Using Continuous Glucose Monitoring to Prescribe a Time to Exercise for Individuals with Type 2 Diabetes
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Participants
2.3. Experimental Protocol
2.4. Outcomes
2.4.1. Feasibility and Effects of Prescribing an Exercise Time on Physical Activity
2.4.2. Continuous Glucose Monitoring
2.4.3. Dietary Intake
2.5. Statistical Analysis
3. Results
3.1. Adherence to the Prescribed Exercise Time
3.2. Barriers to Exercise at a Prescribed Time
3.3. Impact of Prescribing an Exercise Time on Physical Activity Parameters
3.4. Continuous Glucose Monitoring and Dietary Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sgrò, P.; Emerenziani, G.P.; Antinozzi, C.; Sacchetti, M.; Di Luigi, L. Exercise as a drug for glucose management and prevention in type 2 diabetes mellitus. Curr. Opin. Pharmacol. 2021, 59, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021.
- Jarvie, J.L.; Pandey, A.; Ayers, C.R.; McGavock, J.M.; Sénéchal, M.; Berry, J.D.; Patel, K.V.; McGuire, D.K. Aerobic fitness and adherence to guideline-recommended minimum physical activity among ambulatory patients with type 2 diabetes mellitus. Diabetes Care 2019, 42, 1333–1339. [Google Scholar] [CrossRef]
- Teo, S.Y.M.; Kanaley, J.A.; Guelfi, K.J.; Cook, S.B.; Hebert, J.J.; Forrest, M.R.L.; Fairchild, T.J. Exercise timing in type 2 diabetes mellitus: A systematic review. Med. Sci. Sports Exerc. 2018, 50, 2387–2397. [Google Scholar] [CrossRef] [PubMed]
- Borror, A.; Zieff, G.; Battaglini, C.; Stoner, L. The effects of postprandial exercise on glucose control in individuals with type 2 diabetes: A systematic review. Sports Med. 2018, 48, 1479–1491. [Google Scholar] [CrossRef] [PubMed]
- Aqeel, M.; Forster, A.; Richards, E.A.; Hennessy, E.; McGowan, B.; Bhadra, A.; Guo, J.; Gelfand, S.; Delp, E.; Eicher-Miller, H.A. The Effect of Timing of Exercise and Eating on Postprandial Response in Adults: A Systematic Review. Nutrients 2020, 12, 221. [Google Scholar] [CrossRef]
- Savikj, M.; Gabriel, B.M.; Alm, P.S.; Smith, J.; Caidahl, K.; Björnholm, M.; Fritz, T.; Krook, A.; Zierath, J.R.; Wallberg-Henriksson, H. Afternoon exercise is more efficacious than morning exercise at improving blood glucose levels in individuals with type 2 diabetes: A randomised crossover trial. Diabetologia 2019, 62, 233–237. [Google Scholar] [CrossRef]
- Savikj, M.; Stocks, B.; Sato, S.; Caidahl, K.; Krook, A.; Deshmukh, A.S.; Zierath, J.R.; Wallberg-Henriksson, H. Exercise timing influences multi-tissue metabolome and skeletal muscle proteome profiles in type 2 diabetic patients—A randomized crossover trial. Metabolism 2022, 135, 155268. [Google Scholar] [CrossRef]
- Munan, M.; Oliveira, C.L.P.; Marcotte-Chénard, A.; Rees, J.L.; Prado, C.M.; Riesco, E.; Boulé, N.G. Acute and chronic effects of exercise on continuous glucose monitoring outcomes in type 2 diabetes: A meta-analysis. Front. Endocrinol. 2020, 11, 495. [Google Scholar] [CrossRef]
- Merino, J. Precision nutrition in diabetes: When population-based dietary advice gets personal. Diabetologia 2022, 65, 1839–1848. [Google Scholar] [CrossRef]
