Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) Is a Biomarker Associated with Left Ventricular Hypertrophy in the Elderly, Specifically in Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Population
2.2. Determination of the Laboratory Markers and Anthropometric Parameters
2.3. Echocardiographic Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Clinical Characteristics of the Group
4.2. TnT, NT-proBNP and CRP in Association with Cardiac Parameters
4.3. suPAR and Cardiac Parameters of the Elderly with and without LVH
5. Study Strength and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Riet, E.E.; Hoes, A.W.; Wagenaar, K.P.; Limburg, A.; Landman, M.A.; Rutten, F.H. Epidemiology of heart failure: The prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur. J. Heart Fail. 2016, 18, 242–252. [Google Scholar] [CrossRef]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2020 Update: A Report from the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef]
- Cuspidi, C.; Sala, C.; Negri, F.; Mancia, G.; Morganti, A.; Italian Society of Hypertension. Prevalence of left-ventricular hypertrophy in hypertension: An updated review of echocardiographic studies. J. Hum. Hypertens. 2011, 26, 343–349. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Gebhard, C.; Stähli, B.E.; Gebhard, C.E.; Tasnady, H.; Zihler, D.; Wischnewsky, M.B.; Jenni, R.; Tanner, F.C. Age- and Gender-Dependent Left Ventricular Remodeling. Echocardiography 2013, 30, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.F.; Coller, J.M.; McGrady, M.; Boffa, U.; Shiel, L.; Liew, D.; Stewart, S.; Owen, A.J.; Krum, H.; Reid, C.M.; et al. Age-related longitudinal change in cardiac structure and function in adults at increased cardiovascular risk. ESC Heart Fail. 2020, 7, 1344–1361. [Google Scholar] [CrossRef] [PubMed]
- Merz, A.; Cheng, S. Sex differences in cardiovascular ageing. Heart 2016, 102, 825–831. [Google Scholar] [CrossRef]
- Eggers, K.M.; Lindahl, B.; Venge, P.; Lind, L. Predictors of 10-year changes in levels of N-terminal pro B-type natriuretic peptide and cardiac troponin I in the elderly. Int. J. Cardiol. 2018, 257, 300–305. [Google Scholar] [CrossRef]
- Rasmussen, L.J.H.; Petersen, J.E.V.; Eugen-Olsen, J. Soluble Urokinase Plasminogen Activator Receptor (suPAR) as a Biomarker of Systemic Chronic Inflammation. Front. Immunol. 2021, 12, 780641. [Google Scholar] [CrossRef] [PubMed]
- Backes, Y.; Van Der Sluijs, K.F.; Mackie, D.P.; Tacke, F.; Koch, A.; Tenhunen, J.J.; Schultz, M.J. Usefulness of suPAR as a biological marker in patients with systemic inflammation or infection: A systematic review. Intensiv. Care Med. 2012, 38, 1418–1428. [Google Scholar] [CrossRef]
- Velissaris, D.; Zareifopoulos, N.; Karamouzos, V.; Pierrakos, C.; Karanikolas, M. Soluble urokinase plasminogen activator receptor (suPAR) in the emergency department: An update. Casp. J. Intern. Med. 2022, 13, 650–665. [Google Scholar] [CrossRef]
