Association between Low Forced Vital Capacity and High Pneumonia Mortality, and Impact of Muscle Power
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Examinations
2.3. Mortality Follow-Up
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
% FVC ≥ 80% | % FVC < 80% | p-Value | |
---|---|---|---|
Reference | HR (95%CI) | ||
Model 1 | 1.00 | 3.75 (1.59–8.82) | 0.003 |
Model 2 | 1.00 | 2.93 (1.23–6.98) | 0.016 |
% FVC ≥ 80% | % FVC < 80% | p-Value | |
---|---|---|---|
Reference | HR (95%CI) | ||
Model 1 | 1.00 | 3.07 (1.31–7.18) | 0.010 |
Model 2 | 1.00 | 2.31 (0.98–5.45) | 0.056 |
References
- Scarlata, S.; Pedone, C.; Fimognari, F.L.; Bellia, V.; Forastiere, F.; Incalzi, R.A. Restrictive pulmonary dysfunction at spirometry and mortality in the elderly. Respir. Med. 2008, 102, 1349–1354. [Google Scholar] [CrossRef]
- Magnussen, C.; Ojeda, F.M.; Rzayeva, N.; Zeller, T.; Sinning, C.R.; Pfeiffer, N.; Beutel, M.; Blettner, M.; Lackner, K.J.; Blankenberg, S.; et al. FEV1 and FVC predict all-cause mortality independent of cardiac function—Results from the population-based Gutenberg Health Study. Int. J. Cardiol. 2017, 234, 64–68. [Google Scholar] [CrossRef]
- Breet, Y.; Schutte, A.E.; Huisman, H.W.; Eloff, F.C.; Du Plessis, J.L.; Kruger, A.; Van Rooyen, J.M. Lung function, inflammation and cardiovascular mortality in Africans. Eur. J. Clin. Investig. 2016, 46, 901–910. [Google Scholar] [CrossRef]
- Mannino, D.M.; Buist, A.S.; Petty, T.L.; Enright, P.L.; Redd, S.C. Lung function and mortality in the United States: Data from the First National Health and Nutrition Examination Survey follow up study. Thorax 2003, 58, 388–393. [Google Scholar] [CrossRef]
- Vaz Fragoso, C.A.; Van Ness, P.H.; Murphy, T.E.; McAvay, G.J. Spirometric impairments, cardiovascular outcomes, and noncardiovascular death in older persons. Respir. Med. 2018, 137, 40–47. [Google Scholar] [CrossRef]
- Putman, R.K.; Hatabu, H.; Araki, T.; Gudmundsson, G.; Gao, W.; Nishino, M.; Okajima, Y.; Dupuis, J.; Latourelle, J.C.; Cho, M.H.; et al. Association Between Interstitial Lung Abnormalities and All-Cause Mortality. JAMA 2016, 315, 672–681. [Google Scholar] [CrossRef]
- Wijsenbeek, M.; Suzuki, A.; Maher, T.M. Interstitial lung diseases. Lancet 2022, 400, 769–786. [Google Scholar] [CrossRef]
- Burney, P.G.; Hooper, R. Forced vital capacity, airway obstruction and survival in a general population sample from the USA. Thorax 2011, 66, 49–54. [Google Scholar] [CrossRef]
- Miyatake, M.; Okazaki, T.; Suzukamo, Y.; Matsuyama, S.; Tsuji, I.; Izumi, S.I. High Mortality in an Older Japanese Population with Low Forced Vital Capacity and Gender-Dependent Potential Impact of Muscle Strength: Longitudinal Cohort Study. J. Clin. Med. 2022, 11, 5264. [Google Scholar] [CrossRef]
- Laukkanen, P.; Heikkinen, E.; Kauppinen, M. Muscle strength and mobility as predictors of survival in 75-84-year-old people. Age Ageing 1995, 24, 468–473. [Google Scholar] [CrossRef]
- Metter, E.J.; Talbot, L.A.; Schrager, M.; Conwit, R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, B359–B365. [Google Scholar] [CrossRef]
