Choice and Duration of Anticoagulation for Venous Thromboembolism
Abstract
:1. Introduction
2. Overview of Anticoagulation
3. Phases of Management of VTE
3.1. Initiation Phase
3.2. Treatment Phase
3.3. Extended Phase
4. Special Considerations
4.1. Cancer-Associated Thrombosis Treatment
4.2. Thrombophilia and Antiphospholipid Syndrome Treatment
4.3. Concurrent Coronary Artery Disease and Venous Thromboembolism
4.4. COVID-19 Infection
5. Future Anticoagulation Options
6. Final Thoughts
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beckman, M.G.; Hooper, W.C.; Critchley, S.E.; Ortel, T.L. Venous thromboembolism: A public health concern. Am. J. Prev. Med. 2010, 38 (Suppl. S4), S495–S501. [Google Scholar] [CrossRef]
- CDC. Data and Statistics on Venous Thromboembolism. Available online: https://www.cdc.gov/ncbddd/dvt/data.html (accessed on 6 November 2023).
- Kearon, C.; Ageno, W.; Cannegieter, S.C.; Cosmi, B.; Geersing, G.J.; Kyrle, P.A. Categorization of patients as having provoked or unprovoked venous thromboembolism: Guidance from the SSC of ISTH. J. Thromb. Haemost. 2016, 14, 1480–1483. [Google Scholar] [CrossRef] [PubMed]
- Renner, E.; Barnes, G.D. Antithrombotic Management of Venous Thromboembolism: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 76, 2142–2154. [Google Scholar] [CrossRef] [PubMed]
- Stevens, S.M.; Woller, S.C.; Baumann Kreuziger, L.; Bounameaux, H.; Doerschug, K.; Geersing, G.-J.; Huisman, M.V.; Kearon, C.; King, C.S.; Knighton, A.J.; et al. Executive Summary: Antithrombotic Therapy for VTE Disease: Second Update of the CHEST Guideline and Expert Panel Report. Chest 2021, 160, 2247–2259. [Google Scholar] [CrossRef] [PubMed]
- Vinson, D.R.; Ballard, D.W.; Huang, J.; Reed, M.E.; Lin, J.S.; Kene, M.V.; Sax, D.R.; Rauchwerger, A.S.; Wang, D.H.; McLachlan, D.I.; et al. MAPLE Investigators of the KP CREST Network. Outpatient Management of Emergency Department Patients with Acute Pulmonary Embolism: Variation, Patient Characteristics, and Outcomes. Ann. Emerg. Med. 2018, 72, 62–72.e3. [Google Scholar] [CrossRef] [PubMed]
- Ortel, T.L.; Neuman, I.; Ageno, W.; Beyth, R.; Clark, N.P.; Cuker, A.; Hutten, B.A.; Jaff, M.R.; Manja, V.; Schulman, S.; et al. American Society of Hematology 2020 guidelines for management of venous thromboembolism: Treatment of deep vein thrombosis and pulmonary embolism. Blood Adv. 2020, 4, 4693–4738. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [PubMed]
- Eichinger, S.; Heinze, G.; Jandeck, L.M.; Kyrle, P.A. Risk assessment of recurrence in patients with unprovoked deep vein thrombosis or pulmonary embolism: The Vienna prediction model. Circulation 2010, 121, 1630–1636. [Google Scholar] [CrossRef]
- Rodger, M.A.; Kahn, S.R.; Wells, P.S.; Anderson, D.A.; Chagnon, I.; Le Gal, G.; Solymoss, S.; Crowther, M.; Perrier, A.; White, R.; et al. Identifying unprovoked thromboembolism patients at low risk for recurrence who can discontinue anticoagulant therapy. CMAJ 2008, 179, 417–426. [Google Scholar] [CrossRef]
- Tosetto, A.; Iorio, A.; Marcucci, M.; Baglin, T.; Cushman, M.; Eichinger, S.; Palareti, G.; Poli, D.; Tait, R.C.; Douketis, J. Predicting disease recurrence in patients with previous unprovoked venous thromboembolism: A proposed prediction score (DASH). J. Thromb. Haemost. 2012, 10, 1019–1025. [Google Scholar] [CrossRef]
- Bauersachs, R.; Berkowitz, S.D.; Brenner, B.; Buller, H.R.; Decousus, H.; Gallus, A.S.; Lensing, A.W.; Misselwitz, F.; Prins, M.H.; Raskob, G.E.; et al. Oral rivaroxaban for symptomatic venous thromboembolism. N. Engl. J. Med. 2010, 363, 2499–2510. [Google Scholar] [PubMed]
