The Role of IL-23 Inhibitors in Crohn’s Disease
Abstract
:1. Introduction
2. Materials and Methods
3. Pharmacodynamic
4. Results
4.1. Risankizumab
4.1.1. Efficacy
4.1.2. Safety
4.2. Brazikumab
4.2.1. Efficacy
4.2.2. Safety
4.3. Guselkumab
4.3.1. Efficacy
4.3.2. Safety
4.4. Mirikizumab
4.4.1. Efficacy
4.4.2. Safety
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Molodecky, N.A.; Soon, I.S.; Rabi, D.M.; Ghali, W.A.; Ferris, M.; Chernoff, G.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Barkema, H.W.; et al. Increasing Incidence and Prevalence of the Inflammatory Bowel Diseases with Time, Based on Systematic Review. Gastroenterology 2012, 142, 46–54.e42, quiz e30. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Sun, K.; Wu, Y.; Yang, Y.; Tso, P.; Wu, Z. Interactions between Intestinal Microbiota and Host Immune Response in Inflammatory Bowel Disease. Front. Immunol. 2017, 8, 942. [Google Scholar] [CrossRef] [PubMed]
- Parigi, T.L.; Iacucci, M.; Ghosh, S. Blockade of IL-23: What Is in the Pipeline? J. Crohn’s Colitis 2022, 16, ii64–ii72. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.; Bonovas, S.; Doherty, G.; Kucharzik, T.; Gisbert, J.P.; Raine, T.; Adamina, M.; Armuzzi, A.; Bachmann, O.; Bager, P.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohn’s Colitis 2020, 14, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Raine, T.; Bonovas, S.; Burisch, J.; Kucharzik, T.; Adamina, M.; Annese, V.; Bachmann, O.; Bettenworth, D.; Chaparro, M.; Czuber-Dochan, W.; et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Medical Treatment. J. Crohn’s Colitis 2022, 16, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Balderramo, D. Role of the Combination of Biologics and/or Small Molecules in the Treatment of Patients with Inflammatory Bowel Disease. World J. Gastroenterol. 2022, 28, 6743–6751. [Google Scholar] [CrossRef] [PubMed]
- Leone, G.M.; Mangano, K.; Petralia, M.C.; Nicoletti, F.; Fagone, P. Past, Present and (Foreseeable) Future of Biological Anti-TNF Alpha Therapy. J. Clin. Med. 2023, 12, 1630. [Google Scholar] [CrossRef]
- Singh, S.; George, J.; Boland, B.S.; Vande Casteele, N.; Sandborn, W.J. Primary Non-Response to Tumor Necrosis Factor Antagonists Is Associated with Inferior Response to Second-Line Biologics in Patients with Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis. J. Crohn’s Colitis 2018, 12, 635–643. [Google Scholar] [CrossRef]
- IL-12 and IL-23 Cytokines: From Discovery to Targeted Therapies for Immune-Mediated Inflammatory Diseases. Available online: https://pubmed.ncbi.nlm.nih.gov/26121196/ (accessed on 22 June 2023).
