High-Flow Nasal Cannula System in Respiratory Failure Associated with Interstitial Lung Diseases: A Systematic Review and Narrative Synthesis
Abstract
:1. Introduction
1.1. Acute, Chronic, or Acute on Chronic Respiratory Failure in Patients with Interstitial Lung Diseases
1.2. High-Flow Nasal Cannula Therapy: Principles and Pathophysiological Advantages
- Effective delivery of the selected FiO2. High flows, by matching or exceeding the patient’s peak inspiratory flow (PIF), prevent the administered gas mixture from being diluted by ambient air [18]. This ensures that the fraction of inspired oxygen is equal to the one provided.
- Reduction in the resistive respiratory work required to overcome the elastance of the nasopharynx during inspiration. Administering the gas mixture at a flow rate equal to or greater than the patient’s peak inspiratory flow (PIF) allows the counteraction of the inspiratory resistance resulting from the tendency of the nasopharyngeal walls to retract [19].
- Creation of a positive pressure in the airways that increases linearly with the administered flow and is significantly higher when the subject breathes with a closed mouth [20].
- Continuous removal of CO2 from the nasopharyngeal dead space (wash-out effect) is facilitated using nasal cannulas that do not occlude more than 75% of the nostrils, which allow the escape of gases subject to “washing out” [21]. Consequently, the patient can always inhale ‘fresh’ gas, avoiding the rebreathing of previously exhaled CO2 residing in the dead space, thereby reducing the inspiratory fraction of CO2 (FiCO2) and increasing that of oxygen (FiO2) [22]. Moreover, the wash-out of dead space increases the portion of minute volume participating in alveolar ventilation, thus increasing the efficiency of respiratory effort [19]. This leads to a reduction in pCO2 levels [23].
- Administration of heated and humidified gas mixtures which, at 37 °C, have a relative humidity of 100%. This counteracts the harmful effects of low-temperature gases (harm to the respiratory mucosa, increase in pulmonary vascular resistance, and increase in reactivity of the bronchial muscles) and anhydrous ones (dehydration and thickening of secretions and a reduction in mucociliary clearance). The heating and humidification of the gaseous mixtures ensure a reduction in the metabolic work required for gas conditioning, fluidification of secretions, and improvement of the mucociliary clearance [18].
- Non-interference with oral hydration and nutrition of patients.
2. Material and Methods
2.1. Eligibility Criteria
2.2. Study Selection and Quality Assessment
3. Results
3.1. Study Characteristics
3.2. High-Flow Nasal Cannula in ILD Patients with Acute Respiratory Failure
3.3. High-Flow Nasal Cannula in the Management of Chronic Respiratory Failure Secondary to Fibrosing ILD
3.4. High-Flow Nasal Cannula as Support in Exercise Testing and Pulmonary Rehabilitation for Patients with ILD
3.5. High-Flow Nasal Cannula in End of Life and Palliative Care for ILD Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Samarelli, A.V.; Tonelli, R.; Marchioni, A.; Bruzzi, G.; Gozzi, F.; Andrisani, D.; Castaniere, I.; Manicardi, L.; Moretti, A.; Tabbì, L.; et al. Fibrotic Idiopathic Interstitial Lung Disease: The Molecular and Cellular Key Players. Int. J. Mol. Sci. 2021, 22, 8952. [Google Scholar] [CrossRef] [PubMed]
