Incidence Rates of Infections in Rheumatoid Arthritis Patients Treated with Janus Kinase or Interleukin-6 Inhibitors: Results of a Retrospective, Multicenter Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Definitions of Exposure and Outcomes
2.3. Statistical Analysis
3. Results
3.1. Patients’ Baseline Characteristics
3.2. IRs of Serious Infections
3.3. Risk Factors for Serious Infections in JAKi-Treated Patients
3.4. IR for HZ
3.5. Comparison of Infectious Diseases between Each JAKi
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACPA | Anti-citrullinated protein antibodies |
bDMARDs | Biologic disease-modifying antirheumatic drugs |
CI | Confidence interval |
csDMARDs | Bonventional synthetic disease-modifying antirheumatic drugs |
DM | Diabetes mellitus |
DMARDs | Disease-modifying antirheumatic drugs |
EULAR | European Alliance of Associations for Rheumatology |
GC | Glucocorticoid |
HR | Hazard ratio |
HZ | Herpes zoster |
IL | Interleukin |
IL-6i | Interleukin-6 inhibitor |
ILD | Interstitial lung disease |
IR | Incidence rate |
IRR | Incidence rate ratio |
JAK | Janus kinase |
JAKi | Janus kinase inhibitor |
MTX | Methotrexate |
PSM | Propensity score matching |
PY | Patient years |
RA | Rheumatoid arthritis |
RF | Rheumatoid factor |
ROC | Receiver operating characteristic |
STAT | Signal transducer and activator of transcription |
TNFis | Tumor necrosis factor inhibitors |
tsDMARDs | Targeted synthetic disease-modifying antirheumatic drugs |
References
- Nash, P.; Kerschbaumer, A.; Dörner, T.; Dougados, M.; Fleischmann, R.M.; Geissler, K.; McInnes, I.; Pope, J.E.; van der Heijde, D.; Stoffer-Marx, M.; et al. Points to consider for the treatment of immune-mediated inflammatory diseases with Janus kinase inhibitors: A consensus statement. Ann. Rheum. Dis. 2021, 80, 71–87. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, J.J.; Gadina, M. Selective Janus kinase inhibitors come of age. Nat. Rev. Rheumatol. 2019, 15, 74–75. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; van Vollenhoven, R.F.; de Wit, M.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020, 79, 685–699. [Google Scholar] [CrossRef] [PubMed]
- Doran, M.F.; Crowson, C.S.; Pond, G.R.; O’Fallon, W.M.; Gabriel, S.E. Frequency of infection in patients with rheumatoid arthritis compared with controls: A population-based study. Arthritis Rheum. 2002, 46, 2287–2293. [Google Scholar] [CrossRef]
- Crowson, C.S.; Hoganson, D.D.; Fitz-Gibbon, P.D.; Matteson, E.L. Development and validation of a risk score for serious infection in patients with rheumatoid arthritis. Arthritis Rheum. 2012, 64, 2847–2855. [Google Scholar] [CrossRef]
- Cohen, S.; Radominski, S.C.; Gomez-Reino, J.J.; Wang, L.; Krishnaswami, S.; Wood, S.P.; Soma, K.; Nduaka, C.I.; Kwok, K.; Valdez, H.; et al. Analysis of infections and all-cause mortality in phase II, phase III, and long-term extension studies of tofacitinib in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014, 66, 2924–2937. [Google Scholar] [CrossRef] [PubMed]