- Korta, A.; Kula, J.; Gomułka, K. The Role of IL-23 in the Pathogenesis and Therapy of Inflammatory Bowel Disease. Int. J. Mol. Sci. 2023, 24, 10172. [Google Scholar] [CrossRef]
- Desmet, J.; Verstraete, K.; Bloch, Y.; Lorent, E.; Wen, Y.; Devreese, B.; Vandenbroucke, K.; Loverix, S.; Hettmann, T.; Deroo, S.; et al. Structural Basis of IL-23 Antagonism by an Alphabody Protein Scaffold. Nat. Commun. 2014, 5, 5237. [Google Scholar] [CrossRef]
- Yen, D.; Cheung, J.; Scheerens, H.; Poulet, F.; McClanahan, T.; McKenzie, B.; Kleinschek, M.A.; Owyang, A.; Mattson, J.; Blumenschein, W.; et al. IL-23 Is Essential for T Cell-Mediated Colitis and Promotes Inflammation via IL-17 and IL-6. J. Clin. Investig. 2006, 116, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Ahern, P.P.; Izcue, A.; Maloy, K.J.; Powrie, F. The Interleukin-23 Axis in Intestinal Inflammation. Immunol. Rev. 2008, 226, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Cua, D.J.; Sherlock, J.; Chen, Y.; Murphy, C.A.; Joyce, B.; Seymour, B.; Lucian, L.; To, W.; Kwan, S.; Churakova, T.; et al. Interleukin-23 Rather than Interleukin-12 Is the Critical Cytokine for Autoimmune Inflammation of the Brain. Nature 2003, 421, 744–748. [Google Scholar] [CrossRef] [PubMed]
- Noor, N.M.; Verstockt, B.; Parkes, M.; Lee, J.C. Personalised Medicine in Crohn’s Disease. Lancet Gastroenterol. Hepatol. 2020, 5, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Feagan, B.G.; Sandborn, W.J.; Gasink, C.; Jacobstein, D.; Lang, Y.; Friedman, J.R.; Blank, M.A.; Johanns, J.; Gao, L.-L.; Miao, Y.; et al. Ustekinumab as Induction and Maintenance Therapy for Crohn’s Disease. N. Engl. J. Med. 2016, 375, 1946–1960. [Google Scholar] [CrossRef] [PubMed]
- Sands, B.E.; Sandborn, W.J.; Panaccione, R.; O’Brien, C.D.; Zhang, H.; Johanns, J.; Adedokun, O.J.; Li, K.; Peyrin-Biroulet, L.; Van Assche, G.; et al. Ustekinumab as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2019, 381, 1201–1214. [Google Scholar] [CrossRef] [PubMed]
- Deepak, P.; Sandborn, W.J. Ustekinumab and Anti-Interleukin-23 Agents in Crohn’s Disease. Gastroenterol. Clin. N. Am. 2017, 46, 603–626. [Google Scholar] [CrossRef]
- Papp, K.A.; Blauvelt, A.; Bukhalo, M.; Gooderham, M.; Krueger, J.G.; Lacour, J.-P.; Menter, A.; Philipp, S.; Sofen, H.; Tyring, S.; et al. Risankizumab versus Ustekinumab for Moderate-to-Severe Plaque Psoriasis. N. Engl. J. Med. 2017, 376, 1551–1560. [Google Scholar] [CrossRef]
- Yu, Q.; Ge, X.; Jing, M.; Mi, X.; Guo, J.; Xiao, M.; Lei, Q.; Chen, M. A Systematic Review with Meta-Analysis of Comparative Efficacy and Safety of Risankizumab and Ustekinumab for Psoriasis Treatment. J. Immunol. Res. 2022, 2022, 2802892. [Google Scholar] [CrossRef]
- Levin, A.A.; Gottlieb, A.B. Specific Targeting of Interleukin-23p19 as Effective Treatment for Psoriasis. J. Am. Acad. Dermatol. 2014, 70, 555–561. [Google Scholar] [CrossRef]
- Chapuy, L.; Bsat, M.; Rubio, M.; Sarkizova, S.; Therrien, A.; Bouin, M.; Orlicka, K.; Weber, A.; Soucy, G.; Villani, A.-C.; et al. IL-12 and Mucosal CD14+ Monocyte-Like Cells Induce IL-8 in Colonic Memory CD4+ T Cells of Patients with Ulcerative Colitis but Not Crohn’s Disease. J. Crohn’s Colitis 2020, 14, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Atreya, R.; Abreu, M.T.; Krueger, J.G.; Eyerich, K.; Sachen, K.; Greving, C.; Hammaker, D.; Bao, P.; Lacy, E.; Sarabia, I.; et al. P504 Guselkumab, an IL-23p19 Subunit–Specific Monoclonal Antibody, Binds CD64+ Myeloid Cells and Potently Neutralises IL-23 Produced from the Same Cells. J. Crohn’s Colitis 2023, 17, i634–i635. [Google Scholar] [CrossRef]
- Chackerian, A.A.; Chen, S.-J.; Brodie, S.J.; Mattson, J.D.; McClanahan, T.K.; Kastelein, R.A.; Bowman, E.P. Neutralization or Absence of the Interleukin-23 Pathway Does Not Compromise Immunity to Mycobacterial Infection. Infect. Immun. 2006, 74, 6092–6099. [Google Scholar] [CrossRef] [PubMed]
- Collison, L.W.; Vignali, D.A.A. Interleukin-35: Odd One out or Part of the Family? Immunol. Rev. 2008, 226, 248–262. [Google Scholar] [CrossRef] [PubMed]
- Pflanz, S.; Timans, J.C.; Cheung, J.; Rosales, R.; Kanzler, H.; Gilbert, J.; Hibbert, L.; Churakova, T.; Travis, M.; Vaisberg, E.; et al. IL-27, a Heterodimeric Cytokine Composed of EBI3 and P28 Protein, Induces Proliferation of Naive CD4+ T Cells. Immunity 2002, 16, 779–790. [Google Scholar] [CrossRef] [PubMed]
- IL-12 and IL-23 Pathway Inhibition in Inflammatory Bowel Disease|Nature Reviews Gastroenterology & Hepatology. Available online: https://www.nature.com/articles/s41575-023-00768-1 (accessed on 10 August 2023).