- Leuschner, G.; Behr, J. Acute Exacerbation in Interstitial Lung Disease. Front. Med. 2017, 4, 176. [Google Scholar] [CrossRef]
- Javaheri, S.; Sicilian, L. Lung Function, Breathing Pattern, and Gas Exchange in Interstitial Lung Disease. Thorax 1992, 47, 93–97. [Google Scholar] [CrossRef]
- Agustí, A.G.; Roca, J.; Gea, J.; Wagner, P.D.; Xaubet, A.; Rodriguez-Roisin, R. Mechanisms of Gas-Exchange Impairment in Idiopathic Pulmonary Fibrosis. Am. Rev. Respir. Dis. 1991, 143, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Bag, R.; Suleman, N.; Guntupalli, K.K. Respiratory Failure in Interstitial Lung Disease. Curr. Opin. Pulm. Med. 2004, 10, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Spicuzza, L.; Schisano, M. High-Flow Nasal Cannula Oxygen Therapy as an Emerging Option for Respiratory Failure: The Present and the Future. Ther. Adv. Chronic Dis. 2020, 11, 2040622320920106. [Google Scholar] [CrossRef]
- Plantier, L.; Cazes, A.; Dinh-Xuan, A.-T.; Bancal, C.; Marchand-Adam, S.; Crestani, B. Physiology of the Lung in Idiopathic Pulmonary Fibrosis. Eur. Respir. Rev. 2018, 27, 170062. [Google Scholar] [CrossRef]
- Glasser, S.W.; Hardie, W.D.; Hagood, J.S. Pathogenesis of Interstitial Lung Disease in Children and Adults. Pediatr. Allergy Immunol. Pulmonol. 2010, 23, 9–14. [Google Scholar] [CrossRef]
- Collard, H.R.; Moore, B.B.; Flaherty, K.R.; Brown, K.K.; Kaner, R.J.; King, T.E.J.; Lasky, J.A.; Loyd, J.E.; Noth, I.; Olman, M.A.; et al. Acute Exacerbations of Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2007, 176, 636–643. [Google Scholar] [CrossRef]
- Collard, H.R.; Yow, E.; Richeldi, L.; Anstrom, K.J.; Glazer, C. Suspected Acute Exacerbation of Idiopathic Pulmonary Fibrosis as an Outcome Measure in Clinical Trials. Respir. Res. 2013, 14, 73. [Google Scholar] [CrossRef]
- Judge, E.P.; Fabre, A.; Adamali, H.I.; Egan, J.J. Acute Exacerbations and Pulmonary Hypertension in Advanced Idiopathic Pulmonary Fibrosis. Eur. Respir. J. 2012, 40, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Reichmann, W.M.; Yu, Y.F.; Macaulay, D.; Wu, E.Q.; Nathan, S.D. Change in Forced Vital Capacity and Associated Subsequent Outcomes in Patients with Newly Diagnosed Idiopathic Pulmonary Fibrosis. BMC Pulm. Med. 2015, 15, 167. [Google Scholar] [CrossRef] [PubMed]
- Faverio, P.; De Giacomi, F.; Sardella, L.; Fiorentino, G.; Carone, M.; Salerno, F.; Ora, J.; Rogliani, P.; Pellegrino, G.; Sferrazza Papa, G.F.; et al. Management of Acute Respiratory Failure in Interstitial Lung Diseases: Overview and Clinical Insights. BMC Pulm. Med. 2018, 18, 70. [Google Scholar] [CrossRef] [PubMed]