- Strand, V.; Ahadieh, S.; French, J.; Geier, J.; Krishnaswami, S.; Menon, S.; Checchio, T.; Tensfeldt, T.G.; Hoffman, E.; Riese, R.; et al. Systematic review and meta-analysis of serious infections with tofacitinib and biologic disease-modifying antirheumatic drug treatment in rheumatoid arthritis clinical trials. Arthritis Res. Ther. 2015, 17, 362. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.; Iwamoto, N.; Fukui, S.; Morimoto, S.; Aramaki, T.; Shomura, F.; Aratake, K.; Eguchi, K.; Ueki, Y.; Kawakami, A. Comparison of risks of cancer, infection, and MACEs associated with JAK inhibitor and TNF inhibitor treatment: A multicenter cohort study. Rheumatology 2023, 62, 3358–3365. [Google Scholar] [CrossRef]
- Ytterberg, S.R.; Bhatt, D.L.; Mikuls, T.R.; Koch, G.G.; Fleischmann, R.; Rivas, J.L.; Germino, R.; Menon, S.; Sun, Y.; Wang, C.; et al. Cardiovascular and Cancer Risk with Tofacitinib in Rheumatoid Arthritis. N. Engl. J. Med. 2022, 386, 316–326. [Google Scholar] [CrossRef]
- Kremer, J.M.; Bingham, C.O., 3rd; Cappelli, L.C.; Greenberg, J.D.; Madsen, A.M.; Geier, J.; Rivas, J.L.; Onofrei, A.M.; Barr, C.J.; Pappas, D.A.; et al. Postapproval Comparative Safety Study of Tofacitinib and Biological Disease-Modifying Antirheumatic Drugs: 5-Year Results from a United States-Based Rheumatoid Arthritis Registry. ACR Open Rheumatol. 2021, 3, 173–184. [Google Scholar] [CrossRef]
- Curtis, J.R.; Xie, F.; Yun, H.; Bernatsky, S.; Winthrop, K.L. Real-world comparative risks of herpes virus infections in tofacitinib and biologic-treated patients with rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 1843–1847. [Google Scholar] [CrossRef]
- Song, Y.J.; Cho, S.K.; Kim, H.; Kim, H.W.; Nam, E.; Jeon, J.Y.; Yoo, H.J.; Choi, C.B.; Kim, T.H.; Jun, J.B.; et al. Increased risk of herpes zoster with tofacitinib treatment in Korean patients with rheumatoid arthritis: A single-center prospective study. Sci. Rep. 2023, 13, 7877. [Google Scholar] [CrossRef] [PubMed]
- Winthrop, K.L.; Curtis, J.R.; Lindsey, S.; Tanaka, Y.; Yamaoka, K.; Valdez, H.; Hirose, T.; Nduaka, C.I.; Wang, L.; Mendelsohn, A.M.; et al. Herpes Zoster and Tofacitinib: Clinical Outcomes and the Risk of Concomitant Therapy. Arthritis Rheumatol. 2017, 69, 1960–1968. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Miyata, M.; Suzuki, E.; Kanno, T.; Sumichika, Y.; Saito, K.; Matsumoto, H.; Temmoku, J.; Fujita, Y.; Matsuoka, N.; et al. Safety of JAK and IL-6 inhibitors in patients with rheumatoid arthritis: A multicenter cohort study. Front. Immunol. 2023, 14, 1267749. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Genovese, M.C.; Takeuchi, T.; Hyslop, D.L.; Macias, W.L.; Rooney, T.; Chen, L.; Dickson, C.L.; Riddle Camp, J.; Cardillo, T.E.; et al. Safety Profile of Baricitinib in Patients with Active Rheumatoid Arthritis with over 2 Years Median Time in Treatment. J. Rheumatol. 2019, 46, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.B.; Tanaka, Y.; Mariette, X.; Curtis, J.R.; Lee, E.B.; Nash, P.; Winthrop, K.L.; Charles-Schoeman, C.; Wang, L.; Chen, C.; et al. Long-term safety of tofacitinib up to 9.5 years: A comprehensive integrated analysis of the rheumatoid arthritis clinical development programme. RMD Open. 2020, 6, e001395. [Google Scholar] [CrossRef]
- Aucott, J.N. Glucocorticoids and infection. Endocrinol. Metab. Clin. N. Am. 1994, 23, 655–670. [Google Scholar] [CrossRef]
- Cronin, O.; McKnight, O.; Keir, L.; Ralston, S.H.; Hirani, N.; Harris, H. A retrospective comparison of respiratory events with JAK inhibitors or rituximab for rheumatoid arthritis in patients with pulmonary disease. Rheumatol. Int. 2021, 41, 921–928. [Google Scholar] [CrossRef]
