Geometry and Symmetry of Willis’ Circle and Middle Cerebral Artery Aneurysms Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Measurements
2.3. Statistical Analysis
3. Results
3.1. Demographic, Clinical, and Angioarchitectural Data of the Entire Population
3.2. Association between MCA Aneurysm Occurrence and the Geometry and Symmetry of the Willis Circle
3.3. Association between MCA Aneurysm Size and the Geometry and Symmetry of the Willis Circle
3.4. Association between Aneurysm Ruptured Status and the Geometry and Symmetry of the Willis Circle
4. Discussion
4.1. The Role of Willis Circle Anomalies in MCA Aneurysm Development
4.2. The Role of Wills Circle Anomalies in MCA Aneurysm Rupture
4.3. Pathophysiologic Considerations
4.4. Limitations
5. Conclusions
6. Patients
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rinkel, G.J. Intracranial aneurysm screening: Indications and advice for practice. Lancet Neurol. 2005, 4, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Wermer, M.J.H.; van der Schaaf, I.C.; Velthuis, B.K.; Algra, A.; Buskens, E.; Rinkel, G.J.E. Follow-up screening after subarachnoid haemorrhage: Frequency and determinants of new aneurysms and enlargement of existing aneurysms. Brain 2005, 128, 2421–2429. [Google Scholar] [CrossRef] [PubMed]
- Bor, A.S.E.; Velthuis, B.K.; Majoie, C.B.; Rinkel, G.J.E. Configuration of intracranial arteries and development of aneurysms: A follow-up study. Neurology 2008, 70, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Ayre, J.R.; Bazira, P.J.; Abumattar, M.; Makwana, H.N.; Sanders, K.A. A new classification system for the anatomical variations of the human circle of Willis: A systematic review. J. Anat. 2022, 240, 1187–1204. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, T.; Akiyama, I.; Yamagata, Z.; Sugita, M.; Nukui, H. Magnetic resonance angiographic evidence of sex-linked variations in the circle of Willis and the occurrence of cerebral aneurysms. J. Neurosurg. 2002, 96, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Ingebrigtsen, T.; Morgan, M.K.; Faulder, K.; Ingebrigtsen, L.; Sparr, T.; Schirmer, H. Bifurcation geometry and the presence of cerebral artery aneurysms. J. Neurosurg. 2004, 101, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Kasuya, H.; Shimizu, T.; Nakaya, K.; Sasahara, A.; Hori, T.; Takakura, K. Angles between A1 and A2 Segments of the Anterior Cerebral Artery Visualized by Three-dimensional Computed Tomographic Angiography and Association of Anterior Communicating Artery Aneurysms. Neurosurgery 1999, 45, 89–94. [Google Scholar] [CrossRef]
- Rossitti, S. Shear stress in cerebral arteries carrying saccular aneurysms. A preliminary study. Acta Radiol. 1998, 39, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Foutrakis, G.N.; Yonas, H.; Sclabassi, R.J. Saccular aneurysm formation in curved and bifurcating arteries. AJNR Am. J. Neuroradiol. 1999, 20, 1309–1317. [Google Scholar]
- Shojima, M.; Oshima, M.; Takagi, K.; Torii, R.; Hayakawa, M.; Katada, K.; Morita, A.; Kirino, T. Magnitude and role of wall shear stress on cerebral aneurysm: Computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 2004, 35, 2500–2505. [Google Scholar] [CrossRef]
- Mantha, A.; Karmonik, C.; Benndorf, G.; Strother, C.; Metcalfe, R. Hemodynamics in a cerebral artery before and after the formation of an aneurysm. AJNR Am. J. Neuroradiol. 2006, 27, 1113–1118. [Google Scholar] [PubMed]