- Song, J.W.; Hong, S.-B.; Lim, C.-M.; Koh, Y.; Kim, D.S. Acute Exacerbation of Idiopathic Pulmonary Fibrosis: Incidence, Risk Factors and Outcome. Eur. Respir. J. 2011, 37, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Ryerson, C.J.; Donesky, D.; Pantilat, S.Z.; Collard, H.R. Dyspnea in Idiopathic Pulmonary Fibrosis: A Systematic Review. J. Pain Symptom Manag. 2012, 43, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Dowman, L.M.; McDonald, C.F.; Bozinovski, S.; Vlahos, R.; Gillies, R.; Pouniotis, D.; Hill, C.J.; Goh, N.S.L.; Holland, A.E. Greater Endurance Capacity and Improved Dyspnoea with Acute Oxygen Supplementation in Idiopathic Pulmonary Fibrosis Patients without Resting Hypoxaemia. Respirology 2017, 22, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Lodeserto, F.J.; Lettich, T.M.; Rezaie, S.R. High-Flow Nasal Cannula: Mechanisms of Action and Adult and Pediatric Indications. Cureus 2018, 10, e3639. [Google Scholar] [CrossRef]
- Spoletini, G.; Alotaibi, M.; Blasi, F.; Hill, N.S. Heated Humidified High-Flow Nasal Oxygen in Adults: Mechanisms of Action and Clinical Implications. Chest 2015, 148, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Dysart, K.; Miller, T.L.; Wolfson, M.R.; Shaffer, T.H. Research in High Flow Therapy: Mechanisms of Action. Respir. Med. 2009, 103, 1400–1405. [Google Scholar] [CrossRef]
- Groves, N.; Tobin, A. High Flow Nasal Oxygen Generates Positive Airway Pressure in Adult Volunteers. Aust. Crit. Care 2007, 20, 126–131. [Google Scholar] [CrossRef]
- Sztrymf, B.; Messika, J.; Bertrand, F.; Hurel, D.; Leon, R.; Dreyfuss, D.; Ricard, J.-D. Beneficial Effects of Humidified High Flow Nasal Oxygen in Critical Care Patients: A Prospective Pilot Study. Intensive Care Med. 2011, 37, 1780–1786. [Google Scholar] [CrossRef]
- Spence, C.J.T.; Buchmann, N.A.; Jermy, M.C. Unsteady Flow in the Nasal Cavity with High Flow Therapy Measured by Stereoscopic PIV. Exp. Fluids 2012, 52, 569–579. [Google Scholar] [CrossRef]
- Frizzola, M.; Miller, T.L.; Rodriguez, M.E.; Zhu, Y.; Rojas, J.; Hesek, A.; Stump, A.; Shaffer, T.H.; Dysart, K. High-Flow Nasal Cannula: Impact on Oxygenation and Ventilation in an Acute Lung Injury Model. Pediatr. Pulmonol. 2011, 46, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Oczkowski, S.; Ergan, B.; Bos, L.; Chatwin, M.; Ferrer, M.; Gregoretti, C.; Heunks, L.; Frat, J.-P.; Longhini, F.; Nava, S.; et al. ERS Clinical Practice Guidelines: High-Flow Nasal Cannula in Acute Respiratory Failure. Eur. Respir. J. 2022, 59, 2101574. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Koyauchi, T.; Hasegawa, H.; Kanata, K.; Kakutani, T.; Amano, Y.; Ozawa, Y.; Matsui, T.; Yokomura, K.; Suda, T. Efficacy and Tolerability of High-Flow Nasal Cannula Oxygen Therapy for Hypoxemic Respiratory Failure in Patients with Interstitial Lung Disease with Do-Not-Intubate Orders: A Retrospective Single-Center Study. Respiration 2018, 96, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Koyauchi, T.; Suzuki, Y.; Sato, K.; Hozumi, H.; Karayama, M.; Furuhashi, K.; Fujisawa, T.; Enomoto, N.; Nakamura, Y.; Inui, N.; et al. Impact of End-of-Life Respiratory Modalities on Quality of Dying and Death and Symptom Relief in Patients with Interstitial Lung Disease: A Multicenter Descriptive Cross-Sectional Study. Respir. Res. 2022, 23, 79. [Google Scholar] [CrossRef] [PubMed]