- Kalyoncu, U.; Bilgin, E.; Erden, A.; Satış, H.; Tufan, A.; Tekgöz, E.; Ateş, A.; Coşkun, B.N.; Yağız, B.; Küçükşahin, O.; et al. Efficacy and safety of tofacitinib in rheumatoid arthritis-associated interstitial lung disease: TReasure real-life data. Clin. Exp. Rheumatol. 2022, 40, 2071–2077. [Google Scholar]
- Messina, R.; Guggino, G.; Benfante, A.; Scichilone, N. Interstitial Lung Disease in Elderly Rheumatoid Arthritis Patients. Drugs Aging. 2020, 37, 11–18. [Google Scholar] [CrossRef]
- Sonomoto, K.; Tanaka, H.; Nguyen, T.M.; Yoshinari, H.; Nakano, K.; Nakayamada, S.; Tanaka, Y. Prophylaxis against pneumocystis pneumonia in rheumatoid arthritis patients treated with b/tsDMARDs: Insights from 3787 cases in the FIRST registry. Rheumatology 2022, 61, 1831–1840. [Google Scholar] [CrossRef]
- Singh, N.; Gold, L.S.; Lee, J.; Wysham, K.D.; Andrews, J.S.; Makris, U.E.; England, B.R.; George, M.D.; Baker, J.F.; Jarvik, J.; et al. Frailty and Risk of Serious Infections in Patients With Rheumatoid Arthritis Treated With Biologic or Targeted-Synthetic Disease-Modifying Antirheumatic Drugs. Arthritis Care Res. 2023, 76, 627–635. [Google Scholar] [CrossRef]
- Hanlon, P.; Fauré, I.; Corcoran, N.; Butterly, E.; Lewsey, J.; McAllister, D.; Mair, F.S. Frailty measurement, prevalence, incidence, and clinical implications in people with diabetes: A systematic review and study-level meta-analysis. Lancet Healthy Longev. 2020, 1, e106–e116. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, M.A.M.; O’Hoski, S.; Goodwin, S.; Makhdami, N.; Aziz, A.; Cox, G.; Wald, J.; Ryerson, C.J.; Beauchamp, M.K.; Hambly, N.; et al. Prevalence and prognostic impact of physical frailty in interstitial lung disease: A prospective cohort study. Respirology 2021, 26, 683–689. [Google Scholar] [CrossRef]
- Smitten, A.L.; Choi, H.K.; Hochberg, M.C.; Suissa, S.; Simon, T.A.; Testa, M.A.; Chan, K.A. The risk of herpes zoster in patients with rheumatoid arthritis in the United States and the United Kingdom. Arthritis Rheum. 2007, 57, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Bechman, K.; Subesinghe, S.; Norton, S.; Atzeni, F.; Galli, M.; Cope, A.P.; Winthrop, K.L.; Galloway, J.B. A systematic review and meta-analysis of infection risk with small molecule JAK inhibitors in rheumatoid arthritis. Rheumatology 2019, 58, 1755–1766. [Google Scholar] [CrossRef]
- O’Shea, J.J.; Schwartz, D.M.; Villarino, A.V.; Gadina, M.; McInnes, I.B.; Laurence, A. The JAK-STAT pathway: Impact on human disease and therapeutic intervention. Annu. Rev. Med. 2015, 66, 311–328. [Google Scholar] [CrossRef] [PubMed]
- Au, K.; Reed, G.; Curtis, J.R.; Kremer, J.M.; Greenberg, J.D.; Strand, V.; Furst, D.E. High disease activity is associated with an increased risk of infection in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2011, 70, 785–791. [Google Scholar] [CrossRef]
Characteristics | All Patients | Propensity-Matched Patients | |||||
---|---|---|---|---|---|---|---|
IL-6i (n = 283) | JAKi (n = 161) | p Value | IL-6i (n = 118) | JAKi (n = 118) | p Value | SMD | |
Male, n (%) | 89 (31.4) | 49 (30.4) | 0.92 | 34 (28.8) | 37 (31.4) | 0.78 | 0.06 |
Age at b/ts DMARDs introduction, † years | 61 (51–69) | 72 (65–81) | <0.001 * | 68 (58–76) | 69 (60–75) | 0.59 | 0.07 |