- Guthoff, M.; Wagner, R.; Randrianarisoa, E.; Hatziagelaki, E.; Peter, A.; Häring, H.-U.; Fritsche, A.; Heyne, N. Soluble urokinase receptor (suPAR) predicts microalbuminuria in patients at risk for type 2 diabetes mellitus. Sci. Rep. 2017, 7, 40627. [Google Scholar] [CrossRef]
- Hayek, S.S.; Sever, S.; Ko, Y.-A.; Trachtman, H.; Awad, M.; Wadhwani, S.; Altintas, M.M.; Wei, C.; Hotton, A.L.; French, A.L.; et al. Soluble Urokinase Receptor and Chronic Kidney Disease. N. Engl. J. Med. 2015, 373, 1916–1925. [Google Scholar] [CrossRef] [PubMed]
- Meijers, B.; Poesen, R.; Claes, K.; Dietrich, R.; Bammens, B.; Sprangers, B.; Naesens, M.; Storr, M.; Kuypers, D.; Evenepoel, P. Soluble urokinase receptor is a biomarker of cardiovascular disease in chronic kidney disease. Kidney Int. 2015, 87, 210–216. [Google Scholar] [CrossRef]
- Pemberton, C. Prognostic Outcomes in Patients with Heart Failure: A New SuPAR Biomarker for Risk Prediction? JACC: Heart Fail. 2017, 5, 278–279. [Google Scholar] [CrossRef]
- Thunø, M.; Macho, B.; Eugen-Olsen, J. suPAR: The molecular crystal ball. Dis. Markers 2009, 27, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, T.T.; Li, Z.; Lefer, D.J. Soluble urokinase plasminogen activator receptor: From biomarker to active participant in atherosclerosis and cardiovascular disease. J. Clin. Investig. 2022, 132, e165868. [Google Scholar] [CrossRef]
- Velissaris, D.; Zareifopoulos, N.; Koniari, I.; Karamouzos, V.; Bousis, D.; Gerakaris, A.; Platanaki, C.; Kounis, N. Soluble Urokinase Plasminogen Activator Receptor as a Diagnostic and Prognostic Biomarker in Cardiac Disease. J. Clin. Med. Res. 2021, 13, 133–142. [Google Scholar] [CrossRef]
- Nikorowitsch, J.; Borchardt, T.; Appelbaum, S.; Ojeda, F.; Lackner, K.J.; Schnabel, R.B.; Blankenberg, S.; Zeller, T.; Karakas, M. Cardio-Renal Biomarker Soluble Urokinase-Type Plasminogen Activator Receptor Is Associated with Cardiovascular Death and Myocardial Infarction in Patients with Coronary Artery Disease Independent of Troponin, C-Reactive Protein, and Renal Function. J. Am. Heart Assoc. 2020, 9, e015452. [Google Scholar] [CrossRef] [PubMed]
- Schaeffner, E.S.; Ebert, N.; Delanaye, P.; Frei, U.; Gaedeke, J.; Jakob, O.; Kuhlmann, M.K.; Schuchardt, M.; Tölle, M.; Ziebig, R.; et al. Two Novel Equations to Estimate Kidney Function in Persons Aged 70 Years or Older. Ann. Intern. Med. 2012, 157, 471–481. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed]
- Wlazel, R.N.; Szwabe, K.; Guligowska, A.; Kostka, T. Soluble urokinase plasminogen activator receptor level in individuals of advanced age. Sci. Rep. 2020, 10, 15462. [Google Scholar] [CrossRef]
- Lam, C.S.P.; Arnott, C.; Beale, A.L.; Chandramouli, C.; Hilfiker-Kleiner, D.; Kaye, D.M.; Ky, B.; Santema, B.T.; Sliwa, K.; A Voors, A. Sex differences in heart failure. Eur. Heart J. 2019, 40, 3859–3868c. [Google Scholar] [CrossRef] [PubMed]
- Tromp, J.; A Paniagua, S.M.; Lau, E.S.; Allen, N.B.; Blaha, M.J.; Gansevoort, R.T.; Hillege, H.L.; E Lee, D.; Levy, D.; Vasan, R.S.; et al. Age dependent associations of risk factors with heart failure: Pooled population based cohort study. BMJ 2021, 372, n461. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Giamouzis, G.; Dimos, A.; Xanthopoulos, A.; Skoularigis, J.; Triposkiadis, F. Left ventricular hypertrophy and sudden cardiac death. Heart Fail. Rev. 2021, 27, 711–724. [Google Scholar] [CrossRef]