- Schulman, S.; Kearon, C.; Kakkar, A.K.; Schellong, S.; Eriksson, H.; Baanstra, D.; Kvamme, A.M.; Friedman, J.; Mismetti, P.; Goldhaber, S.Z. Extended use of dabigatran, warfarin, or placebo in venous thromboembolism. N. Engl. J. Med. 2013, 368, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Agnelli, G.; Buller, H.R.; Cohen, A.; Curto, M.; Gallus, A.S.; Johnson, M.; Porcari, A.; Raskob, G.E.; Weitz, J.I. Apixaban for extended treatment of venous thromboembolism. N. Engl. J. Med. 2013, 368, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Weitz, J.I.; Lensing, A.W.A.; Prins, M.H.; Bauersachs, R.; Beyer-Westendorf, J.; Bounameaux, H.; Brighton, T.A.; Cohen, A.T.; Davidson, B.L.; Decousus, H.; et al. Rivaroxaban or aspirin for extended treatment of venous thromboembolism. N. Engl. J. Med. 2017, 376, 1211–1222. [Google Scholar] [CrossRef] [PubMed]
- Young, A.M.; Marshall, A.; Thirlwall, J.; Chapman, O.; Lokare, A.; Hill, C.; Hale, D.; Dunn, J.A.; Lyman, G.H.; Hutchinson, C.; et al. Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: Results of a randomized trial (SELECT-D). J. Clin. Oncol. 2018, 36, 2017–2023. [Google Scholar] [CrossRef] [PubMed]
- McBane, R., 2nd; Wysokinski, W.E.; Le-Rademacher, J.G.; Zemla, T.; Ashrani, A.; Tafur, A.; Perepu, U.; Anderson, D.; Gundabolu, K.; Kuzma, C.; et al. Apixaban and dalteparin inactive malignancy-associated venous thromboembolism: The ADAM VTE trial. J. Thromb. Haemost. 2020, 18, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Agnelli, G.; Becattini, C.; Meyer, G.; Muñoz, A.; Huisman, M.V.; Connors, J.M.; Cohen, A.; Bauersachs, R.; Brenner, B.; Torbicki, A.; et al. Apixaban for the treatment of venous thromboembolism associated with cancer. N. Engl. J. Med. 2020, 382, 1599–1607. [Google Scholar] [CrossRef]
- Lyman, G.H.; Carrier, M.; Ay, C.; Di Nisio, M.; Hicks, L.K.; Khorana, A.A.; Leavitt, A.D.; Lee, A.Y.; Macbeth, F.; Morgan, R.L.; et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Adv. 2021, 5, 927–974. [Google Scholar] [CrossRef]
- Li, A.; Garcia, D.A.; Lyman, G.H.; Carrier, M. Direct oral anticoagulant (DOAC) versus low-molecular weight heparin (LMWH) for treatment of cancer associated thrombosis (CAT): A systematic review and meta-analysis. Thromb. Res. 2019, 173, 158–163. [Google Scholar] [CrossRef]
- Mosarla, R.C.; Vaduganathan, M.; Qamar, A.; Moslehi, J.; Piazza, G.; Giugliano, R.P. Anticoagulation Strategies in Patients With Cancer: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 73, 1336–1349. [Google Scholar] [CrossRef]
- Khairani, C.D.; Bejjani, A.; Piazza, G.; Jimenez, D.; Monreal, M.; Chatterjee, S.; Pengo, V.; Woller, S.C.; Cortes-Hernandez, J.; Connors, J.M.; et al. Direct Oral Anticoagulants vs Vitamin K Antagonists in Patients With Antiphospholipid Syndromes: Meta-Analysis of Randomized Trials. J. Am. Coll. Cardiol. 2023, 81, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Hunt, B.J.; Efthymiou, M.; Arachchillage, D.R.J.; Mackie, I.J.; Clawson, S.; Sylvestre, Y.; Machin, S.J.; Bertolaccini, M.L.; Ruiz-Castellano, M.; et al. Rivaroxaban versus warfarin to treat patients with thrombotic antiphospholipid syndrome, with or without systemic lupus erythematosus (RAPS): A randomised, controlled, open-label, phase 2/3, non-inferiority trial. Lancet Haematol. 2016, 3, e426–e436. [Google Scholar] [CrossRef] [PubMed]
- Pengo, V.; Denas, G.; Zoppellaro, G.; Jose, S.P.; Hoxha, A.; Ruffatti, A.; Andreoli, L.; Tincani, A.; Cenci, C.; Prisco, D.; et al. Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome. Blood 2018, 132, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Ordi-Ros, J.; Saez-Comet, L.; Perez-Conesa, M.; Vidal, X.; Riera-Mestre, A.; Castro-Salomó, A.; Cuquet-Pedragosa, J.; Ortiz-Santamaria, V.; Mauri-Plana, M.; Solé, C.; et al. Rivaroxaban versus vitamin K antagonist in antiphospholipid syndrome: A randomized noninferiority trial. Ann. Intern. Med. 2019, 171, 685–694. [Google Scholar] [CrossRef]