Disease duration, † years | 8.7 (3.5–15.4) | 7.6 (3.5–15.9) | 0.51 | 9.0 (3.3–15.7) | 9.2 (4.2–16.8) | 0.39 | 0.17 |
Steinbrocker’s stage, I/II/III/IV | 105/79/37/45 no data, 17 | 62/41/16/34 no data, 8 | 35/40/13/23 no data, 7 | 48/27/10/29 no data, 4 | |||
Steinbrocker’s class, I/II/III/IV | 30/168/62/8 no data, 15 | 17/93/45/4 no data, 2 | 14/70/25/2 no data, 7 | 7/73/34/2 no data, 2 | |||
RF positivity, n (%) | 207 (73.1) | 109 (67.7) | 0.23 | 85 (72.0) | 84 (71.2) | 1.00 | 0.02 |
ACPA positivity, n (%) | 212 (74.9) | 112 (69.6) no data, 2 | 0.32 | 87 (73.7) | 89 (75.4) | 0.88 | 0.04 |
Concomitant GC use, n (%) | 134 (47.3) | 41 (25.5) | <0.001 * | 38 (32.2) | 37 (31.4) | 1.00 | 0.02 |
Concomitant GC dose, † mg/day | 0.0 (0–5.0) | 0.0 (0–0) | <0.001 * | 0.0 (0.0–5.0) | 0.0 (0.0–6.0) | 0.55 | 0.09 |
Concomitant MTX use, n (%) | 148 (52.3) | 73 (45.3) | 0.17 | 57 (48.3) | 58 (49.2) | 1.00 | 0.02 |
Concomitant MTX dose, † mg/week | 4.0 (0.0–8.0) | 0 (0–6) | 0.04 * | 0.0 (0.0–6.0) | 0.0 (0.0–6.0) | 0.91 | 0.03 |
Coexisting ILD, n (%) | 37 (13.1) | 21 (13.0) | 1.0 | 14 (11.9) | 15 (12.7) | 1.00 | 0.03 |
Coexisting DM, n (%) | 26 (9.2) | 26 (16.1) | 0.03 * | 17 (14.4) | 16 (13.6) | 1.00 | 0.02 |
Previous use of bDMARDs, n (%) | 113 (39.9) | 76 (47.2) | 0.16 | 44 (37.3) | 61 (51.7) | 0.04 * | 0.29 |
Observational period, † years | 3.0 (1.4–5.2) | 1.8 (1.2–3.3) | <0.001 * | 2.9 (1.4–4.7) | 1.9 (1.2–3.3) | 0.01 * | 0.45 |
All Patients | Propensity-Matched Patients | |||||
---|---|---|---|---|---|---|
IL-6i (n = 283) | JAKi (n = 161) | p Value | IL-6i (n = 118) | JAKi (n = 118) | p Value | |
Serious infectious diseases other than HZ | 25 (8.8) | 27 (16.8) | 7 (5.9) | 17 (14.4) | ||
IR per 100 PY (95%CI) | 2.35 (1.42–3.28) | 7.52 (4.73–10.31) | 1.89 (0.50–3.28) | 6.61 (3.57–9.65) | ||
IRR (95%CI) | 1 [reference] | 3.20 (1.85–5.56) | <0.001 * | 1 [reference] | 3.45 (1.48–9.04) | 0.004 * |
HZ | 12 (4.2) | 10 (6.2) | 4 (3.4) | 8 (6.8) | ||
IR per 100 PY (95%CI) | 1.13 (0.48–1.78) | 2.91 (1.13–4.69) | 1.08 (0.03–2.13) | 3.11 (0.99–5.23) | ||
IRR (95%CI) | 1 [reference] | 2.49 (1.04–5.83) | 0.041 * | 1 [reference] | 2.83 (0.87–10.96) | 0.084 |
Risk Factors for Serious Infectious Diseases | ||||
---|---|---|---|---|
Variavle | Univariate Model | Multivariable Model | ||
HR (95%CI) | p-Value | HR (95%CI) | p-Value | |
Age, >65 years or not | 2.00 (0.69–5.81) | 0.20 | ||
Disease duration, per 1-year increase | 0.98 (0.94–1.03) | 0.42 | ||
RF positive or negative | 1.50 (0.63–3.56) | 0.36 | ||
ACPA positive or negative | 1.88 (0.71–4.98) | 0.21 | ||
GC dose, per 1 mg increase | 1.012 (1.01–1.02) | <0.001 * | 1.01 (1.01–1.02) | <0.001 * |
MTX dose, per 1 mg increase | 0.956 (0.85–1.07) | 0.45 | ||
Coexisting ILD, yes/no | 4.00 (1.62–9.86) | 0.003 * | 3.72 (1.48–9.35) | 0.01 * |
Coexisting DM, yes/no | 2.68 (1.20–5.97) | 0.02 * | 2.53 (1.11–5.75) | 0.03 * |
No. of previous use of bDMARDs, per drug | 1.10 (0.79–1.49) | 0.63 | ||
Reduced dose of JAKi, yes/no | 0.74 (0.35–1.59) | 0.44 |
Baricitinib (n = 95) | Tofacitinib (n = 43) | Upadacitinib (n = 15) | Filgotinib (n = 8) | |
---|---|---|---|---|
Male, n (%) | 25 (26.3) | 12 (27.9) | 8 (53.3) | 4 (50.0) |
Age at JAKi introduction, † years | 74 (68–84) | 72 (66–79) | 61 (56–68) | 64 (61–68) |