- Merino, J.; Linenberg, I.; Bermingham, K.M.; Ganesh, S.; Bakker, E.; Delahanty, L.M.; Chan, A.T.; Pujol, J.C.; Wolf, J.; Al Khatib, H.; et al. Validity of continuous glucose monitoring for categorizing glycemic responses to diet: Implications for use in personalized nutrition. Am. J. Clin. Nutr. 2022, 115, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Menek, M.Y.; Budak, M. Effect of exercises according to the circadian rhythm in type 2 diabetes: Parallel-group, single-blind, crossover study. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1742–1752. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.; Jamnik, V.; Bredin, S.; Shephard, R.; Gledhill, N. The 2021 physical activity readiness questionnaire for everyone (PAR-Q+) and electronic physical activity readiness medical examination (ePARmed-X+): 2021 PAR-Q+. Health Fit. J. Can. 2021, 14, 83–87. [Google Scholar]
- Godin, G. The Godin-Shephard leisure-time physical activity questionnaire. Health Fit. J. Can. 2011, 4, 18–22. [Google Scholar]
- Chang, C.R.; Astell-Burt, T.; Russell, B.M.; Francois, M.E. Personalising activity to target peak hyperglycaemia and improve cardiometabolic health in people with type 2 diabetes: Protocol for a randomised controlled trial. BMJ Open 2022, 12, e057183. [Google Scholar] [CrossRef]
- Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the computer science and applications, inc. accelerometer. Med. Sci. Sport. Exerc. 1998, 30, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Glazer, N.L.; Lyass, A.; Esliger, D.W.; Blease, S.J.; Freedson, P.S.; Massaro, J.M.; Murabito, J.M.; Vasan, R.S. Sustained and shorter bouts of physical activity are related to cardiovascular health. Med. Sci. Sport. Exerc. 2013, 45, 109–115. [Google Scholar] [CrossRef]
- Rooney, D.; Gilmartin, E.; Heron, N. Prescribing exercise and physical activity to treat and manage health conditions. Ulst. Med. J. 2023, 92, 9–15. [Google Scholar]
- Mu, L.; Cohen, A.J.; Mukamal, K.J. Resistance and aerobic exercise among adults with diabetes in the US. Diabetes Care 2014, 37, e175–e176. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, C.S.; Ried-Larsen, M.; Soleimani, J.; Alsawas, M.; Lieberman, D.E.; Ismail, A.S.; Serafim, L.P.; Yang, T.; Prokop, L.; Joyner, M.; et al. A systematic review of adherence to physical activity interventions in individuals with type 2 diabetes. Diabetes/Metab. Res. Rev. 2021, 37, e3444. [Google Scholar] [CrossRef]
- Casey, D.; De Civita, M.; Dasgupta, K. Understanding physical activity facilitators and barriers during and following a supervised exercise programme in Type 2 diabetes: A qualitative study. Diabet. Med. 2010, 27, 79–84. [Google Scholar] [CrossRef]
- Samdal, G.B.; Eide, G.E.; Barth, T.; Williams, G.; Meland, E. Effective behaviour change techniques for physical activity and healthy eating in overweight and obese adults; systematic review and meta-regression analyses. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.J.; Thompson, C.H.; Luscombe-Marsh, N.D.; Wycherley, T.P.; Wittert, G.; Brinkworth, G.D. Efficacy of real-time continuous glucose monitoring to improve effects of a prescriptive lifestyle intervention in type 2 diabetes: A pilot study. Diabetes Ther. 2019, 10, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Michie, S.; Abraham, C.; Whittington, C.; McAteer, J.; Gupta, S. Effective techniques in healthy eating and physical activity interventions: A meta-regression. Health Psychol. 2009, 28, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Bailey, K.J.; Little, J.P.; Jung, M.E. Self-monitoring using continuous glucose monitors with real-time feedback improves exercise adherence in individuals with impaired blood glucose: A pilot study. Diabetes Technol. Ther. 2016, 18, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Allen, N.A.; Fain, J.A.; Braun, B.; Chipkin, S.R. Continuous glucose monitoring counseling improves physical activity behaviors of individuals with type 2 diabetes: A randomized clinical trial. Diabetes Res. Clin. Pract. 