- Oppmann, B.; Lesley, R.; Blom, B.; Timans, J.C.; Xu, Y.; Hunte, B.; Vega, F.; Yu, N.; Wang, J.; Singh, K.; et al. Novel P19 Protein Engages IL-12p40 to Form a Cytokine, IL-23, with Biological Activities Similar as Well as Distinct from IL-12. Immunity 2000, 13, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Tesmer, L.A.; Lundy, S.K.; Sarkar, S.; Fox, D.A. Th17 Cells in Human Disease. Immunol. Rev. 2008, 223, 87–113. [Google Scholar] [CrossRef]
- Presky, D.H.; Yang, H.; Minetti, L.J.; Chua, A.O.; Nabavi, N.; Wu, C.-Y.; Gately, M.K.; Gubler, U. A Functional Interleukin 12 Receptor Complex Is Composed of Two β-Type Cytokine Receptor Subunits. Proc. Natl. Acad. Sci. USA 1996, 93, 14002–14007. [Google Scholar] [CrossRef]
- Parham, C.; Chirica, M.; Timans, J.; Vaisberg, E.; Travis, M.; Cheung, J.; Pflanz, S.; Zhang, R.; Singh, K.P.; Vega, F.; et al. A Receptor for the Heterodimeric Cytokine IL-23 Is Composed of IL-12Rβ1 and a Novel Cytokine Receptor Subunit, IL-23R. J. Immunol. 2002, 168, 5699–5708. [Google Scholar] [CrossRef]
- Ihle, J.N. The Janus Protein Tyrosine Kinase Family and Its Role in Cytokine Signaling. Adv. Immunol. 1995, 60, 1–35. [Google Scholar] [CrossRef]
- Vignali, D.A.A.; Kuchroo, V.K. IL-12 Family Cytokines: Immunological Playmakers. Nat. Immunol. 2012, 13, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Thierfelder, W.E.; Van Deursen, J.M.; Yamamoto, K.; Tripp, R.A.; Sarawar, S.R.; Carson, R.T.; Sangster, M.Y.; Vignali, D.A.A.; Doherty, P.C.; Grosveld, G.C.; et al. Requirement for Stat4 in Interleukin-12-Mediated Responses of Natural Killer and T Cells. Nature 1996, 382, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Monteleone, G.; Biancone, L.; Marasco, R.; Morrone, G.; Marasco, O.; Luzza, F.; Pallone, F. Interleukin 12 Is Expressed and Actively Released by Crohn’s Disease Intestinal Lamina Propria Mononuclear Cells. Gastroenterology 1997, 112, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Buonocore, S.; Ahern, P.P.; Uhlig, H.H.; Ivanov, I.I.; Littman, D.R.; Maloy, K.J.; Powrie, F. Innate Lymphoid Cells Drive Interleukin-23-Dependent Innate Intestinal Pathology. Nature 2010, 464, 1371–1375. [Google Scholar] [CrossRef] [PubMed]
- Aden, K.; Rehman, A.; Falk-Paulsen, M.; Secher, T.; Kuiper, J.; Tran, F.; Pfeuffer, S.; Sheibani-Tezerji, R.; Breuer, A.; Luzius, A.; et al. Epithelial IL-23R Signaling Licenses Protective IL-22 Responses in Intestinal Inflammation. Cell Rep. 2016, 16, 2208–2218. [Google Scholar] [CrossRef] [PubMed]
- Strober, B.; Menter, A.; Leonardi, C.; Gordon, K.; Lambert, J.; Puig, L.; Photowala, H.; Longcore, M.; Zhan, T.; Foley, P. Efficacy of Risankizumab in Patients with Moderate-to-severe Plaque Psoriasis by Baseline Demographics, Disease Characteristics and Prior Biologic Therapy: An Integrated Analysis of the Phase III UltIMMa-1 and UltIMMa-2 Studies. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 2830–2838. [Google Scholar] [CrossRef] [PubMed]