Disease duration, † years | 7.3 (3.1–16.5) | 8.7 (4.1–15.6) | 6.4 (3.8–8.6) | 6.6 (4.2–12.2) |
Steinbrocker’s stage, I/II/III/IV | 36/21/12/20 no data 6 | 18/13/1/9 no data 2 | 5/6/2/2 | 3/1/1/3 |
Steinbrocker’s class, I/II/III/IV | 15/53/23/3 no data 1 | 2/21/18/1 no data 1 | 0/11/4/0 | 0/8/0/0 |
RF positivity, n (%) | 65 (68.4) | 26 (60.5) | 12 (80.0) | 6 (75.0) |
ACPA positivity, n (%) | 68 (71.6) no data 1 | 26 (60.5) no data 1 | 12 (80.0) | 6 (75.0) |
Concomitant GC use, n (%) | 18 (18.9) | 11 (25.6) | 9 (60.0) | 3 (37.5) |
Concomitant GC dose, † mg/day | 0.0 (0.0–0.0) | 0.0 (0.0–1.8) | 2.0 (0.0–2.5) | 0.0 (0.0–5.5) |
Concomitant MTX use, n (%) | 35 (36.8) | 27 (62.8) | 6 (40.0) | 5 (62.5) |
Concomitant MTX dose, † mg/week | 0.0 (0.0–6.0) | 4.0 (0.0–7.0) | 0.0 (0.0–5.0) | 5.0 (0.0–6.5) |
Coexisting ILD, n (%) | 13 (13.7) | 6 (14.0) | 2 (13.3) | 0 |
Coexisting DM, n (%) | 15 (15.8) | 9 (20.9) | 2 (13.3) | 0 |
Previous use of bDMARDs, n (%) | 44 (46.3) | 23 (53.5) | 8 (53.3) | 1 (12.5) |
Observation period, † years | 1.8 (1.2–3.3) | 2.1 (1.0–3.6) | 1.9 (1.5–2.1) | 1.3 (1.0–1.4) |
Serious infectious diseases other than HZ, n (%) | 16 (16.8) | 11 (25.6) | 0 | 0 |
HZ | 4 (4.2) | 4 (9.3) | 2 (13.3) | 0 |
Baricitinib (n = 95) | Tofacitinib (n = 43) | p-Value | |
---|---|---|---|
Serious infectious diseases other than HZ | 16 (16.8%) | 11 (25.6%) | |
IR per 100 PY (95%CI) | 7.54 (3.93–11.15) | 9.95 (4.14–15.76) | |
IRR (95%CI) | 1 [reference] | 1.33 (0.59–2.85) | 0.48 |
HZ | 4 (4.2%) | 4 (9.3%) | |
IR per 100 PY (95%CI) | 1.89 (0.03–3.75) | 3.62 (0.00–7.24) | |
IRR (95%CI) | 1 [reference] | 1.92 (0.43–8.51) | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, S.; Miyata, M.; Suzuki, E.; Kanno, T.; Sumichika, Y.; Saito, K.; Matsumoto, H.; Temmoku, J.; Fujita, Y.; Matsuoka, N.; et al. Incidence Rates of Infections in Rheumatoid Arthritis Patients Treated with Janus Kinase or Interleukin-6 Inhibitors: Results of a Retrospective, Multicenter Cohort Study. J. Clin. Med. 2024, 13, 3000. https://doi.org/10.3390/jcm13103000
Yoshida S, Miyata M, Suzuki E, Kanno T, Sumichika Y, Saito K, Matsumoto H, Temmoku J, Fujita Y, Matsuoka N, et al. Incidence Rates of Infections in Rheumatoid Arthritis Patients Treated with Janus Kinase or Interleukin-6 Inhibitors: Results of a Retrospective, Multicenter Cohort Study. Journal of Clinical Medicine. 2024; 13(10):3000. https://doi.org/10.3390/jcm13103000
Chicago/Turabian StyleYoshida, Shuhei, Masayuki Miyata, Eiji Suzuki, Takashi Kanno, Yuya Sumichika, Kenji Saito, Haruki Matsumoto, Jumpei Temmoku, Yuya Fujita, Naoki Matsuoka, and et al. 2024. "Incidence Rates of Infections in Rheumatoid Arthritis Patients Treated with Janus Kinase or Interleukin-6 Inhibitors: Results of a Retrospective, Multicenter Cohort Study" Journal of Clinical Medicine 13, no. 10: 3000. https://doi.org/10.3390/jcm13103000
APA StyleYoshida, S., Miyata, M., Suzuki, E., Kanno, T., Sumichika, Y., Saito, K., Matsumoto, H., Temmoku, J., Fujita, Y., Matsuoka, N., Asano, T., Sato, S., & Migita, K. (2024). Incidence Rates of Infections in Rheumatoid Arthritis Patients Treated with Janus Kinase or Interleukin-6 Inhibitors: Results of a Retrospective, Multicenter Cohort Study. Journal of Clinical Medicine, 13(10), 3000. https://doi.org/10.3390/jcm13103000