24.9 | 10.1 | ±86.7 | 0.947 | b | 0.04 | 7.7 | ±78.5 | 9.5 | ±28.8 | 0.957 | a | 0.03 |
Upper limbs | ||||||||||||||
Lean mass (kg) | −0.2 | (−0.3–0.04) | −0.03 | (−0.4–[−0.2]) | 0.852 | c | 0.07 | −0.2 | ±0.2 | −0.0 | ±0.2 | 0.375 | a | 0.49 |
% Lean mass | −1.8 | ±1.2 | −1.5 | ±4.0 | 0.856 | a | 0.10 | −2.5 | (−3.0–[−0.4]) | −1.0 | (−2.5–[−0.4]) | 0.535 | c | 0.19 |
Fat mass (kg) | 0.08 | (0.02–0.2) | 0.1 | (−0.1–0.4) | 0.852 | c | 0.07 | 0.01 | (0.04–0.1) | 0.01 | (0.02–0.3) | 0.902 | c | 0.05 |
% Fat mass | 1.7 | ±1.2 | 1.4 | ±4.1 | 0.866 | a | 0.09 | 2.4 | (0.2–2.9) | 0.9 | (0.4–2.8) | 0.620 | c | 0.15 |
Lower limbs | ||||||||||||||
Lean mass (kg) | −0.1 | ±0.6 | −0.4 | ±0.5 | 0.415 | a | 0.46 | −0.2 | ±0.5 | −0.2 | ±0.6 | 0.980 | a | 0.01 |
% Lean mass | −0.6 | ±2.5 | −1.8 | ±1.3 | 0.339 | a | 0.54 | −1.1 | ±0.9 | −1.2 | ±2.9 | 0.912 | b | 0.06 |
Fat mass (kg) | 0.2 | ±0.6 | 0.1 | ±0.7 | 0.781 | a | 0.15 | 0.01 | ±0.6 | 0.2 | ±0.6 | 0.560 | a | 0.32 |
% Fat mass | 0.6 | ±2.5 | 1.7 | ±1.3 | 0.373 | a | 0.50 | 1.0 | ±1.0 | 1.2 | ±2.9 | 0.887 | b | 0.08 |
T0 | T1 | Δ | |||||||
---|---|---|---|---|---|---|---|---|---|
n = 14 | n = 14 | ||||||||
Mean or Median | ±SD or (IQR) | Mean or Median | ±SD or (IQR) | Mean or Median | ±SD or (IQR) | p | d/r | ||
Body mass (kg) | 51.5 | ±7.4 | 51.6 | ±7.6 | 0.1 | ±2.9 | 0.886 | a | 0.04 |
BMI (kg/m2) | 21.2 | ±1.9 | 21.7 | ±2.5 | 0.5 | ±2.4 | 0.430 | a | 0.22 |
Body composition | |||||||||
Whole-body | |||||||||
Lean mass (kg) | 34.8 | ±6.8 | 34.1 | ±6.7 | −0.8 | ±1.2 | 0.038 | a * | 0.62 |
% Lean mass | 64.0 | (61.2–72.3) | 62.3 | (59.6–73.0) | −1.7 | (−3.1–[−0.1]) | 0.022 | b * | 0.61 |
Fat mass (kg) | 15.2 | ±3.4 | 16.1 | ±4.3 | 0.9 | ±2.1 | 0.135 | a | 0.43 |
% Fat mass | 31.9 | (23.6–34.9) | 33.5 | (22.9–35.9) | 1.7 | ([−0.02]−2.9) | 0.035 | b * | 0.56 |
Trunk | |||||||||
Lean mass (kg) | 18.2 | ±3.4 | 17.8 | ±3.4 | −0.5 | ±0.8 | 0.059 | a | 0.55 |
% Lean mass | 73.4 | ±5.5 | 71.2 | ±6.7 | −2.3 | ±3.0 | 0.015 | a * | 0.75 |
Fat mass (kg) | 5.9 | ±1.7 | 6.6 | ±2.3 | 0.6 | ±1.3 | 0.083 | a | 0.50 |
% Fat mass | 26.0 | (18.5–28.5) | 27.4 | (20.0–32.3) | 2.4 | (0.06–4.2) | 0.026 | b * | 0.60 |
VAT (cm2) | 54.2 | ±15.9 | 59.7 | ±23.2 | 5.4 | ±16.2 | 0.230 | a | 0.34 |
SAT (cm2) | 214.4 | ±61.4 | 223.0 | ±87.1 | 8.6 | ±56.8 | 0.580 | a | 0.15 |
Upper limbs | |||||||||
Lean mass (kg) | 5.0 | ±0.5 | 4.9 | ±0.7 | −0.1 | ±0.2 | 0.120 | a | 0.44 |
% Lean mass | 66.9 | ±6.4 | 65.2 | ±6.6 | −1.6 | ±2.6 | 0.036 | a * | 0.63 |
Fat mass (kg) | 2.2 | ±0.7 | 2.3 | ±0.8 | 0.1 | ±0.3 | 0.147 | a | 0.41 |
% Fat mass | 28.8 | ±6.6 | 30.4 | ±6.9 | 1.6 | ±2.7 | 0.048 | a * | 0.58 |
Lower limbs | |||||||||
Lean mass (kg) | 8.8 | ±0.3 | 8.6 | ±3.5 | −0.2 | ±0.5 | 0.137 | a | 0.42 |
% Lean mass | 55.1 | ±11.5 | 53.9 | ±12.6 | −1.1 | ±2.1 | 0.063 | a | 0.54 |
Fat mass (kg) | 6.0 | ±1.2 | 6.1 | ±1.4 | 0.1 | ±0.6 | 0.498 | a | 0.19 |
% Fat mass | 41.3 | ±12.4 | 42.4 | ±13.4 | 1.1 | ±2.1 | 0.077 | a | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishimoto, R.; Mutsuzaki, H.; Tachibana, K.; Shimizu, Y.; Hada, Y. Impact of Prolonged Cessation of Organized Team Training Due to the COVID-19 Pandemic on the Body Composition of Japanese Elite Female Wheelchair Basketball Athletes. J. Clin. Med. 2023, 12, 3231. https://doi.org/10.3390/jcm12093231
Ishimoto R, Mutsuzaki H, Tachibana K, Shimizu Y, Hada Y. Impact of Prolonged Cessation of Organized Team Training Due to the COVID-19 Pandemic on the Body Composition of Japanese Elite Female Wheelchair Basketball Athletes. Journal of Clinical Medicine. 2023; 12(9):3231. https://doi.org/10.3390/jcm12093231
Chicago/Turabian StyleIshimoto, Ryu, Hirotaka Mutsuzaki, Kaori Tachibana, Yukiyo Shimizu, and Yasushi Hada. 2023. "Impact of Prolonged Cessation of Organized Team Training Due to the COVID-19 Pandemic on the Body Composition of Japanese Elite Female Wheelchair Basketball Athletes" Journal of Clinical Medicine 12, no. 9: 3231. https://doi.org/10.3390/jcm12093231
APA StyleIshimoto, R., Mutsuzaki, H., Tachibana, K., Shimizu, Y., & Hada, Y. (2023). Impact of Prolonged Cessation of Organized Team Training Due to the COVID-19 Pandemic on the Body Composition of Japanese Elite Female Wheelchair Basketball Athletes. Journal of Clinical Medicine, 12(9), 3231. https://doi.org/10.3390/jcm12093231