Retinal Vascular Abnormalities and Clinical Parameters in Systemic Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
- -
- OCT Retina Cube scan to detect the ganglion cell complex (GCC) thickness (micron) and to measure retina thickness of the fovea and parafovea (micron);
- -
- OCT-A macula 12 × 12 mm and AngioVue Retina to detect the vascular density (%) of the superficial and deep capillary plexus of the whole macular area and the ETDRS grid. It also determined the foveal avascular zone (mm2).
- -
- OCT-A of optic disc 4.5 × 4.5 mm (AngioVue Disc) to detect vessel density (%) of the radial peripapillary capillary plexus
- -
- Disc Cube to detect the Radial Nerve fiber layer thickness (micron) and cup disc area ratio.
Statistical Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef] [PubMed]
- Calderon, L.M.; Pope, J.E. Scleroderma epidemiology update. Curr. Opin. Rheum. 2021, 33, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Ciaffi, J.; Morabito, M.F.; Ruscitti, P.; D’Angelo, S.; Mancarella, L.; Brusi, V.; Abignano, G.; Pucino, V.; Giacomelli, R.; Meliconi, R.; et al. Incidence, prevalence and mortality of systemic sclerosis in Italy: A nationwide population-based study using administrative health data. Rheumatol. Int. 2021, 41, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Furue, M.; Mitoma, C.; Mitoma, H.; Tsuji, G.; Chiba, T.; Nakahara, T.; Uchi, H.; Kadono, T. Pathogenesis of systemic sclerosis—Current concept and emerging treatments. Immunol. Res. 2017, 65, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Rosendahl, A.-H.; Schönborn, K.; Krieg, T. Pathophysiology of systemic sclerosis (scleroderma). Kaohsiung J. Med. Sci. 2022, 38, 187–195. [Google Scholar] [CrossRef]
- Zurawski, G.; de Vries, J.E. Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol. Today 1994, 15, 19–26. [Google Scholar] [CrossRef]
- Doucet, C.; Brouty-Boyé, D.; Pottin-Clemenceau, C.; Jasmin, C.; Canonica, G.W.; Azzarone, B. IL-4 and IL-13 specifically increase adhesion molecule and inflammatory cytokine expression in human lung fibroblasts. Int. Immunol. 1998, 10, 1421–1433. [Google Scholar] [CrossRef] [PubMed]
- Massagué, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 2012, 13, 616–630. [Google Scholar] [CrossRef] [PubMed]
- Knipper, J.A.; Willenborg, S.; Brinckmann, J.; Bloch, W.; Maaß, T.; Wagener, R.; Krieg, T.; Sutherland, T.; Munitz, A.; Rothenberg, M.E.; et al. Interleukin-4 receptor α signaling in myeloid cells controls collagen fibril assembly in skin repair. Immunity 2015, 43, 803–816. [Google Scholar] [CrossRef]
- Tecchio, C.; Micheletti, A.; Cassatella, M.A. Neutrophil-derived cytokines: Facts beyond expression. Front. Immunol. 2014, 5, 508. [Google Scholar] [CrossRef]
- Ah Kioon, M.D.; Tripodo, C.; Fernandez, D.; Kirou, K.A.; Spiera, R.F.; Crow, M.K.; Gordon, J.K.; Barrat, F.J. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci. Transl. Med. 2018, 10, eaam8458. [Google Scholar] [CrossRef] [PubMed]
