Virtual Reality-Induced Modification of Vestibulo–Ocular Reflex Gain in Posturography Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment and Selection
2.2. Measurement Procedure
- SOT1—eyes open, stable platform, static surroundings, evaluating the somatosensory system;
- SOT2—eyes closed, stable platform, static surroundings, evaluating the somatosensory system;
- SOT3—eyes open, stable platform, dynamic surroundings, evaluating the somatosensory system;
- SOT4—eyes open, moving platform, static surroundings, evaluating the visual system;
- SOT5—eyes closed, moving platform, static surroundings, evaluating the vestibular system;
- SOT6—eyes open, moving platform, dynamic surroundings, evaluating the vestibular system.
- SOM = ES2/ES1—somatosensory system;
- VIS = ES4/ES1—visual system;
- VEST = ES5/ES1—vestibular system;
- PREF = (ES3 + ES6)/(ES2 + ES5)—visual preferences, indicating the patient’s inclination to choose visual signals, even if they are disrupted.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, S.; Chang, R. Anatomy of the vestibular system: A review. NeuroRehabilitation 2013, 32, 437–443. [Google Scholar] [CrossRef]
- Sienko, K.H.; Seidler, R.D.; Carender, W.J.; Goodworth, A.D.; Whitney, S.L.; Peterka, R.J. Potential Mechanisms of Sensory Augmentation Systems on Human Balance Control. Front. Neurol. 2018, 9, 944. [Google Scholar] [CrossRef]
- Simani, M.C.; McGuire, L.M.M.; Sabes, P.N. Visual-shift adaptation is composed of separable sensory and task-dependent effects. J. Neurophysiol. 2007, 98, 2827–2841. [Google Scholar] [CrossRef]
- Di Girolamo, S. Vestibulo-Ocular Reflex Modification after Virtual Environment Exposure. Acta Otolaryngol. 2001, 121, 211–215. [Google Scholar]
- Fetter, M. Vestibulo-ocular reflex. Dev. Ophthalmol. 2007, 40, 35–51. [Google Scholar] [CrossRef]
- Robinson, D.A. Basic framework of the vestibulo-ocular reflex. Prog. Brain Res. 2022, 267, 131–153. [Google Scholar] [CrossRef]
- Simakurthy, S.; Tripathy, K. Oculovestibular Reflex. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Vannucci, L.; Falotico, E.; Tolu, S.; Cacucciolo, V.; Dario, P.; Lund, H.H.; Laschi, C. A comprehensive gaze stabilization controller based on cerebellar internal models. Bioinspir. Biomim. 2017, 12, 065001. [Google Scholar] [CrossRef]
- Puig, M.S.; Romeo, A.; Supèr, H. Vergence eye movements during figure-ground perception. Conscious. Cogn. 2021, 92, 103138. [Google Scholar] [CrossRef]
- Jadanowski, K.; Budrewicz, S.; Koziorowska-Gawron, E. Zaburzenia gałkoruchowe w chorobach ośrodkowego układu nerwowego. Pol. Przegląd Neurol. 2010, 6, 202–211. [Google Scholar]
- Kontos, A.P.; Deitrick, J.M.; Collins, M.W.; Mucha, A. Review of vestibular and oculomotor screening and concussion rehabilitation. J. Athl. Train. 2017, 52, 256–261. [Google Scholar] [CrossRef]
- NeuroCom International. Balance Manager Systems. In Clinical Interpretation Guide; NeuroCom International, Inc.: Clakamas, OR, USA, 2008. [Google Scholar]
- Marchetto, J.; Wright, W.G. The Validity of an Oculus Rift to Assess Postural Changes During Balance Tasks. Hum. Factors J. Hum. Factors Ergon. Soc. 2019, 61, 1340–1352. [Google Scholar] [CrossRef]
- Akizuki, H.; Nishiike, S.; Watanabe, H.; Matsuoka, K.; Kubo, T.; Takeda, N. Visual-vestibular conflict induced by virtual reality in humans. Neurosci. Lett. 2003, 340, 197–200. [Google Scholar] [CrossRef]
- Akizuki, H.; Uno, A.; Arai, K.; Morioka, S.; Ohyama, S.; Nishiike, S.; Tamura, K.; Takeda, N. Effects of immersion in virtual reality on postural control. Neurosci. Lett. 2005, 379, 23–26. [Google Scholar] [CrossRef]