- Hoi, Y.; Meng, H.; Woodward, S.H.; Bendok, B.R.; Hanel, R.A.; Guterman, L.R.; Hopkins, L.N. Effects of arterial geometry on aneurysm growth: Three-dimensional computational fluid dynamics study. J. Neurosurg. 2004, 101, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Oshima, M.; Kobayashi, T.; Takagi, K. Biosimulation and visualization: Effect of cerebrovascular geometry on hemodynamics. Ann. N. Y. Acad. Sci. 2002, 972, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Kwak, R.; Niizuma, H.; Suzuki, J. Hemodynamics in the Anterior Part of the Circle of Willis in Patients with Intracranial Aneurysms: A study of cerebral angiography. Tohoku J. Exp. Med. 1980, 132, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Lazzaro, M.A.; Ouyang, B.; Chen, M. The role of circle of Willis anomalies in cerebral aneurysm rupture. J. Neurointervent. Surg. 2012, 4, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Li, H.; Wu, J.; Li, M.; Chen, X.; Jiang, P.; Li, Z.; Cao, Y.; Wang, S. Relationship of A1 Segment Hypoplasia with the Radiologic and Clinical Outcomes of Surgical Clipping of Anterior Communicating Artery Aneurysms. World Neurosurg. 2017, 106, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Rinaldo, L.; McCutcheon, B.A.; Murphy, M.E.; Bydon, M.; Rabinstein, A.A.; Lanzino, G. Relationship of A1 segment hypoplasia to anterior communicating artery aneurysm morphology and risk factors for aneurysm formation. J. Neurosurg. 2017, 127, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Maslehaty, H.; Capone, C.; Frantsev, R.; Fischer, I.; Jabbarli, R.; Cornelius, J.F.; Kamp, M.A.; Cappabianca, P.; Sure, U.; Steiger, H.-J.; et al. Predictive anatomical factors for rupture in middle cerebral artery mirror bifurcation aneurysms. J. Neurosurg. 2018, 128, 1799–1807. [Google Scholar] [CrossRef]
- Perlmutter, D.; Rhoton, A.L. Microsurgical anatomy of the anterior cerebral-anterior communicating-recurrent artery complex. J. Neurosurg. 1976, 45, 259–272. [Google Scholar] [CrossRef]
- Zeal, A.A.; Rhoton, A.L. Microsurgical anatomy of the posterior cerebral artery. J. Neurosurg. 1978, 48, 534–559. [Google Scholar] [CrossRef]
- Park, S.C.; Jung, N.Y.; Park, E.S.; Kwon, S.C. Could A1 Aplasia or Hypoplasia Affect the Morphology and Rupture Risk of Anterior Communicating Artery Aneurysm? J Korean Neurosurg. Soc. 2022, 65, 531–538. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Calvanese, F.; Auricchio, A.M.; Pohjola, A.; Hafez, A.; Nurminen, V.; Korja, M.; Numminen, J.; Lehecka, M.; Raj, R.; Niemelä, M. Changes in treatment of intracranial aneurysms during the last decade in a large European neurovascular center. Acta Neurochir. 2024, 166, 173. [Google Scholar] [CrossRef] [PubMed]
- Klimek-Piotrowska, W.; Rybicka, M.; Wojnarska, A.; Wójtowicz, A.; Koziej, M.; Hołda, M.K. A multitude of variations in the configuration of the circle of Willis: An autopsy study. Anat. Sci. Int. 2016, 91, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.D.; Castanho, P.; Bazira, P.; Sanders, K. Anatomical variations of the circle of Willis and their prevalence, with a focus on the posterior communicating artery: A literature review and meta-analysis. Clin. Anat. 2021, 34, 978–990. [Google Scholar] [CrossRef] [PubMed]