- Ruangsomboon, O.; Dorongthom, T.; Chakorn, T.; Monsomboon, A.; Praphruetkit, N.; Limsuwat, C.; Surabenjawong, U.; Riyapan, S.; Nakornchai, T.; Chaisirin, W. High-Flow Nasal Cannula Versus Conventional Oxygen Therapy in Relieving Dyspnea in Emergency Palliative Patients With Do-Not-Intubate Status: A Randomized Crossover Study. Ann. Emerg. Med. 2020, 75, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Weinreich, U.M.; Burchardt, C.; Huremovic, J. The Effect of Domiciliary High Flow Nasal Cannula Treatment on Dyspnea and Walking Distance in Patients with Interstitial Lung Disease—A Pilot Study. Chron. Respir. Dis. 2022, 19, 14799731221137084. [Google Scholar] [CrossRef]
- Suzuki, A.; Ando, M.; Kimura, T.; Kataoka, K.; Yokoyama, T.; Shiroshita, E.; Kondoh, Y. The Impact of High-Flow Nasal Cannula Oxygen Therapy on Exercise Capacity in Fibrotic Interstitial Lung Disease: A Proof-of-Concept Randomized Controlled Crossover Trial. BMC Pulm. Med. 2020, 20, 51. [Google Scholar] [CrossRef]
- Koyauchi, T.; Yasui, H.; Enomoto, N.; Hasegawa, H.; Hozumi, H.; Suzuki, Y.; Karayama, M.; Furuhashi, K.; Fujisawa, T.; Nakamura, Y.; et al. Pulse Oximetric Saturation to Fraction of Inspired Oxygen (SpO2/FIO2) Ratio 24 Hours after High-Flow Nasal Cannula (HFNC) Initiation Is a Good Predictor of HFNC Therapy in Patients with Acute Exacerbation of Interstitial Lung Disease. Ther. Adv. Respir. Dis. 2020, 14, 1753466620906327. [Google Scholar] [CrossRef]
- Vianello, A.; Arcaro, G.; Molena, B.; Turato, C.; Braccioni, F.; Paladini, L.; Vio, S.; Ferrarese, S.; Peditto, P.; Gallan, F.; et al. High-Flow Nasal Cannula Oxygen Therapy to Treat Acute Respiratory Failure in Patients with Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Ther. Adv. Respir. Dis. 2019, 13, 1753466619847130. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lim, C.-M.; Koh, Y.; Hong, S.-B.; Song, J.-W.; Huh, J.W. High-Flow Nasal Cannula Oxygen Therapy in Idiopathic Pulmonary Fibrosis Patients with Respiratory Failure. J. Thorac. Dis. 2020, 12, 966–972. [Google Scholar] [CrossRef]
- Omote, N.; Matsuda, N.; Hashimoto, N.; Nishida, K.; Sakamoto, K.; Ando, A.; Nakahara, Y.; Nishikimi, M.; Higashi, M.; Matsui, S.; et al. High-Flow Nasal Cannula Therapy for Acute Respiratory Failure in Patients with Interstitial Pneumonia: A Retrospective Observational Study. Nagoya J. Med. Sci. 2020, 82, 301–313. [Google Scholar] [CrossRef]
- Ito, J.; Nagata, K.; Morimoto, T.; Kogo, M.; Fujimoto, D.; Nakagawa, A.; Otsuka, K.; Tomii, K. Respiratory Management of Acute Exacerbation of Interstitial Pneumonia Using High-Flow Nasal Cannula Oxygen Therapy: A Single Center Cohort Study. J. Thorac. Dis. 2019, 11, 103–112. [Google Scholar] [CrossRef]
- Imai, R.; Tsugitomi, R.; Nakaoka, H.; Jinta, T.; Tamura, T.M. Noninvasive Oxygenation Strategies For Acute Exacerbation of Interstitial Lung Disease: A Retrospective Single-Center Study and a Review of the Literature. Clin. Pulm. Med. 2019, 26, 87–91. [Google Scholar] [CrossRef]
- Shebl, E.; Embarak, S. High-Flow Nasal Oxygen Therapy versus Noninvasive Ventilation in Chronic Interstitial Lung Disease Patients with Acute Respiratory Failure. Egypt. J. Chest Dis. Tuberc. 2018, 67, 270–275. [Google Scholar] [CrossRef]
- Fernández-Pérez, E.R.; Yilmaz, M.; Jenad, H.; Daniels, C.E.; Ryu, J.H.; Hubmayr, R.D.; Gajic, O. Ventilator Settings and Outcome of Respiratory Failure in Chronic Interstitial Lung Disease. Chest 2008, 133, 1113–1119. [Google Scholar] [CrossRef]