- Nishiike, S.; Okazaki, S.; Watanabe, H.; Akizuki, H.; Imai, T.; Uno, A.; Kitahara, T.; Horii, A.; Takeda, N.; Inohara, H. The effect of visual-vestibulosomatosensory conflict induced by virtual reality on postural stability in humans. J. Med. Investig. 2013, 60, 236–239. [Google Scholar] [CrossRef]
- Cobb, S.V. Measurement of postural stability before and after immersion in a virtual environment. Appl. Ergon. 1999, 30, 47–57. [Google Scholar] [CrossRef]
- Cobb, S.V.; Nichols, S.C. Static posture tests for assessment of postural instability after virtual environment use. Brain Res. Bull. 1998, 47, 459–464. [Google Scholar] [CrossRef]
- Horlings, C.; Carpenter, M.G.; Küng, U.M.; Honegger, F.; Wiederhold, B.; Allum, J. Influence of virtual reality on postural stability during movements of quiet stance. Neurosci. Lett. 2009, 451, 227–231. [Google Scholar] [CrossRef]
- Schubert, M.C.; Migliaccio, A.A. New advances regarding adaptation of the vestibulo-ocular reflex. J. Neurophysiol. 2019, 122, 644–658. [Google Scholar] [CrossRef]
- Warburton, M.; Mon-Williams, M.; Mushtaq, F.; Morehead, J.R. Measuring motion-to-photon latency for sensorimotor experiments with virtual reality systems. Behav. Res. Methods 2022, 55, 3658–3678. [Google Scholar] [CrossRef]
- Weech, S.; Troje, N.F. Vection latency is reduced by bone-conducted vibration and noisy galvanic vestibular stimulation. Multisens. Res. 2017, 30, 65–90. [Google Scholar] [CrossRef]
- Bonnet, C.T.; Szaffarczyk, S.; Baudry, S. Functional synergy between postural and visual behaviors when performing a difficult precise visual task in upright stance. Cogn. Sci. 2017, 41, 1675–1693. [Google Scholar] [CrossRef] [PubMed]
- Altın, B.; Aksoy, S. Investigation of the effects of cognitive tasks on balance performance in young adults. Am. J. Otolaryngol. 2020, 41, 102663. [Google Scholar] [CrossRef] [PubMed]
- Van Emmerik, M.L.; de Vries, S.C.; Bos, J.E. Internal and external fields of view affect cybersickness. Displays 2011, 32, 169–174. [Google Scholar] [CrossRef]
- Lin, J.-W.; Duh, H.; Parker, D.; Abi-Rached, H.; Furness, T. Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment. In Proceedings of the IEEE Virtual Reality, Orlando, FL, USA, 24–28 March 2003; pp. 164–171. [Google Scholar]
- Liversedge, S.P.; Findlay, J.M. Saccadic eye movements and cognition. Trends Cogn. Sci. 2000, 1, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shi, X.; Liu, Y. Foveated rendering: A state-of-the-art survey. Comput. Vis. Media 2023, 9, 195–228. [Google Scholar] [CrossRef]
- Martinez-Conde, S.; Macknik, S.L.; Troncoso, X.G.; Dyar, T.A. Microsaccades Counteract Visual Fading during Fixation. Neuron 2006, 49, 297–305. [Google Scholar] [CrossRef]
- Pratt, J.; Lajonchere, C.M.; Abrams, R.A. Attentional modulation of gap effect. Vis. Res. 2006, 46, 2602–2607. [Google Scholar] [CrossRef] [PubMed]
- Holmqvist, K.; Nyström, M.; Andersson, R.; Dewhurst, R.; Jarodzka, H.; van de Weijer, J. Eye Tracking: A Comprehensive Guide to Methods and Measures; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Cavallo, V.; Cohen, A.S. Perception. In Traffic Psychology Today; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar] [CrossRef]
- El Beheiry, M.; Doutreligne, S.; Caporal, C.; Ostertag, C.; Dahan, M.; Masson, J.B. Virtual Reality: Beyond Visualization. J. Mol. Biol. 2019, 431, 1315–1321. [Google Scholar] [CrossRef]
- Levine, M.W. Fundamentals of Sensation and Perception; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- McGeehan, M.A.; Woollacott, M.H.; Dalton, B.H. Vestibular control of standing balance is enhanced with increased cognitive load. Exp. Brain Res. 2017, 235, 1031–1040. [Google Scholar] [CrossRef]