- Krasimirova, E.; Velikova, T.; Ivanova-Todorova, E.; Tumangelova-Yuzeir, K.; Kalinova, D.; Boyadzhieva, V.; Stoilov, N.; Yoneva, T.; Rashkov, R.; Kyurkchiev, D. Treg/Th17 cell balance and phytohaemagglutinin activation of T lymphocytes in peripheral blood of systemic sclerosis patients. World J. Exp. Med. 2017, 7, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Clements, P.J.; Hurwitz, E.L.; Wong, W.K.; Seibold, J.R.; Mayes, M.; White, B.; Wigley, F.; Weisman, M.; Barr, W.; Moreland, L.; et al. Skin thickness score as a predictor and correlate of outcome in systemic sclerosis. Arthritis Rheum. 2000, 43, 2445–2454. [Google Scholar] [CrossRef] [PubMed]
- Kubo, S.; Tanaka, Y. Usefulness of nailfold videocapillaroscopy for systemic sclerosis. Inflamm. Regen. 2016, 36, 5. [Google Scholar] [CrossRef] [PubMed]
- Sobolewski, P.; Maślińska, M.; Wieczorek, M.; Łagun, Z.; Malewska, A.; Roszkiewicz, M.; Nitskovich, R.; Szymańska, E.; Walecka, I. Systemic sclerosis-multidisciplinary disease: Clinical features and treatment. Rheumatology 2019, 57, 221–233. [Google Scholar] [CrossRef]
- Kozikowska, M.; Luboń, W.; Kucharz, E.J.; Mrukwa-Kominek, E. Ocular manifestations in patients with systemic sclerosis. Rheumatology 2020, 58, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Gagliano, C.; Visalli, E.; Toro, M.D.; Amato, R.; Panta, G.; Scollo, D.; Scandura, G.; Ficili, S.; Amato, G.; Benenati, A.; et al. Dry Eye in Systemic Sclerosis Patients: Novel Methods to Monitor Disease Activity. Diagnostics 2020, 10, 404. [Google Scholar] [CrossRef] [PubMed]
- de AF Gomes, B.; Santhiago, M.R.; Magalhaes, P.; Kara-Junior, N.; de Azevedo, M.N.; Moraes, H.V., Jr. Ocular findings in patients with systemic sclerosis. Clinics 2011, 66, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Szucs, G.; Szekanecz, Z.; Aszalos, Z.; Gesztelyi, R.; Zsuga, J.; Szodoray, P.; Kemeny-Beke, A. A Wide Spectrum of Ocular Manifestations Signify Patients with Systemic Sclerosis. Ocul. Immunol. Inflamm. 2019, 2, 1–9. [Google Scholar] [CrossRef]
- Ren, H.; Liu, L.; Xiao, Y.; Shi, Y.; Zeng, Z.; Ding, Y.; Zou, P.; Xiao, R. Further insight into systemic sclerosis from the vasculopathy perspective. Biomed. Pharmacother. 2023, 166, 115282. [Google Scholar] [CrossRef]
- Manetti, M.; Romano, E.; Rosa, I.; Guiducci, S.; Bellando-Randone, S.; De Paulis, A.; Ibba-Manneschi, L.; Matucci-Cerinic, M. Endothelial-to-mesenchymal transition contributes to endothelial dysfunction and dermal fibrosis in systemic sclerosis. Ann. Rheum. Dis. 2017, 76, 924–934. [Google Scholar] [CrossRef]
- Seguro Paula, F.; Delgado Alves, J. The role of the Notch pathway in the pathogenesis of systemic sclerosis: Clinical implications. Expert. Rev. Clin. Immunol. 2021, 17, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Barbour, M.; Jiang, H.R.; Mu, R. Role of IL-33/ST2 signaling pathway in systemic sclerosis and other fibrotic diseases. Clin. Exp. Rheumatol. 2019, 37 (Suppl. 119), 141–146. [Google Scholar]