- Woller, S.C.; Stevens, S.M.; Kaplan, D.; Wang, T.F.; Branch, D.W.; Groat, D.; Wilson, E.L.; Armbruster, B.; Aston, V.T.; Lloyd, J.F.; et al. Apixaban compared with warfarin to prevent thrombosis in thrombotic antiphospholipid syndrome: A randomized trial. Blood Adv. 2022, 6, 1661–1670. [Google Scholar] [CrossRef]
- Elsebaie, M.A.T.; van Es, N.; Langston, A.; Büller, H.R.; Gaddh, M. Direct oral anticoagulants in patients with venous thromboembolism and thrombophilia: A systematic review and meta-analysis. J. Thromb. Haemost. 2019, 17, 1538–7933. [Google Scholar]
- Kovacs, M.R.; Lazo-Langner, A.; Louzada, M.L.; Kovacs, M.J. Thrombophilia testing in patients receiving rivaroxaban or apixaban for the treatment of venous thromboembolism. Thromb. Res. 2020, 195, 231–232. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.L.; Sorensen, R.; Clausen, M.T.; Fog-Petersen, M.L.; Raunsø, J.; Gadsbøll, N.; Gislason, G.H.; Folke, F.; Andersen, S.S.; Schramm, T.K.; et al. Risk of bleeding with single, dual, or triple therapy with warfarin, aspirin, and clopidogrel in patients with atrial fibrillation. Arch. Intern. Med. 2010, 170, 1433–1441. [Google Scholar] [CrossRef]
- Kumbhani, D.J.; Cannon, C.P.; Beavers, C.J.; Bhatt, D.L.; Cuker, A.; Gluckman, T.J.; Marine, J.E.; Mehran, R.; Messe, S.R.; Patel, N.S.; et al. 2020 ACC Expert Consensus Decision Pathway for Anticoagulant and Antiplatelet Therapy in Patients With Atrial Fibrillation or Venous Thromboembolism Undergoing Percutaneous Coronary Intervention or With Atherosclerotic Cardiovascular Disease: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2021, 77, 629–658. [Google Scholar]
- NIH. Antithrombotic Therapy in Patients with COVID-19. Available online: https://www.covid19treatmentguidelines.nih.gov/therapies/antithrombotic-therapy (accessed on 26 November 2023).
- ATTACC, ACTIV-4a, and REMAP-CAP Investigators. Therapeutic anticoagulation with heparin in noncritically ill patients with COVID-19. N. Engl. J. Med. 2021, 385, 790–802. [Google Scholar] [CrossRef]
- Sholzberg, M.; Tang, G.H.; Rahhal, H.; AlHamzah, M.; Kreuziger, L.B.; Áinle, F.N.; Alomran, F.; Alayed, K.; Alsheef, M.; AlSumait, F.; et al. Effectiveness of therapeutic heparin versus prophylactic heparin on death, mechanical ventilation, or intensive care unit admission in moderately ill patients with COVID-19 admitted to hospital: RAPID randomised clinical trial. BMJ 2021, 375, n2400. [Google Scholar] [CrossRef] [PubMed]
- Spyropoulos, A.C.; Goldin, M.; Giannis, D.; Diab, W.; Wang, J.; Khanijo, S.; Mignatti, A.; Gianos, E.; Cohen, M.; Sharifova, G.; et al. Efficacy and safety of therapeutic-dose heparin vs standard prophylactic or intermediate-dose heparins for thromboprophylaxis in high-risk hospitalized patients with COVID-19: The HEP-COVID randomized clinical trial. JAMA Intern. Med. 2021, 181, 1612–1620. [Google Scholar] [CrossRef]
- Stone, G.W.; Farkouh, M.E.; Lala, A.; Tinuoye, E.; Dressler, O.; Moreno, P.R.; Palacios, I.F.; Goodman, S.G.; Esper, R.B.; Abizaid, A.; et al. Randomized trial of anticoagulation strategies for noncritically ill patients hospitalized with COVID-19. J. Am. Coll. Cardiol. 2023, 81, 1747–1762. [Google Scholar] [CrossRef]
- Lopes, R.D.; de Barros, E.S.P.G.M.; Furtado, R.H.M.; Macedo, A.V.S.; Bronhara, B.; Damiani, L.P.; Barbosa, L.M.; de Aveiro Morata, J.; Ramacciotti, E.; de Aquino Martins, P.; et al. Therapeutic versus prophylactic anticoagulation for patients admitted to hospital with COVID-19 and elevated D-dimer concentration (ACTION): An open-label, multicentre, randomised, controlled trial. Lancet 2021, 397, 2253–2263. [Google Scholar] [CrossRef]