- Bell, E.C.; Cox, N.S.; Goh, N.; Glaspole, I.; Westall, G.P.; Watson, A.; Holland, A.E. Oxygen Therapy for Interstitial Lung Disease: A Systematic Review. Eur. Respir. Rev. 2017, 26, 160080. [Google Scholar] [CrossRef]
- Roca, O.; Hernández, G.; Díaz-Lobato, S.; Carratalá, J.M.; Gutiérrez, R.M.; Masclans, J.R. Current Evidence for the Effectiveness of Heated and Humidified High Flow Nasal Cannula Supportive Therapy in Adult Patients with Respiratory Failure. Crit. Care 2016, 20, 109. [Google Scholar] [CrossRef]
- Nishimura, M. High-Flow Nasal Cannula Oxygen Therapy in Adults: Physiological Benefits, Indication, Clinical Benefits, and Adverse Effects. Respir. Care 2016, 61, 529–541. [Google Scholar] [CrossRef]
- Badenes-Bonet, D.; Cejudo, P.; Rodó-Pin, A.; Martín-Ontiyuelo, C.; Chalela, R.; Rodríguez-Portal, J.A.; Vázquez-Sánchez, R.; Gea, J.; Duran, X.; Caguana, O.A.; et al. Impact of High-Flow Oxygen Therapy during Exercise in Idiopathic Pulmonary Fibrosis: A Pilot Crossover Clinical Trial. BMC Pulm. Med. 2021, 21, 355. [Google Scholar] [CrossRef] [PubMed]
- Yanagita, Y.; Arizono, S.; Yokomura, K.; Ito, K.; Machiguchi, H.; Tawara, Y.; Katagiri, N.; Iida, Y.; Nakatani, E.; Tanaka, T.; et al. Enhancing Exercise Tolerance in Interstitial Lung Disease with High-Flow Nasal Cannula Oxygen Therapy: A Randomized Crossover Trial. Respirology 2024, 29, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, M.; Conti, G.; Moro, M.L.; Esquinas, A.; Gonzalez-Diaz, G.; Confalonieri, M.; Pelaia, P.; Principi, T.; Gregoretti, C.; Beltrame, F.; et al. Predictors of Failure of Noninvasive Positive Pressure Ventilation in Patients with Acute Hypoxemic Respiratory Failure: A Multi-Center Study. Intensive Care Med. 2001, 27, 1718–1728. [Google Scholar] [CrossRef] [PubMed]
- Frat, J.-P.; Thille, A.W.; Mercat, A.; Girault, C.; Ragot, S.; Perbet, S.; Prat, G.; Boulain, T.; Morawiec, E.; Cottereau, A.; et al. High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure. N. Engl. J. Med. 2015, 372, 2185–2196. [Google Scholar] [CrossRef] [PubMed]
- Matsunashi, A.; Nagata, K.; Morimoto, T.; Tomii, K. Mechanical Ventilation for Acute Exacerbation of Fibrosing Interstitial Lung Diseases. Respir. Investig. 2023, 61, 306–313. [Google Scholar] [CrossRef]
- Vahdatpour, C.A.; Pichler, A.; Palevsky, H.I.; Kallan, M.J.; Patel, N.B.; Kinniry, P.A. Interstitial Lung Disease Associated Acute Respiratory Failure Requiring Invasive Mechanical Ventilation: A Retrospective Analysis. Open Respir. Med. J. 2020, 14, 67–77. [Google Scholar] [CrossRef]
- Frat, J.-P.; Brugiere, B.; Ragot, S.; Chatellier, D.; Veinstein, A.; Goudet, V.; Coudroy, R.; Petitpas, F.; Robert, R.; Thille, A.W.; et al. Sequential Application of Oxygen Therapy via High-Flow Nasal Cannula and Noninvasive Ventilation in Acute Respiratory Failure: An Observational Pilot Study. Respir. Care 2015, 60, 170–178. [Google Scholar] [CrossRef]
- Visca, D.; Mori, L.; Tsipouri, V.; Fleming, S.; Firouzi, A.; Bonini, M.; Pavitt, M.J.; Alfieri, V.; Canu, S.; Bonifazi, M.; et al. Effect of Ambulatory Oxygen on Quality of Life for Patients with Fibrotic Lung Disease (AmbOx): A Prospective, Open-Label, Mixed-Method, Crossover Randomised Controlled Trial. Lancet Respir. Med. 2018, 6, 759–770. [Google Scholar] [CrossRef]