- Lubetzky, A.V.; Kelly, J.L.; Hujsak, B.D.; Liu, J.; Harel, D.; Cosetti, M. Postural and head control given different environmental contexts. Front. Neurol. 2021, 12, 597404. [Google Scholar] [CrossRef]
- Menzies, J.R.W.; Porrill, J.; Dutia, M.; Dean, P. Synaptic plasticity in medial vestibular nucleus neurons: Comparison with computational requirements of VOR adaptation. PLoS ONE 2010, 5, e13182. [Google Scholar] [CrossRef]
- Cano Porras, D.; Siemonsma, P.; Inzelberg, R.; Zeilig, G.; Plotnik, M. Advantages of virtual reality in the rehabilitation of balance and gait: Systematic review. Neurology 2018, 90, 1017–1025. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; Mattar, A.G.; Elhafez, S.M. Efficacy of virtual reality-based balance training versus the Biodex balance system training on the body balance of adults. J. Phys. Ther. Sci. 2016, 28, 20–26. [Google Scholar] [CrossRef]
- Wittstein, M.W.; Crider, A.; Mastrocola, S.; Gonzalez, M.G. Use of Virtual Reality to Assess Dynamic Posturography and Sensory Organization: Instrument Validation Study. JMIR Serious Games 2020, 8, e19580. [Google Scholar] [CrossRef]
- Morel, M.; Bideau, B.; Lardy, J.; Kulpa, R. Advantages and limitations of virtual reality for balance assessment and rehabilitation. Neurophysiol. Clin. 2015, 45, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Miwa, T.; Tamura, K.; Inoue, F.; Umezawa, N.; Maetani, T.; Hara, M.; Kanemaru, S.-I. Temporal virtual reality-guided, dual-task, trunk balance training in a sitting position improves persistent postural-perceptual dizziness: Proof of concept. J. NeuroEng. Rehabil. 2022, 19, 92. [Google Scholar] [CrossRef]
Before VR (26) | After VR (26) | ||
---|---|---|---|
Test | Med (IRQ) | Med (IRQ) | p |
ES1 [%] | 94.00 (2.33) | 92.67 (3.00) | 0.21 |
ES2 [%] | 92.83 (3.67) | 92.17 (4.33) | 0.13 |
ES3 [%] | 92.67 (5.67) | 91.50 (5.33) | 0.35 |
ES4 [%] | 85.33 (11.00) | 88.33 (9.67) | 0.03 * |
ES5 [%] | 68.33 (14.00) | 75.50 (9.00) | 0.01 * |
ES6 [%] | 70.50 (20.33) | 75.67 (16.67) | 0.01 * |
CES [%] | 81.50 (8.00) | 84.5 (10.00) | 0.03 * |
Before VR (26) | After VR (26) | ||
---|---|---|---|
Test | Med (IRQ) | Med (IRQ) | p |
SOM [%] | 98.93 (2.05) | 98.60 (3.27) | 0.29 |
VIS [%] | 90.07 (8.23) | 93.82 (5.04) | 0.05 * |
VEST [%] | 74.15 (13.11) | 81.81 (9.03) | 0.02 * |
PREF [%] | 100.00 (4.94) | 100.00 (2.18) | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warchoł, J.; Tetych, A.; Tomaszewski, R.; Kowalczyk, B.; Olchowik, G. Virtual Reality-Induced Modification of Vestibulo–Ocular Reflex Gain in Posturography Tests. J. Clin. Med. 2024, 13, 2742. https://doi.org/10.3390/jcm13102742
Warchoł J, Tetych A, Tomaszewski R, Kowalczyk B, Olchowik G. Virtual Reality-Induced Modification of Vestibulo–Ocular Reflex Gain in Posturography Tests. Journal of Clinical Medicine. 2024; 13(10):2742. https://doi.org/10.3390/jcm13102742
Chicago/Turabian StyleWarchoł, Jan, Anna Tetych, Robert Tomaszewski, Bartłomiej Kowalczyk, and Grażyna Olchowik. 2024. "Virtual Reality-Induced Modification of Vestibulo–Ocular Reflex Gain in Posturography Tests" Journal of Clinical Medicine 13, no. 10: 2742. https://doi.org/10.3390/jcm13102742
APA StyleWarchoł, J., Tetych, A., Tomaszewski, R., Kowalczyk, B., & Olchowik, G. (2024). Virtual Reality-Induced Modification of Vestibulo–Ocular Reflex Gain in Posturography Tests. Journal of Clinical Medicine, 13(10), 2742. https://doi.org/10.3390/jcm13102742