- Feagan, B.G.; Sandborn, W.J.; D’Haens, G.; Panés, J.; Kaser, A.; Ferrante, M.; Louis, E.; Franchimont, D.; Dewit, O.; Seidler, U.; et al. Induction Therapy with the Selective Interleukin-23 Inhibitor Risankizumab in Patients with Moderate-to-Severe Crohn’s Disease: A Randomised, Double-Blind, Placebo-Controlled Phase 2 Study. Lancet 2017, 389, 1699–1709. [Google Scholar] [CrossRef]
- Feagan, B.G.; Panés, J.; Ferrante, M.; Kaser, A.; D’Haens, G.R.; Sandborn, W.J.; Louis, E.; Neurath, M.F.; Franchimont, D.; Dewit, O.; et al. Risankizumab in Patients with Moderate to Severe Crohn’s Disease: An Open-Label Extension Study. Lancet Gastroenterol. Hepatol. 2018, 3, 671–680. [Google Scholar] [CrossRef]
- Ferrante, M.; Feagan, B.G.; Panés, J.; Baert, F.; Louis, E.; Dewit, O.; Kaser, A.; Duan, W.R.; Pang, Y.; Lee, W.-J.; et al. Long-Term Safety and Efficacy of Risankizumab Treatment in Patients with Crohn’s Disease: Results from the Phase 2 Open-Label Extension Study. J. Crohn’s Colitis 2021, 15, 2001–2010. [Google Scholar] [CrossRef]
- D’Haens, G.; Panaccione, R.; Baert, F.; Bossuyt, P.; Colombel, J.-F.; Danese, S.; Dubinsky, M.; Feagan, B.G.; Hisamatsu, T.; Lim, A.; et al. Risankizumab as Induction Therapy for Crohn’s Disease: Results from the Phase 3 ADVANCE and MOTIVATE Induction Trials. Lancet 2022, 399, 2015–2030. [Google Scholar] [CrossRef]
- Bossuyt, P.; Ferrante, M.; Baert, F.; Danese, S.; Feagan, B.G.; Loftus, E.V., Jr.; Panés, J.; Peyrin-Biroulet, L.; Ran, Z.; Armuzzi, A.; et al. OP36 Risankizumab Therapy Induces Improvements in Endoscopic Endpoints in Patients with Moderate-to-Severe Crohn’s Disease: Results from the Phase 3 ADVANCE and MOTIVATE Studies. J. Crohn’s Colitis 2021, 15, S033–S034. [Google Scholar] [CrossRef]
- Annex I: Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/skyrizi-epar-product-information_en.pdf (accessed on 1 October 2023).
- Ferrante, M.; Panaccione, R.; Baert, F.; Bossuyt, P.; Colombel, J.-F.; Danese, S.; Dubinsky, M.; Feagan, B.G.; Hisamatsu, T.; Lim, A.; et al. Risankizumab as Maintenance Therapy for Moderately to Severely Active Crohn’s Disease: Results from the Multicentre, Randomised, Double-Blind, Placebo-Controlled, Withdrawal Phase 3 FORTIFY Maintenance Trial. Lancet 2022, 399, 2031–2046. [Google Scholar] [CrossRef] [PubMed]
- EMA Skyrizi. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/skyrizi (accessed on 4 July 2023).
- Study Comparing Intravenous (IV)/Subcutaneous (SC) Risankizumab to IV/SC Ustekinumab to Assess Change in Crohn’s Disease Activity Index (CDAI) in Adult Participants with Moderate to Severe Crohn’s Disease (CD) (SEQUENCE). Available online: https://classic.clinicaltrials.gov/ct2/show/nct04524611 (accessed on 1 October 2023).
- AbbVie’s SKYRIZI® (Risankizumab) Met All Primary and Secondary Endpoints Versus Stelara® (Ustekinumab) in Head-To-Head Study in Crohn’s Disease. AbbVie News Center. Available online: https://news.abbvie.com/news/press-releases/abbvies-skyrizi-risankizumab-met-all-primary-and-secondary-endpoints-versus-stelara-ustekinumab-in-head-to-head-study-in-crohns-disease.htm (accessed on 3 October 2023).