- Takata, Y.; Shimada, M.; Ansai, T.; Yoshitake, Y.; Nishimuta, M.; Nakagawa, N.; Ohashi, M.; Yoshihara, A.; Miyazaki, H. Physical performance and 10-year mortality in a 70-year-old community-dwelling population. Aging Clin. Exp. Res. 2012, 24, 257–264. [Google Scholar] [CrossRef]
- Celis-Morales, C.A.; Welsh, P.; Lyall, D.M.; Steell, L.; Petermann, F.; Anderson, J.; Iliodromiti, S.; Sillars, A.; Graham, N.; Mackay, D.F.; et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: Prospective cohort study of half a million UK Biobank participants. BMJ 2018, 361, k1651. [Google Scholar] [CrossRef]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 72–77. [Google Scholar] [CrossRef]
- Gale, C.R.; Martyn, C.N.; Cooper, C.; Sayer, A.A. Grip strength, body composition, and mortality. Int. J. Epidemiol. 2007, 36, 228–235. [Google Scholar] [CrossRef]
- Enright, P.L.; Kronmal, R.A.; Manolio, T.A.; Schenker, M.B.; Hyatt, R.E. Respiratory muscle strength in the elderly. Correlates and reference values. Cardiovascular Health Study Research Group. Am. J. Respir. Crit. Care Med. 1994, 149, 430–438. [Google Scholar] [CrossRef]
- Okazaki, T.; Ebihara, S.; Mori, T.; Izumi, S.; Ebihara, T. Association between sarcopenia and pneumonia in older people. Geriatr. Gerontol. Int. 2020, 20, 7–13. [Google Scholar] [CrossRef]
- Shin, H.I.; Kim, D.K.; Seo, K.M.; Kang, S.H.; Lee, S.Y.; Son, S. Relation Between Respiratory Muscle Strength and Skeletal Muscle Mass and Hand Grip Strength in the Healthy Elderly. Ann. Rehabil. Med. 2017, 41, 686–692. [Google Scholar] [CrossRef]
- Buchman, A.S.; Boyle, P.A.; Wilson, R.S.; Gu, L.; Bienias, J.L.; Bennett, D.A. Pulmonary function, muscle strength and mortality in old age. Mech. Ageing Dev. 2008, 129, 625–631. [Google Scholar] [CrossRef]
- Okazaki, T.; Suzukamo, Y.; Miyatake, M.; Komatsu, R.; Yaekashiwa, M.; Nihei, M.; Izumi, S.; Ebihara, T. Respiratory Muscle Weakness as a Risk Factor for Pneumonia in Older People. Gerontology 2021, 67, 581–590. [Google Scholar] [CrossRef]
- Kubota, M.; Kobayashi, H.; Quanjer, P.H.; Omori, H.; Tatsumi, K.; Kanazawa, M.; Clinical Pulmonary Functions Committee of the Japanese Respiratory Society. Reference values for spirometry, including vital capacity, in Japanese adults calculated with the LMS method and compared with previous values. Respir. Investig. 2014, 52, 242–250. [Google Scholar] [CrossRef]
- Standardization of Spirometry, 1994 Update. American Thoracic Society. Am. J. Respir. Crit. Care Med. 1995, 152, 1107–1136. [Google Scholar] [CrossRef]
- Ebihara, S.; Niu, K.; Ebihara, T.; Kuriyama, S.; Hozawa, A.; Ohmori-Matsuda, K.; Nakaya, N.; Nagatomi, R.; Arai, H.; Kohzuki, M.; et al. Impact of blunted perception of dyspnea on medical care use and expenditure, and mortality in elderly people. Front. Physiol. 2012, 3, 238. [Google Scholar] [CrossRef]
- Yang, G.; Niu, K.; Fujita, K.; Hozawa, A.; Ohmori-Matsuda, K.; Kuriyama, S.; Nakaya, N.; Ebihara, S.; Okazaki, T.; Guo, H.; et al. Impact of physical activity and performance on medical care costs among the Japanese elderly. Geriatr. Gerontol. Int. 2011, 11, 157–165. [Google Scholar] [CrossRef]