- Ramacciotti, E.; Agati, L.B.; Calderaro, D.; Aguiar, V.C.R.; Spyropoulos, A.C.; de Oliveira, C.C.C.; dos Santos, J.L.; Volpiani, G.G.; Sobreira, M.L.; Joviliano, E.E.; et al. Rivaroxaban versus no anticoagulation for post-discharge thromboprophylaxis after hospitalisation for COVID-19 (MICHELLE): An open-label, multicentre, randomised, controlled trial. Lancet 2022, 399, 50–59. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group. Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2022, 399, 143–151. [Google Scholar] [CrossRef]
- A Study Comparing Abelacimab to Apixaban in the Treatment of Cancer-associated VTE (ASTER). Available online: https://www.clinicaltrials.gov/study/NCT05171049 (accessed on 26 November 2023).
- A Study Comparing Abelacimab to Dalteparin in the Treatment of Gastrointestinal/Genitourinary Cancer and Associated VTE (MAGNOLIA). Available online: https://www.clinicaltrials.gov/study/NCT05171075 (accessed on 26 November 2023).
- Xisomab 3G3 for the Prevention of Catheter-Associated Thrombosis in Patients with Cancer Receiving Chemotherapy. Available online: https://clinicaltrials.gov/study/NCT04465760 (accessed on 26 November 2023).
Major Transient Risk Factors | Minor Transient Risk Factors | Persistent Risk Factors |
---|---|---|
-Cesarean section. -Confined to hospital bed for 3 days. -Surgery with general anesthesia for >30 min. | -Confined to bed out of hospital for 3 days. -Hospitalization < 3 days. -Leg injury. -Pregnancy. -Estrogen therapy. -Acute infectious illness (e.g., COVID-19) without hospitalization. | -Active cancer. -Inflammatory bowel disease. -Obesity. -Chronic inflammatory condition. -Advanced age. -Previous venous thromboembolism. -Genetic/acquired thrombophilia (APS, protein C&S deficiency, etc.). |
Generic Name | Mechanism of Action | Dose and Regimen | Consideration of Renal Function | Consideration of Drug Interactions | Other Considerations |
---|---|---|---|---|---|
Apixaban | Factor Xa Inhibitor | 10 mg BID × 7 days, followed by 5 mg BID | Not studied in patients with SCr ≥ 2.5 mg/dL or CrCl <25 mL/min | Reducing dose by 50% in patients taking strong dual inhibitors of p-glycoprotein and CYP 3A4. Avoiding in patients taking dual inducers of CYP 34A and p-glycoprotein. | N/a |
Dabigatran | Direct Thrombin Inhibitor | 150 mg BID after 5–10 days of parenteral anticoagulation lead in | Avoid in CrCl ≤ 30 mL/min | If CrCl ≤ 50 mL/min, patients taking p-glycoprotein inhibitors should avoid dabigatran. Patients taking p-glycoprotein inducers should avoid dabigatran. | N/a |
Edoxaban | Factor Xa Inhibitor | 60 mg daily after 5–10 days of parenteral anticoagulation lead in | Renally dose to 30 mg daily for CrCl 15–50 mL/min. Avoid in CrCl <15 mL/min | Reduce dose to 30 mg daily for patients taking p-glycoprotein inhibitors. Avoid using with p-glycoprotein inducers. | Reduce dose to 30 mg daily for body weight ≤ 60 kg. |
Rivaroxaban | Factor Xa Inhibitor | 15 mg twice a day for 21 days, then 20 mg daily | Avoid in CrCl ≤ 15 mL/min | In patients taking moderate dual inhibitors of CYP 3A4 and p-glycoprotein with CrCl ≤ 80 mL/min, use cautiously. Avoid use in patients taking strong dual inhibitors or inducers of CYP 3A4 and p-glycoprotein. | Administer with food. |
Warfarin | Vitamin K Antagonist | Adjusted to target INR 2–3 Require parenteral anticoagulation overlap at initiation | None | Consider reducing starting dose to 2.5 mg for patients with drug–drug interactions expected to increase exposure to warfarin. | Consider reducing starting dose to 2.5 mg for patients with multiple comorbidities, advanced age, and advanced end-organ dysfunction. |