2008, 80, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Estampador, A.C.; Franks, P.W. Precision medicine in obesity and type 2 diabetes: The relevance of early-life exposures. Clin. Chem. 2018, 64, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.B.; Groop, L. Precision medicine in type 2 diabetes. J. Intern. Med. 2019, 285, 40–48. [Google Scholar] [CrossRef]
- Griffin, S. Diabetes precision medicine: Plenty of potential, pitfalls and perils but not yet ready for prime time. Diabetologia 2022, 65, 1913–1921. [Google Scholar] [CrossRef]
- Fitipaldi, H.; McCarthy, M.I.; Florez, J.C.; Franks, P.W. A global overview of precision medicine in type 2 diabetes. Diabetes 2018, 67, 1911–1922. [Google Scholar] [CrossRef]
Total | ExPeak | NonPeak | |
---|---|---|---|
n | 35 | 19 | 16 |
Age years | 64.0 ± 7.0 | 65.9 ± 6.1 | 62.3 ± 7.4 |
Sex M:F | 18:17 | 10:9 | 8:8 |
Insulin ID:NID | 5:30 | 3:16 | 2:14 |
HbA1c % | 7.2 ± 0.8 | 7.3 ± 0.8 | 7.1 ± 0.9 |
BMI kg/m2 | 29.2 ± 5.2 | 30.0 ± 4.7 | 28.2 ± 5.7 |
Baseline | Intervention | Time | Group | Interaction | |||
---|---|---|---|---|---|---|---|
ExPeak | NonPeak | ExPeak | NonPeak | p-Value | p-Value | p-Value | |
Physical Activity | |||||||
Sedentarymin-d | 1226.2 ± 110.6 | 1153.1 ± 217.6 | 1253.8 ± 48.1 | 1222.7 ± 83.3 | 0.14 | 0.11 | 0.51 |
Lightmin-d | 125.8 ± 50.9 | 117.8 ± 39.4 | 129.5 ± 42.0 | 118.1 ± 56.7 | 0.87 | 0.44 | 0.89 |
Moderatemin-d | 24.0 ± 15.0 | 22.7 ± 13.0 | 33.3 ± 16.5 | 31.5 ± 14.7 | 0.03 | 0.69 | 0.96 |
MVPAmin-d | 24.4 ± 15.0 | 23.4 ± 13.3 | 33.7 ± 16.9 | 32.5 ± 15.4 | 0.03 | 0.79 | 0.98 |
Continuous Glucose Monitoring | |||||||
Meanmmol/L-24 h | 7.7 ± 1.9 | 7.3 ± 1.4 | 7.5 ± 1.3 | 7.0 ± 1.4 | 0.63 | 0.23 | 0.91 |
Peakmmol/L-24 h | 12.4 ± 2.8 | 11.7 ± 2.6 | 11.9 ± 2.0 | 11.2 ± 2.3 | 0.43 | 0.22 | 0.97 |
SDmmol/L-24 h | 1.9 ± 0.6 | 1.7 ± 0.6 | 1.7 ± 0.5 | 1.5 ± 0.5 | 0.24 | 0.20 | 0.87 |
Dietary Intake | |||||||
Energykcal-d | 2066 ± 390 | 1949 ± 489 | 1778 ± 617 | 1670 ± 637 | 0.07 | 0.47 | 0.98 |
PRO%E-d | 19.6 ± 3.7 | 19.7 ± 4.9 | 17.8 ± 2.3 | 20.9 ± 5.2 | 0.80 | 0.17 | 0.20 |
FAT%E-d | 32.8 ± 5.0 | 33.6 ± 8.2 | 36.5 ± 5.5 | 32.9 ± 8.9 | 0.42 | 0.45 | 0.26 |
CHO%E-d | 43.0 ± 6.2 | 36.7 ± 15.9 | 41.3 ± 7.2 | 41.1 ± 9.4 | 0.62 | 0.23 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.R.; Russell, B.M.; Cyriac, T.; Francois, M.E. Using Continuous Glucose Monitoring to Prescribe a Time to Exercise for Individuals with Type 2 Diabetes. J. Clin. Med. 2023, 12, 3237. https://doi.org/10.3390/jcm12093237
Chang CR, Russell BM, Cyriac T, Francois ME. Using Continuous Glucose Monitoring to Prescribe a Time to Exercise for Individuals with Type 2 Diabetes. Journal of Clinical Medicine. 2023; 12(9):3237. https://doi.org/10.3390/jcm12093237
Chicago/Turabian StyleChang, Courtney R., Brooke M. Russell, Tannia Cyriac, and Monique E. Francois. 2023. "Using Continuous Glucose Monitoring to Prescribe a Time to Exercise for Individuals with Type 2 Diabetes" Journal of Clinical Medicine 12, no. 9: 3237. https://doi.org/10.3390/jcm12093237
APA StyleChang, C. R., Russell, B. M., Cyriac, T., & Francois, M. E. (2023). Using Continuous Glucose Monitoring to Prescribe a Time to Exercise for Individuals with Type 2 Diabetes. Journal of Clinical Medicine, 12(9), 3237. https://doi.org/10.3390/jcm12093237