- Ruilope, L.M.; Schmieder, R.E. Left Ventricular Hypertrophy and Clinical Outcomes in Hypertensive Patients. Am. J. Hypertens. 2008, 21, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Xanthakis, V.; Sullivan, L.M.; Lieb, W.; Massaro, J.; Aragam, J.; Benjamin, E.J.; Vasan, R.S. Correlates of echocardiographic indices of cardiac remodeling over the adult life course: Longitudinal observations from the Framingham Heart Study. Circulation 2010, 122, 570–578. [Google Scholar] [CrossRef]
- Cuspidi, C.; Rescaldani, M.; Sala, C.; Grassi, G. Left-ventricular hypertrophy and obesity: A systematic review and meta-analysis of echocardiographic studies. J. Hypertens. 2014, 32, 16–25. [Google Scholar] [CrossRef]
- Tong, M.; Saito, T.; Zhai, P.; Oka, S.-I.; Mizushima, W.; Nakamura, M.; Ikeda, S.; Shirakabe, A.; Sadoshima, J. Mitophagy Is Essential for Maintaining Cardiac Function During High Fat Diet-Induced Diabetic Cardiomyopathy. Circ. Res. 2019, 124, 1360–1371. [Google Scholar] [CrossRef]
- Succurro, E.; Miceli, S.; Fiorentino, T.V.; Sciacqua, A.; Perticone, M.; Andreozzi, F.; Sesti, G. Sex-specific differences in left ventricular mass and myocardial energetic efficiency in non-diabetic, pre-diabetic and newly diagnosed type 2 diabetic subjects. Cardiovasc. Diabetol. 2021, 20, 60. [Google Scholar] [CrossRef] [PubMed]
- Cuspidi, C.; Rescaldani, M.; Sala, C. Prevalence of Echocardiographic Left-Atrial Enlargement in Hypertension: A Systematic Review of Recent Clinical Studies. Am. J. Hypertens. 2013, 26, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef] [PubMed]
- Bielecka-Dabrowa, A.; Michalska-Kasiczak, M.; Gluba, A.; Ahmed, A.; Gerdts, E.; von Haehling, S.; Rysz, J.; Banach, M. Biomarkers and Echocardiographic Predictors of Myocardial Dysfunction in Patients with Hypertension. Sci. Rep. 2015, 5, 8916. [Google Scholar] [CrossRef]
- Suthahar, N.; Lau, E.S.; Blaha, M.J.; Paniagua, S.M.; Larson, M.G.; Psaty, B.M.; Benjamin, E.J.; Allison, M.A.; Bartz, T.M.; Januzzi, J.L., Jr.; et al. Sex-Specific Associations of Cardiovascular Risk Factors and Biomarkers with Incident Heart Failure. J. Am. Coll. Cardiol. 2020, 76, 1455–1465. [Google Scholar] [CrossRef]
- Lind, L.; Loader, J.; Lindahl, B.; Eggers, K.M.; Sundström, J. A comparison of echocardiographic and circulating cardiac biomarkers for predicting incident cardiovascular disease. PLoS ONE 2022, 17, e0271835. [Google Scholar] [CrossRef]
- Forghani, M.S.; Jadidoleslami, M.S.; Naleini, S.N.; Rajabnia, M. Measurement of the serum levels of serum troponins I and T, albumin and C-Reactive protein in chronic hemodialysis patients and their relationship with left ventricular hypertrophy and heart failure. Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 13, 522–525. [Google Scholar] [CrossRef]
