Is Revision Arthroscopic Bankart Repair a Viable Option? A Systematic Review of Recurrent Instability following Bankart Repair
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
6. Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kıvrak, A.; Ulusoy, İ. Effect of Glenohumeral Joint Bone Morphology on Anterior Shoulder Instability: A Case-Control Study. J. Clin. Med. 2023, 12, 4910. [Google Scholar] [CrossRef] [PubMed]
- Hong, I.S.; Sonnenfeld, J.J.; Sicat, C.S.; Hong, R.S.; Trofa, D.P.; Schiffern, S.C.; Hamid, N.; Fleischli, J.E.; Saltzman, B.M. Outcomes After Arthroscopic Revision Bankart Repair: An Updated Systematic Review of Recent Literature. Arthroscopy 2023, 39, 438–451. [Google Scholar] [CrossRef] [PubMed]
- Hurley, E.T.; Matache, B.A.; Wong, I.; Itoi, E.; Strauss, E.J.; Delaney, R.A.; Neyton, L.; Athwal, G.S.; Pauzenberger, L.; Mullett, H.; et al. Anterior Shoulder Instability Part I—Diagnosis, Nonoperative Management, and Bankart Repair—An International Consensus Statement. Arthroscopy 2022, 38, 214–223.e7. [Google Scholar] [CrossRef] [PubMed]
- Fares, M.Y.; Daher, M.; Boufadel, P.; Haikal, E.R.; Koa, J.; Singh, J.; Abboud, J.A. Arthroscopic Remplissage: History, Indications, and Clinical Outcomes. J. Korean Shoulder Elb. Soc. 2023; epub ahead of print. [Google Scholar] [CrossRef]
- Rashid, M.S.; Tsuchiya, S.; More, K.D.; LeBlanc, J.; Bois, A.J.; Kwong, C.A.; Lo, I.K.Y. Validating the Glenoid Track Concept Using Dynamic Arthroscopic Assessment. Orthop. J. Sports Med. 2024, 12, 23259671241226943. [Google Scholar] [CrossRef] [PubMed]
- Lho, T.; Lee, J.; Oh, K.-S.; Chung, S.W. Latarjet Procedure for Failed Bankart Repair Provides Better Stability and Return to Sports, but Worse Postoperative Pain and External Rotation Limitations with More Complications, Compared to Revision Bankart Repair: A Systematic Review and Meta-Analysis. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2023, 31, 3541–3558. [Google Scholar] [CrossRef] [PubMed]
- Baur, A.; Satalich, J.; O’Connell, R.; Vap, A. Surgical Management of Recurrent Instability Following Latarjet Procedure—A Systematic Review of Salvage Procedures. Shoulder Elb. 2024, 16, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-M.; Lim, J.-R.; Lee, W.-W.; Kim, S.-J.; Yoon, T.-H.; Chun, Y.-M. Comparison of Arthroscopic Primary and Revision Bankart Repair for Capsulolabral Restoration: A Matched-Pair Analysis. Arch. Orthop. Trauma Surg. 2023, 143, 3183–3190. [Google Scholar] [CrossRef] [PubMed]
- Elamo, S.; Selänne, L.; Lehtimäki, K.; Kukkonen, J.; Hurme, S.; Kauko, T.; Äärimaa, V. Bankart versus Latarjet Operation as a Revision Procedure after a Failed Arthroscopic Bankart Repair. JSES Int. 2020, 4, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Slaven, S.E.; Donohue, M.A.; Tardif, R.A.; Foley, K.A.; LeClere, L.E.; Cameron, K.L.; Giuliani, J.R.; Posner, M.A.; Dickens, J.F. Revision Arthroscopic Bankart Repair Results in High Failure Rates and a Low Return to Duty Rate without Recurrent Instability. Arthroscopy 2023, 39, 913–918. [Google Scholar] [CrossRef]
- Clowez, G.; Gendre, P.; Boileau, P. The Bristow-Latarjet Procedure for Revision of Failed Arthroscopic Bankart: A Retrospective Case Series of 59 Consecutive Patients. J. Shoulder Elbow Surg. 2021, 30, e724–e731. [Google Scholar] [CrossRef]