- Chihara, Y.; Tsuboi, T.; Sumi, K.; Sato, A. Effectiveness of High-Flow Nasal Cannula on Pulmonary Rehabilitation in Subjects with Chronic Respiratory Failure. Respir. Investig. 2022, 60, 658–666. [Google Scholar] [CrossRef]
- Groessl, E.J.; Tally, S.R.; Hillery, N. Cost-Effectiveness of Humidified High-Flow Therapy (HHFT) for COPD Patients on Long-Term Oxygen Therapy. Clinicoecon. Outcomes Res. 2023, 15, 239–250. [Google Scholar] [CrossRef]
- Sørensen, S.S.; Storgaard, L.H.; Weinreich, U.M. Cost-Effectiveness of Domiciliary High Flow Nasal Cannula Treatment in COPD Patients with Chronic Respiratory Failure. Clinicoecon. Outcomes Res. 2021, 13, 553–564. [Google Scholar] [CrossRef]
Advantages | Disadvantages |
---|---|
Effective delivery of the selected FiO2. | Potential discomfort due to high flow and relatively hot air sensation |
Reduction in the resistive respiratory work required to overcome the elastance of the nasopharynx during inspiration | Not immediately available |
Provides low positive end expiratory pressure effect | Aerosol-generating procedure that can potentially increase the risk of viral transmission |
Carbon dioxide wash-out (reduced anatomical dead space) | |
Comfort due to similarity of humidified, warmed air to physiologic conditions of the airway | |
Non-interference with oral hydration and nutrition of patients |
Authors | Year | Country | Study Design | Number of Patients (Male) | Clinical Setting | Patient Characteristics | Tested Devices | Primary Outcome | Secondary Outcomes | Analysis |
---|---|---|---|---|---|---|---|---|---|---|
Koyauchi et al. (2018) [26] | 2010–2017 | Japan | Single center; Retrospective | 84 (61) | End-stage/ Acute ILD | IPF (44); ILD NO IPF (27); CTD-ILD (10); CHP (2); SARCOIDOSIS (1) | HFNC vs. NPPV | Rates of 30-day survival after be-ginning HFNC or NPPV | Respiratory rate | KM |
Koyauchi et al. (2022) [27] | 2015–2019 | Japan | Multicenter; Prospective | 177 (137) | End-stage ILD | IPF (78); ILD NO IPF (58); CTD-ILD (36); CHP (3) | COT; HFNC; NIV; IMV | QODD | GDI | U; M |
Ruangsomboon et al. (2019) [28] | 2017–2018 | Thailand | Single center; Prospective | 48 (21) | End-stage ILD | ILD | HFNC vs. COT | Modified Borg scale score | Rating scale score of dyspnea | U |
Weinreich et al. (2022) [29] | 2019–2021 | Denmark | Single center; Prospective | 9 (5) | Chronic ILD | FILD | HFNC | Effect of HFNC on patients’ sensation of dyspnea and health-related quality of life (HR-QoL) | 6MWT, mMRC | U |
Suzuki et al. (2020) [30] | 2016–NA | Japan | Single center; Prospective | 20 (19) | Chronic ILD | FILD: IPF (17); NSIP (2); CTD-ILD (3); UNCLASSIFIABLE IIP (8) | HFNC vs. VM | Endurance time (CWRET) | Borg scale, HR | U |
Koyauchi et al. (2020) [31] | 2013_2017 | Japan | Multicenter; Retrospective | 66 (51) | Acute ILD | IPF (31); non IPF IIP (22); CTD-ILD (11); CHP (2) | HFNC | SpO2/FiO2 ratio | 30-day survival rate, | U; M; KM |
Vianello et al. (2019) [32] | 2013–2018 | Italy | Single center; Retrospective | 17 (14) | Acute ILD | IPF | HFNC vs. NPPV | Mortality Rate | NA | U; M |
Lee et al. (2020) [33] | 2015–2017 | Korea | Single center; Retrospective | 61 (48) | Acute ILD | IPF | HFNC vs. NPPV | In-hospital Mortality | NA | NA |