- Le, T.-T.; Lim, V.; Ibrahim, R.; Teo, M.-T.; Bryant, J.; Ang, B.; Su, B.; Aw, T.-C.; Lee, C.-H.; Bax, J.; et al. The remodelling index risk stratifies patients with hypertensive left ventricular hypertrophy. Eur. Heart J.-Cardiovasc. Imaging 2020, 22, 670–679. [Google Scholar] [CrossRef]
- Gehlken, C.; Screever, E.M.; Suthahar, N.; van der Meer, P.; Westenbrink, B.D.; Coster, J.E.; Van Veldhuisen, D.J.; de Boer, R.A.; Meijers, W.C. Left atrial volume and left ventricular mass indices in heart failure with preserved and reduced ejection fraction. ESC Heart Fail. 2021, 8, 2458–2466. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; An, Y.; Wang, H.; Zhang, N.; Deng, S. The clinical significance of changes in cTnT, CRP and NT-proBNP levels in patients with heart failure. Am. J. Transl. Res. 2021, 13, 2947–2954. [Google Scholar] [PubMed]
- Lima, P.C.; Rios, D.M.; de Oliveira, F.P.; Passos, L.R.; Ribeiro, L.B.; Serpa, R.G.; Calil, O.A.; de Barros, L.C.; Barbosa, L.F.M.; Barbosa, R.R. Inflammation as a Prognostic Marker in Heart Failure. Cureus 2022, 14, e28605. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.H.; Gerke, O.; Eugen-Olsen, J.; Munkholm, H.; Lambrechtsen, J.; Sand, N.P.R.; Mickley, H.; Rasmussen, L.M.; Olsen, M.H.; Diederichsen, A. Soluble urokinase plasminogen activator receptor is in contrast to high-sensitive C-reactive-protein associated with coronary artery calcifications in healthy middle-aged subjects. Atherosclerosis 2014, 237, 60–66. [Google Scholar] [CrossRef]
- Hayek, S.S.; Divers, J.; Raad, M.; Xu, J.; Bowden, D.W.; Tracy, M.; Reiser, J.; Freedman, B.I. Predicting Mortality in African Americans with Type 2 Diabetes Mellitus: Soluble Urokinase Plasminogen Activator Receptor, Coronary Artery Calcium, and High-Sensitivity C-Reactive Protein. J. Am. Heart Assoc. 2018, 7, e008194. [Google Scholar] [CrossRef]
- Eapen, D.J.; Manocha, P.; Ghasemzadeh, N.; Patel, R.S.; Al Kassem, H.; Hammadah, M.; Veledar, E.; Le, N.; Pielak, T.; Thorball, C.W.; et al. Soluble Urokinase Plasminogen Activator Receptor Level Is an Independent Predictor of the Presence and Severity of Coronary Artery Disease and of Future Adverse Events. J. Am. Heart Assoc. 2014, 3, e001118. [Google Scholar] [CrossRef]
- Mekonnen, G.; Corban, M.T.; Hung, O.Y.; Eshtehardi, P.; Eapen, D.J.; Al-Kassem, H.; Rasoul-Arzrumly, E.; Gogas, B.D.; McDaniel, M.C.; Pielak, T.; et al. Plasma soluble urokinase-type plasminogen activator receptor level is independently associated with coronary microvascular function in patients with non-obstructive coronary artery disease. Atherosclerosis 2015, 239, 55–60. [Google Scholar] [CrossRef]
- Al-Badri, A.; Tahhan, A.S.; Sabbak, N.; Alkhoder, A.; Liu, C.; Ko, Y.; Vaccarino, V.; Martini, A.; Sidoti, A.; Goodwin, C.; et al. Soluble Urokinase-Type Plasminogen Activator Receptor and High-Sensitivity Troponin Levels Predict Outcomes in Nonobstructive Coronary Artery Disease. J. Am. Heart Assoc. 2020, 9, e015515. [Google Scholar] [CrossRef]