- Sinha, S.; Mehta, N.; Goyal, R.; Goyal, A.; Joshi, D.; Arya, R.K. Is Revision Bankart Repair with Remplissage a Viable Option for Failed Bankart Repair in Non-Contact Sports Person Aiming to Return to Sports? Indian J. Orthop. 2021, 55, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Calvo, E.; Luengo, G.; Morcillo, D.; Foruria, A.M.; Valencia, M. Revision Arthroscopic Bankart Repair Versus Arthroscopic Latarjet for Failed Primary Arthroscopic Stabilization With Subcritical Bone Loss. Orthop. J. Sports Med. 2021, 9, 23259671211001809. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Lee, J.-H.; Park, J.-Y.; Shin, S.-J. Failure Rates After Revision Arthroscopic Stabilization for Recurrent Anterior Shoulder Instability Based on Anterior Capsulolabral Complex Conditions. Orthop. J. Sports Med. 2021, 9, 2325967121995891. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, D.C.; Christensen, G.; Kawakami, J.; Burks, R.T.; Greis, P.E.; Tashjian, R.Z.; Chalmers, P.N. Revision Anterior Glenohumeral Instability: Is Arthroscopic Treatment an Option? JSES Int. 2020, 4, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Kowalczuk, M.; Ikpe, S.; Lee, H.; Sabzevari, S.; Lin, A. Risk Factors for Failure of Arthroscopic Revision Anterior Shoulder Stabilization. JBJS 2018, 100, 1319. [Google Scholar] [CrossRef] [PubMed]
- Mahure, S.A.; Mollon, B.; Capogna, B.M.; Zuckerman, J.D.; Kwon, Y.W.; Rokito, A.S. Risk Factors for Recurrent Instability or Revision Surgery Following Arthroscopic Bankart Repair. Bone Jt. J. 2018, 100-B, 324–330. [Google Scholar] [CrossRef]
- Buckup, J.; Welsch, F.; Gramlich, Y.; Hoffmann, R.; Roessler, P.P.; Schüttler, K.F.; Stein, T. Back to Sports After Arthroscopic Revision Bankart Repair. Orthop. J. Sports Med. 2018, 6, 2325967118755452. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.J.; Mascarenhas, R.; Patel, A.V.; Yanke, A.B.; Nicholson, G.P.; Cole, B.J.; Romeo, A.A.; Verma, N.N. Clinical Outcomes Following Revision Anterior Shoulder Arthroscopic Capsulolabral Stabilization. Arch. Orthop. Trauma Surg. 2015, 135, 1553–1559. [Google Scholar] [CrossRef] [PubMed]
- Neviaser, A.S.; Benke, M.T.; Neviaser, R.J. Open Bankart Repair for Revision of Failed Prior Stabilization: Outcome Analysis at a Mean of More than 10 Years. J. Shoulder Elbow Surg. 2015, 24, 897–901. [Google Scholar] [CrossRef]
- Arce, G.; Arcuri, F.; Ferro, D.; Pereira, E. Is Selective Arthroscopic Revision Beneficial for Treating Recurrent Anterior Shoulder Instability? Clin. Orthop. 2012, 470, 965–971. [Google Scholar] [CrossRef]
- Bartl, C.; Schumann, K.; Paul, J.; Vogt, S.; Imhoff, A.B. Arthroscopic Capsulolabral Revision Repair for Recurrent Anterior Shoulder Instability. Am. J. Sports Med. 2011, 39, 511–518. [Google Scholar] [CrossRef]
- Ryu, R.K.N.; Ryu, J.H. Arthroscopic Revision Bankart Repair: A Preliminary Evaluation. Orthopedics 2011, 34, 17. [Google Scholar] [CrossRef] [PubMed]
- Krueger, D.; Kraus, N.; Pauly, S.; Chen, J.; Scheibel, M. Subjective and Objective Outcome After Revision Arthroscopic Stabilization for Recurrent Anterior Instability Versus Initial Shoulder Stabilization. Am. J. Sports Med. 2011, 39, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.S.; Yi, J.W.; Lee, B.G.; Rhee, Y.G. Revision Open Bankart Surgery After Arthroscopic Repair for Traumatic Anterior Shoulder Instability. Am. J. Sports Med. 2009, 37, 2158–2164. [Google Scholar] [CrossRef] [PubMed]