- Shaban, A.; Albright, K.C.; Boehme, A.K.; Martin-Schild, S. Circle of Willis Variants: Fetal PCA. Stroke Res. Treat. 2013, 2013, 105937. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Fujita, N.; Enoki, T.; Matsumoto, K.; Watanabe, Y.; Murase, K.; Nakamura, H. Relationship between variations in the circle of Willis and flow rates in internal carotid and basilar arteries determined by means of magnetic resonance imaging with semiautomated lumen segmentation: Reference data from 125 healthy volunteers. AJNR Am. J. Neuroradiol. 2006, 27, 1770–1775. [Google Scholar] [PubMed]
- Zimelewicz Oberman, D.; Perez Akly, M.S.; Rabelo, N.N.; Elizondo, C.; Amorim Correa, J.L.; Ajler, P.; Baccanelli, M.M. Morphologic Variations in the Circle of Willis as a Risk Factor for Aneurysm Rupture in the Anterior and Posterior Communicating Arteries. World Neurosurg. 2021, 154, e155–e162. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Molenberg, R.; Bokkers, R.P.H.; Wei, Y.; Uyttenboogaart, M.; van Dijk, J.M.C. The Role of Hemodynamics through the Circle of Willis in the Development of Intracranial Aneurysm: A Systematic Review of Numerical Models. J. Pers. Med. 2022, 12, 1008. [Google Scholar] [CrossRef] [PubMed]
- Alnæs, M.S.; Isaksen, J.; Mardal, K.-A.; Romner, B.; Morgan, M.K.; Ingebrigtsen, T. Computation of Hemodynamics in the Circle of Willis. Stroke 2007, 38, 2500–2505. [Google Scholar] [CrossRef]
- Busse, O. Aneurysmen und Bildungsfehler der Arteria communicans anterior. Virchows Arch. 1921, 229, 178–206. [Google Scholar] [CrossRef]
- Jacques, J. Aneurysm and anomaly of the circle of Willis. Arch. Path. 1926, 1, 213–220. [Google Scholar]
- Riggs, H.E.; Rupp, C. Miliary aneurysms: Relation of anomalies of the circle of Willis to aneurysm formation. J. Neuropath. Exp. Neurol. 1942, 1, 442. [Google Scholar]
- Kameyama, M. Clinico-pathological meaning of the variation of arteries in base of brain. Adv. Neural. Sci. 1961, 5, 758–767. [Google Scholar]
- Riggs, H.E.; Rupp, C. Variation in form of circle of Willis. The relation of the variations to collateral circulation: Anatomic analysis. Arch. Neurol. 1963, 8, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.; Riggs, H.E.; Rupp, C. The pathologic anatomy of ruptured cerebral aneurysms. J. Neurosurg. 1954, 11, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, G.G. Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms. J. Neurosurg. 1972, 37, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, L.N.; Heros, R.C. Origin, Growth, and Rupture of Saccular Aneurysms: A review. Neurosurgery 1981, 8, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Sturiale, C.L.; Scerrati, A.; Ricciardi, L.; Rustemi, O.; Auricchio, A.M.; Norri, N.; Piazza, A.; Ranieri, F.; Tomatis, A.; Albanese, A.; et al. Clipping versus coiling for treatment of middle cerebral artery aneurysms: A retrospective Italian multicenter experience. Neurosurg. Rev. 2022, 45, 3179–3191. [Google Scholar] [CrossRef] [PubMed]
- Sturiale, C.L.; Rapisarda, A.; Marchese, E.; Puca, A.; Olivi, A.; Albanese, A. Surgical treatment of middle cerebral artery aneurysms: Hints and precautions for young cerebrovascular surgeons. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2022, 83, 75–84. [Google Scholar] [CrossRef]
- Scerrati, A.; Sabatino, G.; Della Pepa, G.M.; Albanese, A.; Marchese, E.; Puca, A.; Olivi, A.; Sturiale, C.L. Treatment and outcome of thrombosed aneurysms of the middle cerebral artery: Institutional experience and a systematic review. Neurosurg. Rev. 2019, 42, 649–661. [Google Scholar] [CrossRef]