- Sands, B.E.; Chen, J.; Feagan, B.G.; Penney, M.; Rees, W.A.; Danese, S.; Higgins, P.D.R.; Newbold, P.; Faggioni, R.; Patra, K.; et al. Efficacy and Safety of MEDI2070, an Antibody Against Interleukin 23, in Patients with Moderate to Severe Crohn’s Disease: A Phase 2a Study. Gastroenterology 2017, 153, 77–86.e6. [Google Scholar] [CrossRef] [PubMed]
- An Active and Placebo-Controlled Study of Brazikumab in Participants with Moderately to Severely Active Crohn’s Disease—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03759288 (accessed on 4 July 2023).
- Update on Brazikumab Development Programme. Available online: https://www.astrazeneca.com/media-centre/press-releases/2023/update-on-brazikumab-development-programme.html (accessed on 4 July 2023).
- Blauvelt, A.; Papp, K.A.; Griffiths, C.E.M.; Randazzo, B.; Wasfi, Y.; Shen, Y.-K.; Li, S.; Kimball, A.B. Efficacy and Safety of Guselkumab, an Anti-Interleukin-23 Monoclonal Antibody, Compared with Adalimumab for the Continuous Treatment of Patients with Moderate to Severe Psoriasis: Results from the Phase III, Double-Blinded, Placebo- and Active Comparator–Controlled VOYAGE 1 Trial. J. Am. Acad. Dermatol. 2017, 76, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Coates, L.C.; Gossec, L.; Theander, E.; Bergmans, P.; Neuhold, M.; Karyekar, C.S.; Shawi, M.; Noël, W.; Schett, G.; McInnes, I.B. Efficacy and Safety of Guselkumab in Patients with Active Psoriatic Arthritis Who Are Inadequate Responders to Tumour Necrosis Factor Inhibitors: Results through One Year of a Phase IIIb, Randomised, Controlled Study (COSMOS). Ann. Rheum. Dis. 2022, 81, 359–369. [Google Scholar] [CrossRef]
- Sandborn, W.J.; D’Haens, G.R.; Reinisch, W.; Panés, J.; Chan, D.; Gonzalez, S.; Weisel, K.; Germinaro, M.; Frustaci, M.E.; Yang, Z.; et al. Guselkumab for the Treatment of Crohn’s Disease: Induction Results from the Phase 2 GALAXI-1 Study. Gastroenterology 2022, 162, 1650–1664.e8. [Google Scholar] [CrossRef]
- A Study of the Efficacy and Safety of Guselkumab in Participants with Moderately to Severely Active Crohn’s Disease—Full Text View—ClinicalTrials.Gov. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT03466411 (accessed on 8 August 2023).
- A Study of Combination Therapy with Guselkumab and Golimumab in Participants with Moderately to Severely Active Crohn’s Disease—Full Text View—ClinicalTrials.Gov. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05242471?term=duet&cond=Crohn+Disease&draw=2&rank=2 (accessed on 8 August 2023).
- Sands, B.E.; Peyrin-Biroulet, L.; Kierkus, J.; Higgins, P.D.R.; Fischer, M.; Jairath, V.; Hirai, F.; D’Haens, G.; Belin, R.M.; Miller, D.; et al. Efficacy and Safety of Mirikizumab in a Randomized Phase 2 Study of Patients with Crohn’s Disease. Gastroenterology 2022, 162, 495–508. [Google Scholar] [CrossRef]
- A Study of Mirikizumab (LY3074828) in Participants with Crohn’s Disease—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03926130 (accessed on 22 June 2023).
- A Long-Term Extension Study of Mirikizumab (LY3074828) in Participants with Crohn’s Disease—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04232553 (accessed on 22 June 2023).
- EMA Stelara. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/stelara (accessed on 7 October 2023).
- Skyrizi—Full Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761262s000lbl.pdf (accessed on 1 October 2023).