- Nihei, M.; Okazaki, T.; Ebihara, S.; Kobayashi, M.; Niu, K.; Gui, P.; Tamai, T.; Nukiwa, T.; Yamaya, M.; Kikuchi, T.; et al. Chronic inflammation, lymphangiogenesis, and effect of an anti-VEGFR therapy in a mouse model and in human patients with aspiration pneumonia. J. Pathol. 2015, 235, 632–645. [Google Scholar] [CrossRef]
- Kuriyama, S.; Koizumi, Y.; Matsuda-Ohmori, K.; Seki, T.; Shimazu, T.; Hozawa, A.; Awata, S.; Tsuji, I. Obesity and depressive symptoms in elderly Japanese: The Tsurugaya Project. J. Psychosom. Res. 2006, 60, 229–235. [Google Scholar] [CrossRef]
- Japan Arteriosclerosis Longitudinal Study, G. Japan Arteriosclerosis Longitudinal Study-Existing Cohorts Combine (JALS-ECC): Rationale, design, and population characteristics. Circ. J. 2008, 72, 1563–1568. [Google Scholar] [CrossRef]
- Komatsu, R.; Okazaki, T.; Ebihara, S.; Kobayashi, M.; Tsukita, Y.; Nihei, M.; Sugiura, H.; Niu, K.; Ebihara, T.; Ichinose, M. Aspiration pneumonia induces muscle atrophy in the respiratory, skeletal, and swallowing systems. J. Cachexia Sarcopenia Muscle 2018, 9, 643–653. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef]
- Bhasin, S.; Travison, T.G.; Manini, T.M.; Patel, S.; Pencina, K.M.; Fielding, R.A.; Magaziner, J.M.; Newman, A.B.; Kiel, D.P.; Cooper, C.; et al. Sarcopenia Definition: The Position Statements of the Sarcopenia Definition and Outcomes Consortium. J. Am. Geriatr. Soc. 2020, 68, 1410–1418. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Di.r Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Niu, K.; Okazaki, T.; Wu, H.; Yoshikawa, T.; Ohrui, T.; Furukawa, K.; Ichinose, M.; Yanai, K.; Arai, H.; et al. Coffee treatment prevents the progression of sarcopenia in aged mice in vivo and in vitro. Exp. Gerontol. 2014, 50, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tsukita, Y.; Okazaki, T.; Ebihara, S.; Komatsu, R.; Nihei, M.; Kobayashi, M.; Hirano, T.; Sugiura, H.; Tamada, T.; Tanaka, N.; et al. Beneficial effects of sunitinib on tumor microenvironment and immunotherapy targeting death receptor5. Oncoimmunology 2019, 8, e1543526. [Google Scholar] [CrossRef] [PubMed]
- Ngamsnae, P.; Okazaki, T.; Ren, Y.; Xia, Y.; Hashimoto, H.; Ikeda, R.; Honkura, Y.; Katori, Y.; Izumi, S.I. Anatomy and pathology of lymphatic vessels under physiological and inflammatory conditions in the mouse diaphragm. Microvasc. Res. 2023, 145, 104438. [Google Scholar] [CrossRef]
Characteristics | Overall | % FVC | p-Value * | ||||
---|---|---|---|---|---|---|---|
<80% | ≥80% | ||||||
Number of Participants | 1048 | 223 | 825 | ||||
Age, mean (SD) | 75.7 | (4.8) | 76.2 | (4.5) | 75.5 | (4.9) | 0.086 |
Men, n (%) | 442 | (42.2) | 132 | (59.2) | 310 | (37.6) | <0.001 |
Medical history, n (%) | |||||||
Pneumonia | 100 | (9.5) | 35 | (15.7) | 65 | (7.9) | <0.001 |
Cancer | 70 | (6.7) | 12 | (5.4) | 58 | (5.5) | 0.451 |
Cardiovascular disease | 161 | (15.4) | 34 | (15.2) | 127 | (15.4) | 0.957 |