- Matsukawa, H.; Fujii, M.; Akaike, G.; Uemura, A.; Takahashi, O.; Niimi, Y.; Shinoda, M. Morphological and clinical risk factors for posterior communicating artery aneurysm rupture. J. Neurosurg. 2014, 120, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, M.; Zhu, X.; Chen, Y.; Zhang, C.; Shi, W.; Chen, Q.; Wang, Y. Corrigendum: Anterior Communicating Artery Aneurysms: Anatomical Considerations and Microsurgical Strategies. Front. Neurol. 2020, 11, 620226. [Google Scholar] [CrossRef]
- Bijlenga, P.; Ebeling, C.; Jaegersberg, M.; Summers, P.; Rogers, A.; Waterworth, A.; Iavindrasana, J.; Macho, J.; Pereira, V.M.; Bukovics, P. Risk of rupture of small anterior communicating artery aneurysms is similar to posterior circulation aneurysms. Stroke 2013, 44, 3018–3026. [Google Scholar] [CrossRef] [PubMed]
- Velthuis, B.K.; van Leeuwen, M.S.; Witkamp, T.D.; Ramos, L.M.; Berkelbach van der Sprenkel, J.W.; Rinkel, G.J. Surgical anatomy of the cerebral arteries in patients with subarachnoid hemorrhage: Comparison of computerized tomography angiography and digital subtraction angiography. J. Neurosurg. 2001, 95, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Songsaeng, D.; Geibprasert, S.; Willinsky, R.; Tymianski, M.; TerBrugge, K.G.; Krings, T. Impact of anatomical variations of the circle of Willis on the incidence of aneurysms and their recurrence rate following endovascular treatment. Clin. Radiol. 2010, 65, 895–901. [Google Scholar] [CrossRef]
- Scerrati, A.; Trevisi, G.; Sturiale, C.L.; Salomi, F.; De Bonis, P.; Saletti, A.; Mangiola, A.; Tomatis, A.; Di Egidio, V.; Vigo, V.; et al. Radiological outcomes for endovascular treatment of posterior communicating artery aneurysms: A retrospective multicenter study of the occlusion rate. J. Integr. Neurosci. 2021, 20, 919–931. [Google Scholar] [CrossRef]
- Rooij, N.K.; Velthuis, B.K.; Algra, A.; Rinkel, G.J.E. Configuration of the circle of Willis, direction of flow, and shape of the aneurysm as risk factors for rupture of intracranial aneurysms. J. Neurol. 2009, 256, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, N.; Stefanović, I.; Randjelović, S.; Mitić, R.; Bosnjaković, P.; Stojanov, D. Presence of anatomical variations of the circle of Willis in patients undergoing surgical treatment for ruptured intracranial aneurysms. Vojnosanit. Pregl. 2009, 66, 711–717. [Google Scholar] [CrossRef]
- Kayembe, K.N.; Sasahara, M.; Hazama, F. Cerebral aneurysms and variations in the circle of Willis. Stroke 1984, 15, 846–850. [Google Scholar] [CrossRef]
Patients (n = 432) | |
---|---|
Age in years | 58.5 ± 11.8 |
Female gender | 317 (73.4%) |
Male gender | 115 (26.6%) |
High blood pressure | 314 (72.7%) |
Smoking | 156 (36.1%) |
Ruptured presentation | 169 (39.1%) |
Mean aneurysm size in mm | 7.1 ± 4.2 |
Mean ipsilateral ICA diameter in mm | 3.7 ± 0.8 |
Mean contralateral ICA diameter in mm | 3.6 ± 0.7 |
Mean ipsilateral MCA in mm | 2.8 ± 0.7 |
Mean contralateral MCA in mm | 2.7 ± 0.7 |
Ipsilateral A1 hypoplasia | 84 (19.4%) |
Contralateral A1 hypoplasia | 16 (3.7%) |
Ipsilateral fetal PCom origin | 38 (8.8%) |
Ipsilateral PCom hypoplasia | 116 (26.8%) |
Contralateral PCom hypoplasia | 52 (12%) |
Healthy Side | Aneurysm Side | p-Value | |
---|---|---|---|
Mean ICA diameter in mm | 3.6 ± 0.7 | 3.7 ± 0.8 | 0.3 |