- Blauvelt, A.; Gordon, K.B.; Lee, P.; Bagel, J.; Sofen, H.; Lockshin, B.; Soliman, A.M.; Geng, Z.; Zhan, T.; Alperovich, G.; et al. Efficacy, Safety, Usability, and Acceptability of Risankizumab 150 Mg Formulation Administered by Prefilled Syringe or by an Autoinjector for Moderate to Severe Plaque Psoriasis. J. Dermatol. Treat. 2022, 33, 2085–2093. [Google Scholar] [CrossRef]
- Hanauer, S.B.; Sandborn, W.J.; Feagan, B.G.; Gasink, C.; Jacobstein, D.; Zou, B.; Johanns, J.; Adedokun, O.J.; Sands, B.E.; Rutgeerts, P.; et al. IM-UNITI: Three-Year Efficacy, Safety, and Immunogenicity of Ustekinumab Treatment of Crohn’s Disease. J. Crohn’s Colitis 2020, 14, 23–32. [Google Scholar] [CrossRef]
- Lebwohl, M.G.; Merola, J.F.; Rowland, K.; Miller, M.; Yang, Y.-W.; Yu, J.; You, Y.; Chan, D.; Thaçi, D.; Langley, R.G. Safety of Guselkumab Treatment for up to 5 Years in Patients with Moderate-to-Severe Psoriasis: Pooled Analyses across Seven Clinical Trials with More than 8600 Patient-Years of Exposure. Br. J. Dermatol. 2023, 189, 42–52. [Google Scholar] [CrossRef]
- Gordon, K.B.; Lebwohl, M.; Papp, K.A.; Bachelez, H.; Wu, J.J.; Langley, R.G.; Blauvelt, A.; Kaplan, B.; Shah, M.; Zhao, Y.; et al. Long-term Safety of Risankizumab from 17 Clinical Trials in Patients with Moderate-to-severe Plaque Psoriasis. Br. J. Dermatol. 2022, 186, 466–475. [Google Scholar] [CrossRef] [PubMed]
- EMA Tremfya. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/tremfya (accessed on 5 November 2023).
- Jansen, F.M.; Vavricka, S.R.; den Broeder, A.A.; de Jong, E.M.; Hoentjen, F.; van Dop, W.A. Clinical Management of the Most Common Extra-Intestinal Manifestations in Patients with Inflammatory Bowel Disease Focused on the Joints, Skin and Eyes. United Eur. Gastroenterol. J. 2020, 8, 1031–1044. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Murad, M.H.; Fumery, M.; Sedano, R.; Jairath, V.; Panaccione, R.; Sandborn, W.J.; Ma, C. Comparative Efficacy and Safety of Biologic Therapies for Moderate-to-Severe Crohn’s Disease: A Systematic Review and Network Meta-Analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 1002–1014. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Parker, C.E.; Taylor, S.R.; Guizzetti, L.; Feagan, B.G.; Lobo, A.J.; Jairath, V. Efficacy of Medical Therapies for Fistulizing Crohn’s Disease: Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 1879–1892. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Baraty, B.; Lee Robertson, H.; Filyk, A.; Shen, H.; Fung, T.; Novak, K.; Ma, C.; Panaccione, R.; Achkar, J.; et al. Systematic Review: Medical Therapy for Fibrostenosing Crohn’s Disease. Aliment. Pharmacol. Ther. 2020, 51, 1233–1246. [Google Scholar] [CrossRef] [PubMed]
- Ardizzone, S.; Armuzzi, A.; Caprioli, F.; Castiglione, F.; Danese, S.; Daperno, M.; Fantini, M.C.; Fries, W.; Principi, M.B.; Savarino, E.; et al. Timing of Proper Introduction, Optimization and Maintenance of Anti-TNF Therapy in IBD: Results from a Delphi Consensus. Dig. Liver Dis. 2023, 56, 98–105. [Google Scholar] [CrossRef]
- Schmitt, H.; Billmeier, U.; Dieterich, W.; Rath, T.; Sonnewald, S.; Reid, S.; Hirschmann, S.; Hildner, K.; Waldner, M.J.; Mudter, J.; et al. Expansion of IL-23 Receptor Bearing TNFR2+ T Cells Is Associated with Molecular Resistance to Anti-TNF Therapy in Crohn’s Disease. Gut 2019, 68, 814–828. [Google Scholar] [CrossRef]
- Sands, B.E.; Irving, P.M.; Hoops, T.; Izanec, J.L.; Gao, L.-L.; Gasink, C.; Greenspan, A.; Allez, M.; Danese, S.; Hanauer, S.B.; et al. Ustekinumab versus Adalimumab for Induction and Maintenance Therapy in Biologic-Naive Patients with Moderately to Severely Active Crohn’s Disease: A Multicentre, Randomised, Double-Blind, Parallel-Group, Phase 3b Trial. Lancet 2022, 399, 2200–2211. [Google Scholar] [CrossRef]
- Ruggiero, A.; Fabbrocini, G.; Cinelli, E.; Ocampo Garza, S.S.; Camela, E.; Megna, M. Anti-interleukin-23 for Psoriasis in Elderly Patients: Guselkumab, Risankizumab and Tildrakizumab in Real-world Practice. Clin. Exp. Derm. 2022, 47, 561–567. [Google Scholar] [CrossRef]
- A Master Protocol (AMAZ): A Study of Mirikizumab (LY3074828) in Pediatric Participants with Ulcerative Colitis or Crohn’s Disease (SHINE-ON)—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04844606 (accessed on 22 June 2023).