Omote et al. (2020) [34] | 2011–2017 | Japan | Single center; Retrospective | 32 (26) | Acute ILD | IPF (18); NSIP (2); CTD-ILD (8); Others (4) | HFNC vs. NPPV | 30-DAY MORTALITY | Intubation, ICU length of stay | U; M |
Ito et al. (2019) [35] | 2009–2012 | Japan | Single center; Retrospective | 96 (71) | Acute ILD | IPF (26); NSIP (9); CTD-ILD (19); CHP (7); CPFE (13), Other IIP (22) | HFNC vs. NPPV | In-hospital Mortality Rate | NA | KM |
Imai R (2019) [36] | 2008–2017 | Japan | Single center; Retrospective | 35 (25) | Acute ILD | IPF (13) CTD-ILD (11) Others IIP (11) | HFNC vs. NPPV | In-Hospital Mortality Rate | Length of hospital stay | NA |
Shelbl (2018) [37] | 2016–2017 | Saudi Arabia | Single center; Prospective | 70 (25) | Acute ILD | IPF (19); CTD_ILD (9); CHP (9); Sarcoidosis (7); Other IIP (26) | HFNC vs. NPPV | Need of intubation | In-hospital mortality and ventilator-free days | NA |
Author, Year | HFNC PaO2 (mmHg) Median (Range) or Mean ± SD | NIV PaO2 (mmHg) Median (Range) or Mean ± SD | p | HFNC PaO2/FiO2 (mmHg) Median (Range) or Mean ± SD | NIV PaO2/FiO2 (mmHg) Median (Range) or Mean ± SD | p |
---|---|---|---|---|---|---|
Lee et al. (2020) [33] | 82.9 ± 47.7 | 97.6 ± 42.0 | 0.366 | 202.9 ± 124.8 | 196.8 ± 97.3 | 0.927 |
Ito et al. (2019) [35] | NA | NA | NA | 188 (75–269) | 191 (130–313) | 0.17 |
Imai R (2019) [36] | NA | NA | NA | 116 (85–163) | 160 (82–273) | 0.29 |
Shelbl (2018) [37] | 178 ± 55 | 166 ± 42 | 0.31 | |||
Omote et al. (2020) [34] | 62 (56–75) | 74 (68–88) | NA | 133 (105–158) | 144 (114–191) | 0.43 |
Vianello et al. (2019) [32] | 69.85 (41.3–258.7) | 80.6 (39.0–99.3) | 0.831 | 147 (46–289) | 143 (73–248) | 0.831 |
Koyauchi et al. (2018) [26] | NA | NA | NA | 100 (79–117) | 126 (80–176) | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagliaro, R.; Aronne, L.; Fomez, R.; Ferri, V.; Montella, A.; Sanduzzi Zamparelli, S.; Bianco, A.; Perrotta, F. High-Flow Nasal Cannula System in Respiratory Failure Associated with Interstitial Lung Diseases: A Systematic Review and Narrative Synthesis. J. Clin. Med. 2024, 13, 2956. https://doi.org/10.3390/jcm13102956
Pagliaro R, Aronne L, Fomez R, Ferri V, Montella A, Sanduzzi Zamparelli S, Bianco A, Perrotta F. High-Flow Nasal Cannula System in Respiratory Failure Associated with Interstitial Lung Diseases: A Systematic Review and Narrative Synthesis. Journal of Clinical Medicine. 2024; 13(10):2956. https://doi.org/10.3390/jcm13102956
Chicago/Turabian StylePagliaro, Raffaella, Luigi Aronne, Ramona Fomez, Vincenzo Ferri, Antonia Montella, Stefano Sanduzzi Zamparelli, Andrea Bianco, and Fabio Perrotta. 2024. "High-Flow Nasal Cannula System in Respiratory Failure Associated with Interstitial Lung Diseases: A Systematic Review and Narrative Synthesis" Journal of Clinical Medicine 13, no. 10: 2956. https://doi.org/10.3390/jcm13102956
APA StylePagliaro, R., Aronne, L., Fomez, R., Ferri, V., Montella, A., Sanduzzi Zamparelli, S., Bianco, A., & Perrotta, F. (2024). High-Flow Nasal Cannula System in Respiratory Failure Associated with Interstitial Lung Diseases: A Systematic Review and Narrative Synthesis. Journal of Clinical Medicine, 13(10), 2956. https://doi.org/10.3390/jcm13102956