Diabetes mellitus | 146 | (13.9) | 36 | (16.1) | 110 | (13.3) | 0.278 |
Hypertension | 392 | (37.4) | 92 | (41.3) | 300 | (36.4) | 0.180 |
Current smoking, n (%) | 137 | (13.4) | 36 | (16.4) | 101 | (12.5) | <0.001 |
MMSE, mean (SD) | 27.3 | (3.4) | 26.7 | (3.4) | 27.4 | (2.6) | 0.048 |
Depressive symptoms, mean (SD) | 9.0 | (5.5) | 9.3 | (5.4) | 8.9 | (5.5) | 0.356 |
Taking statins, n (%) | 168 | (16.0) | 31 | (13.9) | 137 | (16.6) | 0.356 |
Taking ACE inhibitors, n (%) | 78 | (7.4) | 17 | (7.6) | 61 | (7.4) | 0.886 |
Strong leg power †, n (%) | 529 | (50.5) | 86 | (38.6) | 443 | (53.7) | <0.001 |
Weak leg power ‡, n (%) | 519 | (49.5) | 137 | (61.4) | 382 | (46.3) | |
Total cholesterol (mg/dL), mean (SD) | 203.8 | (33.3) | 199.1 | (35.7) | 205.1 | (32.6) | 0.018 |
Albumin (g/dL), mean (SD) | 4.3 | (0.3) | 4.34 | (0.3) | 4.30 | (0.3) | 0.043 |
% FVC ≥ 80% (n = 825) | % FVC < 80% (n = 223) | |
---|---|---|
Pneumonia death(n) | 13 | 13 |
person years | 129 | |
Model 1 | 1.00 (Reference) | 4.09 (1.90–8.83) |
Model 2 | 1.00 (Reference) | 3.08 (1.41–6.71) |
Cancer death(n) | 45 | 12 |
person years | 251 | |
Model 1 | 1.00 (Reference) | 1.08 (0.57–2.05) |
Model 2 | 1.00 (Reference) | 0.87 (0.46–1.66) |
CVD death(n) | 26 | 12 |
person years | 180 | |
Model 1 ‡ | 1.00 (Reference) | 1.88 (0.95–3.74) |
Model 2 § | 1.00 (Reference) | 1.61 (0.80–3.21) |
% FVC ≥ 80% Strong Leg Power ‡ | % FVC < 80% Weak Leg Power § | p-Value | |
---|---|---|---|
Reference | HR (95% CI) | ||
Model 1 | |||
FVC% predicted | 1.00 | 4.09 (1.90–8.83) | <0.001 |
Model 2 | |||
FVC% predicted Leg power | 1.00 | 3.34 (1.54–7.25) 5.27 (1.81–15.41) | 0.002 0.003 |
Model 3 | |||
FVC% predicted Leg power | 1.00 | 2.59 (1.18–5.68) 4.79 (1.59–14.45) | 0.017 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiokawa, N.; Okazaki, T.; Suzukamo, Y.; Miyatake, M.; Kogure, M.; Nakaya, N.; Hozawa, A.; Ebihara, S.; Izumi, S.-I. Association between Low Forced Vital Capacity and High Pneumonia Mortality, and Impact of Muscle Power. J. Clin. Med. 2023, 12, 3272. https://doi.org/10.3390/jcm12093272
Shiokawa N, Okazaki T, Suzukamo Y, Miyatake M, Kogure M, Nakaya N, Hozawa A, Ebihara S, Izumi S-I. Association between Low Forced Vital Capacity and High Pneumonia Mortality, and Impact of Muscle Power. Journal of Clinical Medicine. 2023; 12(9):3272. https://doi.org/10.3390/jcm12093272
Chicago/Turabian StyleShiokawa, Nanako, Tatsuma Okazaki, Yoshimi Suzukamo, Midori Miyatake, Mana Kogure, Naoki Nakaya, Atsushi Hozawa, Satoru Ebihara, and Shin-Ichi Izumi. 2023. "Association between Low Forced Vital Capacity and High Pneumonia Mortality, and Impact of Muscle Power" Journal of Clinical Medicine 12, no. 9: 3272. https://doi.org/10.3390/jcm12093272
APA StyleShiokawa, N., Okazaki, T., Suzukamo, Y., Miyatake, M., Kogure, M., Nakaya, N., Hozawa, A., Ebihara, S., & Izumi, S. -I. (2023). Association between Low Forced Vital Capacity and High Pneumonia Mortality, and Impact of Muscle Power. Journal of Clinical Medicine, 12(9), 3272. https://doi.org/10.3390/jcm12093272