- Janssen Research & Development, LLC. A Phase 2b Randomized, Double-Blind, Active-and Placebo-Controlled, Parallel-Group, Multicenter Study to Evaluate the Efficacy and Safety of Induction and Maintenance Combination Therapy with Guselkumab and Golimumab in Participants with Moderately to Severely Active Crohn’s Disease. 2023. Available online: https://clinicaltrials.gov/study/NCT05242471 (accessed on 1 October 2023).
Drug (Study, Phase) | Patients | Route of Administration | Dosing | Frequency of Dosing | Primary Endpoint | Primary Endpoint Results |
---|---|---|---|---|---|---|
Guselkumab (GALAXI-I, phase II) | 73 (200 mg) 73 (600 mg) 73 (1200 mg) 71 (ustekinumab) 70 (placebo) | IV induction, SC at W8 | Guselkumab (200 mg, 600 mg, or 1200 mg); ustekinumab 6 mg/kg at W0 and 90 mg SC at W8; placebo | Guselkumab: q4W Ustekinumab: q8W | Change from baseline of CDAI score at W12 |
|
Brazikumab (phase II) | 59 (700 mg) 60 (placebo) | IV W0 and W4, SC every 4Ws starting at W12 | 700 mg brazikumab; placebo | 700 mg IV q4W; 210 mg SC starting at W8 | Clinical response (a CDAI decrease of 100 points from baseline) at W8; clinical remission (CDAI < 150) at W8 | Clinical response:
|
Mirikizumab (phase II) | 31 (200 mg) 35 (600 mg) 64 (1000 mg) 64 (placebo) | IV | Mirikizumab (200 mg, 600 mg, 1000 mg); placebo | q4W | Endoscopic response (a 50% reduction from baseline in SES-CD score) at W12 |
|
Risankizumab (ADVANCE, phase III) | Conventional/biologic therapy failure: 336 (600 mg) 339 (1200 mg) 175 (placebo) | IV | Risankizumab (600 mg, 1200 mg); placebo | q4W | Clinical remission (CDAI < 150 in US/based on patient-reported stool frequency and abdominal pain in non-US countries) at W12 Endoscopic response (>50% decrease in SES-CD from baseline) at W12 | Clinical remission
|
Risankizumab (MOTIVATE, phase III) | Only biologic therapy failure: 191 (600 mg) 191 (1200 mg) 187 (placebo) | IV | Risankizumab (600 mg, 1200 mg); placebo | q4W | Clinical remission (CDAI < 150 in US/based on patient-reported stool frequency and abdominal pain in non-US countries) at W12 Endoscopic response (>50% decrease in SES-CD from baseline) at W12 | Clinical remission:
|
Risankizumab (FORTIFY, phase III) | Patients who responded to the 12W induction treatment in either ADVANCE or MOTIVATE: 141 (360 mg) 157 (180 mg) 164 (placebo) | SC | Risankizumab (360 mg, 180 mg); placebo | q8W | Clinical remission (CDAI < 150) at W52; endoscopic response (50% decrease in SES-CD from baseline) at W52 | Clinical remission:
|
Drug (Study, Phase) | Patients | Total AEs: Patients or Events | Total SAEs: Patients or Events | Infections: Patients or Events | Serious Infections: Patients or Events |
---|---|---|---|---|---|
Guselkumab (GALAXI-I, phase II) | At W12: patients | At W12: patients | At W12: patients | At W12: patients | |
73 (200 mg) | 32 (43.8%) | 3 (4.1%) | 9 (12.3%) | 1 (1.4%) | |