Mean MCA diameter in mm | 2.7 ± 0.7 | 2.8 ± 0.7 | 0.06 |
A1 hypoplasia | 16 (3.7%) | 84 (19.4%) | 0.17 |
PCom hypoplasia | 52 (12%) | 116 (26.8%) | <0.001 |
Correlation | Pearson’s r | Lower 95% CI | Upper 95% CI | p-Value | |
---|---|---|---|---|---|
Aneurysm Size | Age | 0.078 | −0.019 | 0.173 | 0.11 |
Ipsilateral ICA diameter | 0.010 | −0.090 | 0.109 | 0.85 | |
Contralateral ICA diameter | 0.021 | −0.079 | 0.120 | 0.67 | |
Ipsilateral M1 diameter | −0.030 | −0.129 | 0.070 | 0.56 | |
Contralateral M1 diameter | −0.013 | −0.113 | 0.086 | 0.79 |
Grouping Variable | Mean Aneurysm Size in mm | Standard Deviation | p-Value | |
---|---|---|---|---|
Ipsilateral A1 hypoplasia | No | 7 | 4.4 | 0.4 |
Yes | 7.5 | 3.9 | ||
Contralateral A1 hypoplasia | No | 7.1 | 4.3 | 0.9 |
Yes | 7.3 | 3.9 | ||
Ipsilateral fetal PCom origin | No | 7.1 | 4.4 | 0.8 |
Yes | 7.3 | 3.5 | ||
Ipsilateral PCom hypoplasia | No | 7 | 4.4 | 0.4 |
Yes | 7.4 | 3.9 | ||
Contralateral PCom hypoplasia | No | 7.1 | 4.3 | 0.6 |
Yes | 6.8 | 3.9 |
Unruptured n = 263 (60.9%) | Ruptured n = 169 (39.1%) | p-Value | |
---|---|---|---|
Age in years | 59.2 ± 10.5 | 57.2 ± 13.3 | ns |
Size in mm | 6.7 ± 4 | 7.7 ± 4.4 | 0.02 |
High blood pressure | 197 (74.9%) | 117 (69.2%) | ns |
Smoking | 100 (38%) | 56 (33.1%) | ns |
Unruptured n = 263 (60.9%) | Ruptured n = 169 (39.1%) | p-Value | |
---|---|---|---|
Ipsilateral ICA diameter in mm | 3.8 ± 0.8 | 3.5 ± 0.7 | <0.001 |
Contralateral ICA diameter in mm | 3.8 ± 0.7 | 3.5 ± 0.8 | <0.001 |
Ipsilateral MCA diameter in mm | 2.9 ± 0.7 | 2.6 ± 0.7 | <0.001 |
Contralateral MCA diameter in mm | 2.8 ± 0.7 | 2.6 ± 0.6 | 0.003 |
Ipsilateral A1 hypoplasia | 51 (19.4%) | 33 (19.5%) | ns |
Contralateral A1 hypoplasia | 10 (3.8%) | 6 (3.5%) | ns |
Ipsilateral fetal PCom origin | 24 (9.1%) | 14 (8.8%) | ns |
Ipsilateral PCom hypoplasia | 62 (23.5%) | 54 (32%) | 0.04 |
Contralateral PCom hypoplasia | 17 (6.4%) | 35 (20.7%) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sturiale, C.L.; Scerrati, A.; Ricciardi, L.; Rustemi, O.; Auricchio, A.M.; Norri, N.; Piazza, A.; Raneri, F.; Benato, A.; Albanese, A.; et al. Geometry and Symmetry of Willis’ Circle and Middle Cerebral Artery Aneurysms Development. J. Clin. Med. 2024, 13, 2808. https://doi.org/10.3390/jcm13102808
Sturiale CL, Scerrati A, Ricciardi L, Rustemi O, Auricchio AM, Norri N, Piazza A, Raneri F, Benato A, Albanese A, et al. Geometry and Symmetry of Willis’ Circle and Middle Cerebral Artery Aneurysms Development. Journal of Clinical Medicine. 2024; 13(10):2808. https://doi.org/10.3390/jcm13102808
Chicago/Turabian StyleSturiale, Carmelo Lucio, Alba Scerrati, Luca Ricciardi, Oriela Rustemi, Anna Maria Auricchio, Nicolò Norri, Amedeo Piazza, Fabio Raneri, Alberto Benato, Alessio Albanese, and et al. 2024. "Geometry and Symmetry of Willis’ Circle and Middle Cerebral Artery Aneurysms Development" Journal of Clinical Medicine 13, no. 10: 2808. https://doi.org/10.3390/jcm13102808
APA StyleSturiale, C. L., Scerrati, A., Ricciardi, L., Rustemi, O., Auricchio, A. M., Norri, N., Piazza, A., Raneri, F., Benato, A., Albanese, A., Mangiola, A., Zotta, D. C., D’Andrea, G., Picotti, V., Raco, A., Volpin, L., & Trevisi, G. (2024). Geometry and Symmetry of Willis’ Circle and Middle Cerebral Artery Aneurysms Development. Journal of Clinical Medicine, 13(10), 2808. https://doi.org/10.3390/jcm13102808