- Fujita, S.-I.; Tanaka, S.; Maeda, D.; Morita, H.; Fujisaka, T.; Takeda, Y.; Ito, T.; Ishizaka, N. Serum Soluble Urokinase-Type Plasminogen Activator Receptor Is Associated with Low Left Ventricular Ejection Fraction and Elevated Plasma Brain-Type Natriuretic Peptide Level. PLoS ONE 2017, 12, e0170546. [Google Scholar] [CrossRef]
- Fujisaka, T.; Fujita, S.-I.; Maeda, D.; Shibata, K.; Takahashi, H.; Morita, H.; Takeda, Y.; Ito, T.; Sohmiya, K.; Hoshiga, M.; et al. Association between suPAR and cardiac diastolic dysfunction among patients with preserved ejection fraction. Heart Vessel. 2017, 32, 1327–1336. [Google Scholar] [CrossRef]
- Muiesan, M.L.; Paini, A.; Aggiusti, C.; Bertacchini, F.; Rosei, C.A.; Salvetti, M. Hypertension and Organ Damage in Women. High Blood Press. Cardiovasc. Prev. 2018, 25, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Forman, D.E.; de Lemos, J.A.; Shaw, L.J.; Reuben, D.B.; Lyubarova, R.; Peterson, E.D.; Spertus, J.A.; Zieman, S.; Salive, M.E.; Rich, M.W.; et al. Cardiovascular Biomarkers and Imaging in Older Adults: JACC Council Perspectives. J. Am. Coll. Cardiol. 2020, 76, 1577–1594. [Google Scholar] [CrossRef] [PubMed]
- Theilade, S.; Rossing, P.; Eugen-Olsen, J.; Jensen, J.S.; Jensen, M.T. suPAR level is associated with myocardial impairment assessed with advanced echocardiography in patients with type 1 diabetes with normal ejection fraction and without known heart disease or end-stage renal disease. Eur. J. Endocrinol. 2016, 174, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Manshad, A.S.; Ballout, F.A.; Borgia, J.A.; Reiser, J.; Okwuosa, T.M. Soluble Urokinase Plasminogen Activator Receptor Is Associated with Subclinical Myocardial Impairment by Speckle Tracking Echocardiography in Lung Cancer Patients. Front. Cardiovasc. Med. 2022, 8, 659524. [Google Scholar] [CrossRef]
- Sehestedt, T.; Lyngbæk, S.; Eugen-Olsen, J.; Jeppesen, J.; Andersen, O.; Hansen, T.; Linneberg, A.; Jørgensen, T.; Haugaard, S.; Olsen, M. Soluble urokinase plasminogen activator receptor is associated with subclinical organ damage and cardiovascular events. Atherosclerosis 2011, 216, 237–243. [Google Scholar] [CrossRef]
Variable | All n = 238 | Men n = 66 | Women n = 172 | p | LVH, n = 139 | Non-LVH, n = 99 | p |
---|---|---|---|---|---|---|---|
Sex (male) n (%) | 66 (27.7) | - | - | - | 55 (39.9) | 11 (11.8) | <0.001 |
Age [years] | 80 (78–83) | 80 (78–83) | 80 (78–84) | ns. | 80 (78–84) | 80 (78–83) | ns. |
BMI [kg/m2] | 26.7 (24.3–29.8) | 26.7 (25.0–29.1) | 26.6 (24.0–30.3) | ns. | 27.9 (25.6–30.5) | 25.1 (23.2–28.7) | <0.001 |
TC [mmol/L] | 4.94 (4.42–6.05) | 4.83 (3.96–5.41) | 5.09 (4.55–3.70) | <0.001 | 4.86 (4.29–5.74) | 5.20 (4.55–6.21) | 0.026 |
HDL-C [mmol/L] | 1.55 (1.37–1.78) | 1.37 (1.16–1.55) | 1.63 (1.45–1.86) | <0.001 | 1.50 (1.32–1.73) | 1.63 (1.47–1.89) | <0.001 |
LDL-C [mmol/L] | 2.82 (2.22–3.65) | 2.74 (1.94–3.57) | 2.87 (2.35–3.80) | ns. | 2.72 (2.17–3.47) | 3.00 (2.41–3.85) | ns. |
TG [mmol/L] | 1.23 (0.98–1.59) | 1.20 (0.97–1.57) | 1.26 (0.99–1.66) | ns. | 1.25 (0.99–1.51) | 1.21 (0.96–1.57) | ns. |