73 (600 mg) | 37 (50.7%) | 4 (5.5%) | 13 (17.8%) | 2 (2.7%) | |
73 (1200 mg) | 31 (42.5%) | 1 (1.4%) | 11 (15.1%) | 0 (0%) | |
71 (ustekinumab) | 36 (50.7%) | 4 (5.6%) | 9 (12.7%) | 1 (1.4%) | |
70 (placebo) | 42 (60%) | 4 (5.7%) | 15 (21.4%) | 0 (0%) | |
Brazikumab (phase II) | At W12: patients | At W12: patients | At W12 (no distinction regarding severity): patients | NA | |
59 (700 mg) | 40 (67.8%) | 5 (8.5%) | 4 (6.7%) | ||
60 (placebo) | 41 (68.3%) | 6 (10%) | 7 (11.6%) | ||
Mirikizumab (phase II) | At W12: patients | At W12: patients | NA | NA | |
31 (200 mg) | 18 (58.1%) | 0 (0%) | |||
35 (600 mg) | 21 (65.6%) | 3 (9.4%) | |||
64 (1000 mg) | 42 (65.6%) | 0 (0%) | |||
64 (placebo) | 45 (70.3%) | 7 (10.9%) | |||
Risankizumab (ADVANCE, phase III) | Conventional/biologic therapy failure: | At W12: events (rate) | At W12: events (rate) | NA | At W12: events (rate) |
336 (600 mg) | 210 (56%) | 27 (7%) | 3 (1%) | ||
339 (1200 mg) | 191 (51%) | 14 (4%) | 2 (1%) | ||
175 (placebo) | 105 (56%) | 28 (15%) | 7 (4%) | ||
Risankizumab (MOTIVATE, phase III) | Only biologic therapy failure: | At W12: events (rate) | At W12: events (rate) | NA | At W12: events (rate) |
191 (600 mg) | 98 (48%) | 10 (5%) | 1 (<1%) | ||
191 (1200 mg) | 121 (59%) | 9 (4%) | 2 (1%) | ||
187 (placebo) | 137 (66%) | 23 (13%) | 5 (2%) | ||
Risankizumab (FORTIFY, phase III) | Patients (at least one dose) who responded to the 12W induction treatment in either ADVANCE or MOTIVATE: | Patients: | Patients: | NA | Patients: |
179 (360 mg) | 129 (72%) | 24 (13%) | 8 (4%) | ||
179 (180 mg) | 128 (72%) | 22 (12%) | 5 (3%) | ||
184 (placebo) | 135 (73%) | 135 (73%) | 7 (4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanizza, J.; D’Amico, F.; Lusetti, F.; Fasulo, E.; Allocca, M.; Furfaro, F.; Zilli, A.; Parigi, T.L.; Radice, S.; Peyrin-Biroulet, L.; et al. The Role of IL-23 Inhibitors in Crohn’s Disease. J. Clin. Med. 2024, 13, 224. https://doi.org/10.3390/jcm13010224
Fanizza J, D’Amico F, Lusetti F, Fasulo E, Allocca M, Furfaro F, Zilli A, Parigi TL, Radice S, Peyrin-Biroulet L, et al. The Role of IL-23 Inhibitors in Crohn’s Disease. Journal of Clinical Medicine. 2024; 13(1):224. https://doi.org/10.3390/jcm13010224
Chicago/Turabian StyleFanizza, Jacopo, Ferdinando D’Amico, Francesca Lusetti, Ernesto Fasulo, Mariangela Allocca, Federica Furfaro, Alessandra Zilli, Tommaso Lorenzo Parigi, Simona Radice, Laurent Peyrin-Biroulet, and et al. 2024. "The Role of IL-23 Inhibitors in Crohn’s Disease" Journal of Clinical Medicine 13, no. 1: 224. https://doi.org/10.3390/jcm13010224
APA StyleFanizza, J., D’Amico, F., Lusetti, F., Fasulo, E., Allocca, M., Furfaro, F., Zilli, A., Parigi, T. L., Radice, S., Peyrin-Biroulet, L., Danese, S., & Fiorino, G. (2024). The Role of IL-23 Inhibitors in Crohn’s Disease. Journal of Clinical Medicine, 13(1), 224. https://doi.org/10.3390/jcm13010224