- Gur, C.; Wang, S.Y.; Sheban, F.; Zada, M.; Li, B.; Kharouf, F.; Peleg, H.; Aamar, S.; Yalin, A.; Kirschenbaum, D.; et al. LGR5 expressing skin fibroblasts define a major cellular hub perturbed in scleroderma. Cell 2022, 185, 1373–1388.e20. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, Y.; Kuwana, M. Pathogenesis of vasculopathy in systemic sclerosis and its contribution to fibrosis. Curr. Opin. Rheumatol. 2023, 35, 309–316. [Google Scholar] [CrossRef]
- Grennan, D.M.; Forrester, J.A. Involvement of the eye in SLE and scleroderma. Ann. Rheum. Dis. 1977, 36, 152–156. [Google Scholar] [CrossRef] [PubMed]
- West, R.H.; Barnett, A.J. Ocular involvement in scleroderma. Br. J. Ophthalmol. 1979, 63, 845–847. [Google Scholar] [CrossRef]
- Saari, K.M.; Rudenberg, H.A.; Laitinen, O. Bilateral central retinal vein occlusion in a patient with scleroderma. Ophthalmologica 1981, 182, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Berndt, K.; Hoffman, A. Closure of the ventral artery of the retina in progressive scleroderma. Klin. Monatsbl. Augenheilkd. 1977, 171, 597–600. [Google Scholar]
- Ushiyama, O.; Ushiyama, K.; Yamada, T.; Koarada, S.; Tada, Y.; Suzuki, N.; Ohta, A.; Nagasawa, K. Retinal findings in systemic sclerosis: A comparison with Nailfold capillaroscopic patterns. Ann. Rheum. Dis. 2003, 62, 204–207. [Google Scholar] [CrossRef]
- Dönmez Gün, R.; Tezcan, M.E.; Özen, M.C.; Tutaş Günaydın, N.; Şimşek, Ş. The effect of systemic sclerosis and its subtypes on ocular anterior and posterior segment parameters. Int. Ophthalmol. 2024, 44, 113. [Google Scholar] [CrossRef] [PubMed]
- Kılınç Hekimsoy, H.; Şekeroğlu, M.A.; Koçer, A.M.; Akdoğan, A. Analysis of retinal and choroidal microvasculature in systemic sclerosis: An optical coherence tomography angiography study. Eye 2020, 34, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Kök, M.; Ayan, A.; Fatih Küçük, M.; Erol, M.K.; Yaprak, L. Evaluation of the direct effects on retinal and choroidal microvascularity of systemic scleroderma. Microvasc. Res. 2021, 136, 104166. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, M.; Rothe, M.; Klapa, S.; Lange, T.; Prasuhn, M.; Grisanti, S.; Riemekasten, G.; Humrich, J.Y. Evaluation of choroidal substructure perfusion in patients affected by systemic sclerosis: An optical coherence tomography angiography study. Scand. J. Rheumatol. 2020, 49, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Rommel, F.; Prangel, D.; Prasuhn, M.; Grisanti, S.; Ranjbar, M. Correlation of retinal and choroidal microvascular impairment in systemic sclerosis. Orphanet J. Rare Dis. 2021, 16, 27. [Google Scholar] [CrossRef]
- Mihailovic, N.; Lahme, L.; Braasch, S.; Rosenberger, F.; Eter, N.; Ehrchen, J.; Alnawaiseh, M. Altered ocular microvasculature in patients with systemic sclerosis and very early disease of systemic sclerosis using optical coherence tomography angiography. Sci. Rep. 2022, 12, 10990. [Google Scholar] [CrossRef] [PubMed]
- Erturk, A.; Erogul, O.; Kasikci, M. Optical Coherence Tomography Angiography Is a Useful Tool for Distinguishing Primary Raynaud’s Phenomenon from Systemic Sclerosis and/or Very Early Disease of Systemic Sclerosis. Diagnostics 2023, 13, 2607. [Google Scholar] [CrossRef] [PubMed]