Glucose [mmol/L] | 5.67 (5.22–6.40) | 5.79 (5.39–6.46) | 5.62 (5.22–6.35) | ns. | 5.79 (5.39–6.57) | 5.45 (5.11–6.29) | 0.010 |
hsCRP [mg/L] | 1.44 (0.89–2.86) | 1.16 (0.69–2.65) | 1.68 (0.98–2.88) | ns. | 1.46 (0.89–3.27) | 1.39 (0.90–2.64) | ns. |
NT-proBNP [pg/mL] | 170 (111–329) | 161 (113–267) | 182 (110–350) | ns. | 171 (110–376) | 170 (116–297) | ns. |
hsTnT [ng/L] | 10.8 (7.8–14.9) | 14.2 (10.1–18.8) | 9.8 (7.2–13.3) | <0.001 | 11.7 (7.9–15.6) | 9.8 (7.7–13.5) | ns. |
suPAR [ng/mL] | 3.90 (3.39–4.63) | 3.81 (3.29–4.17) | 4.02 (3.48–4.73) | 0.014 | 4.01 (3.48–4.71) | 3.82 (3.22–4.44) | 0.033 |
eGFR BIS [mL/min/1.72 m2] | 56 (51–64) | 59 (52–66) | 56 (50–63) | ns. | 57 (51–64) | 56 (51–63) | ns. |
Hypertension, n (%) | 192 (80.6) | 56 (84.1) | 136 (79.3) | ns. | 124 (89.0) | 68 (68.6) | <0.001 |
Diabetes, n (%) | 24 (9.9) | 11 (16.9) | 13 (7.8) | ns. | 21 (15.1) | 3 (3.1) | 0.003 |
CAD, n (%) | 44 (18.5) | 18 (27.5) | 26 (15.0) | 0.026 | 28 (20.0) | 16 (15.7) | ns. |
Diuretics, n (%) | 87 (36.7) | 22 (33.8) | 65 (37.9) | ns. | 51 (36.8) | 36 (36.6) | ns. |
Statins, n (%) | 123 (51.6) | 42 (63.1) | 84 (47.4) | 0.0315 | 79 (56.7) | 44 (44.4) | ns. |
Variable | All n = 238 | LVH, n = 139 | Non-LVH, n = 99 | p |
---|---|---|---|---|
IVSd [cm] | 1.1 (1.0–1.2) | 1.1 (0.9–1.2) | 1.0 (0.8–1.1) | <0.001 |
LVDd [cm] | 4.6 (4.4–4.9) | 4.7 (4.5–5.0) | 4.5 (4.3–4.8) | <0.001 |
LVSd [cm] | 2.7 (2.5–3.0) | 2.8 (2.5–3.0) | 2.6 (2.3–2.29) | <0.001 |
PWd [cm] | 1.0 (0.9–1.1) | 1.0 (1.0–1.0) | 0.9 (0.8–1.0) | <0.001 |
RWT | 0.44 (0.42–0.48) | 0.46 (0.43–0.49) | 0.42 (0.40–0.44) | <0.001 |
LA diam. [cm] | 3.7 (3.4–4.0) | 3.9 (3.5–4.1) | 3.5 (3.2–3.7) | <0.001 |
LAA [cm2] | 17.0 (15.0–19.5) | 17.5 (15.0–20.4) | 15.0 (13.0–17.0) | <0.001 |
LAVI [mL/m2] | 27.0 (22.2–32.4) | 29.2 (23.4–91.8) | 24.7(20.5–30.2) | 0.001 |
LVMI [g/m2] | 110 (99–128) | 121 (109–135) | 99 (89–108) | <0.001 |
EF [%] | 60 (58–62) | 60 (58–62) | 60 (58–63) | ns. |
S’ [m/s] | 0.08 (0.09–0.09) | 0.08 (0.08–0.09) | 0.08 (0.08–0.09) | ns. |
E/A | 0.70 (0.58–0.81) | 0.68 (0.57–0.79) | 0.72 (0.6–0.82) | ns. |
E’ [m/s] | 0.07 (0.06–0.08) | 0.07 (0.06–0.08) | 0.07 (0.06–0.09) | 0.003 |
E/E’ | 8.57 (7.28–10.1) | 8.9 (7.8–10.4) | 8.1 (6.9–9.6) | 0.003 |
Variable | suPAR [ng/mL] | hsTnT [ng/L] | NT-proBNP [pg/mL] | hsCRP [mg/L] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
All | Men | Women | All | Men | Women | All | Men | Women | All | Men | Women | |
Age [years] | 0.212 * | 0.087 | 0.268 * | 0.335 * | 0.301 | 0.371 | 0.273 * | 0.248 * | 0.283 * | −0.006 | 0.034 | −0.015 |
BMI [kg/m2] | 0.088 | −0.052 | 0.138 | 0.034 | −0.039 | 0.055 | −0.158 * | −0.110 | −0170 * | 0.137 * | 0.210 | 0.125 |
IVSd [cm] | 0.066 | 0.147 | 0.137 | 0.200 * | 0.234 | 0.033 | 0.033 | 0.183 | 0.009 | 0.063 | 0.029 | 0.173 * |
LVDd [cm] | −0.009 | −0.023 | 0.096 | 0.154 * | 0.204 | 0.006 | 0.026 | 0.167 | 0.074 | −0.023 | 0.104 | 0.031 |
LVSd [cm] | 0.078 | −0.033 | 0.216 * | 0.213 * | 0.120 | 0.135 | 0.156 * | 0.186 | 0.225 * | 0.018 | 0.084 | 0.078 |
PWd [cm] | 0.058 | 0.040 | 0.169 * | 0.231 * | 0.214 | 0.101 | 0.067 | 0.191 | 0.063 | 0.022 | −0.035 | 0.119 |