Clinical Trial (Ref. #) | Included Patients | N | Trial Design | Length of Follow-Up | Treatment Groups | Primary Efficacy Outcomes | Efficacy Outcomes | Major Bleeding Outcomes |
---|---|---|---|---|---|---|---|---|
RAPS [23] | Patients with APS who were taking warfarin for previous VTE | 116 | Open-label RCT | 210 days | Continue warfarin vs. rivaroxaban 20 mg daily | Percentage change in endogenous thrombin potential at day 42, with non-inferiority set at less than 20% difference from warfarin | ETP (nmol/L per min): Rivaroxaban 1086 vs. warfarin 548 Treatment effect (ratio): 2.0 (1.7–2.4) | Rivaroxaban: 0 Warfarin: 0 |
TRAPS [24] | Patients with APS (triple positivity) with history of thrombus | 120 | Open-label RCT | 569 days (mean) | Rivaroxaban 20 mg or 15 mg daily (dependent on creatine clearance) vs. warfarin | Cumulative incidence of thromboembolic events, major bleeding, and vascular death | Rivaroxaban: 19% Warfarin: 3% HR: 6.7 (1.5–30.5) | Rivaroxaban: 7% Warfarin: 3% HR: 2.5 (0.5–13.6) |
Ordi-Ros et al. [25] | Patients with APS (positive result on aPL testing on 2 occasions at least 3 months apart) with history of thrombus | 190 | Open-label RCT | 36 months | Rivaroxaban 20 mg or 15 mg daily (dependent on creatine clearance) vs. warfarin | Proportion of patients with new thrombotic event | Rivaroxaban: 11.6% Warfarin: 6.3% HR: 1.94 (0.72–5.24) | Rivaroxaban: 6.3% Warfarin: 7.4% HR: 0.88 (0.3–2.63) |
ASTRO-APS [26] | Patients with thrombotic antiphospholipid syndrome on anticoagulation for secondary prevention | 48 | Open-label RCT | 12 months | Apixaban 2.5 mg BID then increased to 5 mg BID (after 25 patient was randomized) vs. warfarin | Thrombosis and vascular death | Apixaban: 6 thrombotic events Warfarin: no thrombotic events | Apixaban: 0 Warfarin: 1 event |
Clinical Trial Reference (Status) | Drug | Mechanism of Action | N | Clinical Trial Summary | Results |
---|---|---|---|---|---|
ASTER NCT05171049 (Ongoing) [39] | Abelacimab | Binds and inhibits Factor XI and Factor XIa | 1655 | Phase III trial comparing the effect of abelacimab relative to apixaban on VTE recurrence and bleeding in patients with CAT | No results currently |
MAGNOLIA NCT05171075 (Ongoing) [40] | Abelacimab | Binds and inhibits Factor XI and Factor XIa | 1020 | Phase III trial comparing the effect of abelacimab vs. dalteparin on VTE recurrence and bleeding in patients with gastrointestinal or genitourinary CAT | No results currently |
NCT04465760 (Recruiting) [41] | Xisomab | Binds Factor XI and blocks activation by Factor XIIa | 50 | Phase II trial examining the efficacy of xisomab as measured by incidence of catheter associated thrombosis in individuals with a central venous catheter | No results currently |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, A.; Ha, N.B.; Barnes, G.D. Choice and Duration of Anticoagulation for Venous Thromboembolism. J. Clin. Med. 2024, 13, 301. https://doi.org/10.3390/jcm13010301
Malik A, Ha NB, Barnes GD. Choice and Duration of Anticoagulation for Venous Thromboembolism. Journal of Clinical Medicine. 2024; 13(1):301. https://doi.org/10.3390/jcm13010301
Chicago/Turabian StyleMalik, Aroosa, Nghi B. Ha, and Geoffrey D. Barnes. 2024. "Choice and Duration of Anticoagulation for Venous Thromboembolism" Journal of Clinical Medicine 13, no. 1: 301. https://doi.org/10.3390/jcm13010301
APA StyleMalik, A., Ha, N. B., & Barnes, G. D. (2024). Choice and Duration of Anticoagulation for Venous Thromboembolism. Journal of Clinical Medicine, 13(1), 301. https://doi.org/10.3390/jcm13010301