- Jakhar, D.; Grover, C.; Singal, A.; Das, G.K. Nailfold Capillaroscopy and Retinal Findings in Patients with Systemic Sclerosis: Is There an Association? Indian Dermatol. Online J. 2020, 11, 382–386. [Google Scholar] [PubMed]
- Lee, H.Y.; Chen, J.; Ying, P.; Xu, S.H.; Kang, M.; Zou, J.; Liao, X.L.; Shi, W.; Ling, Q.; Wang, Y.X.; et al. Investigation of altered retinal microvasculature in female patients with rheumatoid arthritis: Optical coherence tomography angiography detection. Biosci. Rep. 2023, 43, BSR20230045. [Google Scholar] [CrossRef]
- Ayar, K.; Can, M.E.; Koca, N.; Çelik, D.Ş. Evaluation of retinal vascularization by optical coherence tomography angiography (OCTA) in rheumatoid arthritis, and its relationship with disease activity. Mod. Rheumatol. 2021, 31, 817–826. [Google Scholar] [CrossRef]
- Iacono, P.; Da Pozzo, S.; Bedendo, A.; Arrigo, A.; Parravano, M.; Varano, M.; Battaglia Parodi, M. OCT retinal angiography features in patients with rheumatoid arthritis: A pilot study. Eur. J. Ophthalmol. 2022, 32, 2433–2439. [Google Scholar] [CrossRef] [PubMed]
- Yener, N.P.; Ayar, K. Evaluation of retinal microvascular structures by optical coherence tomography angiography in primary Sjögren’s syndrome. Int. Ophthalmol. 2022, 42, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wang, Y.; Li, Q.; Xia, Q.; Xu, T.; Han, T.; Cai, S.; Luo, S.; Wu, R.; Shao, Y. Optical Coherence Tomography Angiography Biomarkers of Retinal Thickness and Microvascular Alterations in Sjogren’s Syndrome. Front. Neurol. 2022, 13, 853930. [Google Scholar] [CrossRef] [PubMed]
- Kiyat, P.; Karti, O.; Gercik, Ö.; Şak, T. Choroidal, retinal, and optic nerve changes in rheumatoid arthritis and primary sjogren’s syndrome patients: Comparıson with each other and healthy subjects. Int. Ophthalmol. 2024, 44, 24. [Google Scholar] [CrossRef] [PubMed]
- Triggianese, P.; D’Antonio, A.; Nesi, C.; Kroegler, B.; Di Marino, M.; Conigliaro, P.; Modica, S.; Greco, E.; Nucci, C.; Bergamini, A.; et al. Subclinical microvascular changes in ANCA-vasculitides: The role of optical coherence tomography angiography and nailfold capillaroscopy in the detection of disease-related damage. Orphanet J. Rare Dis. 2023, 18, 184. [Google Scholar] [CrossRef]
- Mimier-Janczak, M.; Kaczmarek, D.; Janczak, D.; Kaczmarek, R. Optical Coherence Tomography Angiography as a New Tool for Evaluation of the Subclinical Retinal Involvement in Patients with Systemic Lupus Erythematosus-A Review. J. Clin. Med. 2021, 10, 2887. [Google Scholar] [CrossRef]
- Pichi, F.; Woodstock, E.; Hay, S.; Neri, P. Optical coherence tomography angiography findings in systemic lupus erythematosus patients with no ocular disease. Int. Ophthalmol. 2020, 40, 2111–2118. [Google Scholar] [CrossRef]
Whole Superficial VD | ETDRS Superficial VD | Whole Deep Vessel Density | ETDRS Deep Vessel Density | FAZ | Retina Thickness Fovea | Retina Thickness Parafovea | |
---|---|---|---|---|---|---|---|
Valid | 93 | 93 | 93 | 93 | 92 | 93 | 93 |
Missing | 1 | 1 | 1 | 1 | 2 | 1 | 1 |
Median | 48.700 | 48.400 | 52.500 | 52.600 | 0.280 | 261.000 | 320.000 |
Mean | 47.919 | 47.472 | 50.838 | 51.032 | 0.310 | 257.968 | 319.591 |