RWT | 0.052 | 0.117 | 0.042 | 0.060 | 0.113 | 0.047 | −0.016 | 0.078 | −0.043 | 0.046 | −0.105 | 0.111 |
LA diam [cm] | 0.077 | 0.186 | 0.135 | 0.296 * | 0.314 * | 0.176 * | 0.186 * | 0.251 * | 0.227 * | 0.004 | 0.130 | 0.047 |
LAA [cm2] | 0.061 | 0.110 | 0.130 | 0.364 * | 0.400 * | 0.279 * | 0.250 * | 0.292 * | 0.290 * | −0.047 | 0.107 | −0.031 |
LAVI [mL/m2] | 0.040 | 0.014 | 0.099 | 0.331 * | 0.330 * | 0.293 * | 0.321 * | 0.370 * | 0.337 * | −0.043 | 0.036 | −0.048 |
LVMI [g/m2] | 0.021 | −0.016 | 0.134 | 0.132 * | 0.153 | 0.011 | 0.071 | 0.205 | 0.084 | −0.014 | −0.055 | 0.078 |
EF [%] | 0.021 | 0.126 | −0.029 | −0.169 * | −0.272 * | −0.159 * | −0.219 * | −0.362 * | −0.168 * | −0.018 | −0.084 | −0.018 |
S’ [m/s] | −0.010 | −0.025 | 0.020 | 0.082 | −0.205 | 0.133 | −0.184 * | −0.321 * | −0.118 | −0.015 | −0.134 | 0.040 |
E/A | 0.106 | 0.124 | 0.098 | 0.045 | 0.073 | 0.081 | 0.350 * | 0.244 * | 0.377 * | 0.052 | 0.071 | 0.041 |
E’ [m/s] | −0.160 * | 0.034 | −0.217 * | −0.004 | −0.003 | −0.011 | 0.031 | −0.034 | 0.060 | −0.021 | 0.089 | −0.073 |
E/E’ | 0.249 * | −0.032 | 0.342 * | 0.085 | 0.025 | 0.186 * | 0.186 * | 0.186 | 0.174 * | 0.083 | 0.016 | 0.107 |
Variables | All Patients OR (95%CI), n = 238 | Women OR (95%CI), n = 172 | Men OR (95%CI) n = 66 |
---|---|---|---|
Male sex | 6.69 (3.05–14.68) *** | - | - |
suPAR | 1.57 (1.12–2.22) ** | 1.55 (1.08–2.23) * | not fit into the model |
BMI | 1.19 (1.09–1.29) *** | 1.17 (1.07–1.27) *** | 1.42 (1.03–1.96) * |
Hypertension | 3.00 (1.37–6.59) ** | 2.42 (1.02–5.79) * | 7.52 (1.50–37.50) * |
Overall fit of the model; p | <0.0001 | <0.0001 | 0.0009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wlazeł, R.N.; Guligowska, A.; Chrząstek, Z.; Kostka, T.; Jegier, A.; Szadkowska, I. Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) Is a Biomarker Associated with Left Ventricular Hypertrophy in the Elderly, Specifically in Women. J. Clin. Med. 2023, 12, 3290. https://doi.org/10.3390/jcm12093290
Wlazeł RN, Guligowska A, Chrząstek Z, Kostka T, Jegier A, Szadkowska I. Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) Is a Biomarker Associated with Left Ventricular Hypertrophy in the Elderly, Specifically in Women. Journal of Clinical Medicine. 2023; 12(9):3290. https://doi.org/10.3390/jcm12093290
Chicago/Turabian StyleWlazeł, Rafał Nikodem, Agnieszka Guligowska, Zuzanna Chrząstek, Tomasz Kostka, Anna Jegier, and Iwona Szadkowska. 2023. "Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) Is a Biomarker Associated with Left Ventricular Hypertrophy in the Elderly, Specifically in Women" Journal of Clinical Medicine 12, no. 9: 3290. https://doi.org/10.3390/jcm12093290
APA StyleWlazeł, R. N., Guligowska, A., Chrząstek, Z., Kostka, T., Jegier, A., & Szadkowska, I. (2023). Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) Is a Biomarker Associated with Left Ventricular Hypertrophy in the Elderly, Specifically in Women. Journal of Clinical Medicine, 12(9), 3290. https://doi.org/10.3390/jcm12093290