Std. deviation | 2.957 | 3.020 | 5.994 | 6.037 | 0.189 | 23.630 | 14.362 |
Shapiro-Wilk | 0.753 | 0.734 | 0.579 | 0.530 | 0.745 | 0.940 | 0.977 |
p-value of Shapiro-Wilk | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.098 |
Minimum | 31.300 | 30.800 | 13.700 | 14.400 | 0.000 | 196.000 | 277.000 |
Maximum | 51.500 | 50.900 | 55.200 | 55.200 | 1.190 | 363.000 | 349.000 |
25th percentile | 47.300 | 46.800 | 50.700 | 51.100 | 0.220 | 245.000 | 311.000 |
50th percentile | 48.700 | 48.400 | 52.500 | 52.600 | 0.280 | 261.000 | 320.000 |
75th percentile | 49.600 | 49.100 | 53.800 | 53.700 | 0.350 | 272.000 | 331.000 |
Whole Superficial VD | RCP Vessel Density Average | RCP Vessel Density Whole | Average GCC | Average RNFL | C/D Area Ratio | Skin Score | Capillaroscopy | Disease Duration | |
---|---|---|---|---|---|---|---|---|---|
Valid | 93 | 82 | 82 | 82 | 84 | 80 | 39 | 26 | 38 |
Missing | 1 | 12 | 12 | 12 | 10 | 14 | 55 | 68 | 56 |
Median | 320.000 | 50.200 | 54.950 | 103.000 | 93.000 | 0.210 | 4.000 | 4.900 | 9.000 |
Mean | 319.591 | 50.294 | 54.663 | 102.085 | 91.786 | 0.232 | 6.308 | 5.442 | 9.763 |
Std. deviation | 14.362 | 2.522 | 2.365 | 7.080 | 12.042 | 0.163 | 7.968 | 1.436 | 6.127 |
Shapiro-Wilk | 0.977 | 0.953 | 0.933 | 0.976 | 0.964 | 0.959 | 0.781 | 0.939 | 0.922 |
p-value of Shapiro-Wilk | 0.098 | 0.005 | <0.001 | 0.127 | 0.018 | 0.012 | <0.001 | 0.126 | 0.012 |
Minimum | 277.000 | 44.000 | 45.400 | 82.000 | 45.000 | 0.000 | 0.000 | 3.250 | 2.000 |
Maximum | 349.000 | 60.100 | 58.800 | 115.000 | 118.000 | 0.730 | 30.000 | 8.600 | 23.000 |
25th percentile | 311.000 | 49.200 | 53.325 | 98.000 | 85.000 | 0.117 | 0.000 | 4.313 | 5.000 |
50th percentile | 320.000 | 50.200 | 54.950 | 103.000 | 93.000 | 0.210 | 4.000 | 4.900 | 9.000 |
75th percentile | 331.000 | 51.625 | 56.200 | 106.750 | 100.000 | 0.333 | 8.000 | 6.500 | 14.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foti, R.; Zeppieri, M.; Foti, R.; Visalli, E.; Amato, G.; Amato, R.; Dammino, E.; D’Esposito, F.; Gagliano, C. Retinal Vascular Abnormalities and Clinical Parameters in Systemic Sclerosis. J. Clin. Med. 2024, 13, 2738. https://doi.org/10.3390/jcm13102738
Foti R, Zeppieri M, Foti R, Visalli E, Amato G, Amato R, Dammino E, D’Esposito F, Gagliano C. Retinal Vascular Abnormalities and Clinical Parameters in Systemic Sclerosis. Journal of Clinical Medicine. 2024; 13(10):2738. https://doi.org/10.3390/jcm13102738
Chicago/Turabian StyleFoti, Rosario, Marco Zeppieri, Roberta Foti, Elisa Visalli, Giorgio Amato, Roberta Amato, Edoardo Dammino, Fabiana D’Esposito, and Caterina Gagliano. 2024. "Retinal Vascular Abnormalities and Clinical Parameters in Systemic Sclerosis" Journal of Clinical Medicine 13, no. 10: 2738. https://doi.org/10.3390/jcm13102738
APA StyleFoti, R., Zeppieri, M., Foti, R., Visalli, E., Amato, G., Amato, R., Dammino, E., D’Esposito, F., & Gagliano, C. (2024). Retinal Vascular Abnormalities and Clinical Parameters in Systemic Sclerosis. Journal of Clinical Medicine, 13(10), 2738. https://doi.org/10.3390/jcm13102738