- Boileau, P.; Richou, J.; Lisai, A.; Chuinard, C.; Bicknell, R.T. The Role of Arthroscopy in Revision of Failed Open Anterior Stabilization of the Shoulder. Arthroscopy 2009, 25, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Barnes, C.J.; Getelman, M.H.; Snyder, S.J. Results of Arthroscopic Revision Anterior Shoulder Reconstruction. Am. J. Sports Med. 2009, 37, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, F.; Longo, U.G.; Ruzzini, L.; Rizzello, G.; Maffulli, N.; Denaro, V. Arthroscopic Salvage of Failed Arthroscopic Bankart Repair: A Prospective Study with a Minimum Follow-up of 4 Years. Am. J. Sports Med. 2008, 36, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Neri, B.R.; Tuckman, D.V.; Bravman, J.T.; Yim, D.; Sahajpal, D.T.; Rokito, A.S. Arthroscopic Revision of Bankart Repair. J. Shoulder Elbow Surg. 2007, 16, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Creighton, R.A.; Romeo, A.A.; Brown, F.M.; Hayden, J.K.; Verma, N.N. Revision Arthroscopic Shoulder Instability Repair. Arthroscopy 2007, 23, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Sisto, D.J. Revision of Failed Arthroscopic Bankart Repairs. Am. J. Sports Med. 2007, 35, 537–541. [Google Scholar] [CrossRef]
- Kim, S.-H.; Ha, K.-I.; Kim, Y.-M. Arthroscopic Revision Bankart Repair: A Prospective Outcome Study. Arthroscopy 2002, 18, 469–482. [Google Scholar] [CrossRef]
- Bradburn, M.J.; Deeks, J.J.; Berlin, J.A.; Russell Localio, A. Much Ado about Nothing: A Comparison of the Performance of Meta-Analytical Methods with Rare Events. Stat. Med. 2007, 26, 53–77. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, S.S.; De Beer, J.F. Traumatic Glenohumeral Bone Defects and Their Relationship to Failure of Arthroscopic Bankart Repairs: Significance of the Inverted-Pear Glenoid and the Humeral Engaging Hill-Sachs Lesion. Arthrosc. J. Arthrosc. Relat. Surg. 2000, 16, 677–694. [Google Scholar] [CrossRef] [PubMed]
- Lippitt, S.B.; Vanderhooft, J.E.; Harris, S.L.; Sidles, J.A.; Harryman, D.T.; Matsen, F.A. Glenohumeral Stability from Concavity-Compression: A Quantitative Analysis. J. Shoulder Elbow Surg. 1993, 2, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Schroder, D.T.; Provencher, M.T.; Mologne, T.S.; Muldoon, M.P.; Cox, J.S. The Modified Bristow Procedure for Anterior Shoulder Instability: 26-Year Outcomes in Naval Academy Midshipmen. Am. J. Sports Med. 2006, 34, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Giacomo, G.D.; Itoi, E.; Burkhart, S.S. Evolving Concept of Bipolar Bone Loss and the Hill-Sachs Lesion: From “Engaging/Non-Engaging” Lesion to “On-Track/Off-Track” Lesion. Arthroscopy 2014, 30, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Itoi, E.; Abe, H.; Minagawa, H.; Seki, N.; Shimada, Y.; Okada, K. Contact between the Glenoid and the Humeral Head in Abduction, External Rotation, and Horizontal Extension: A New Concept of Glenoid Track. J. Shoulder Elbow Surg. 2007, 16, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Balg, F.; Boileau, P. The Instability Severity Index Score: A Simple Pre-Operative Score to Select Patients for Arthroscopic or Open Shoulder Stabilisation. J. Bone Jt. Surg. Br. 2007, 89-B, 1470–1477. [Google Scholar] [CrossRef]
- Longo, U.G.; Papalia, R.; Ciapini, G.; De Salvatore, S.; Casciaro, C.; Ferrari, E.; Cosseddu, F.; Novi, M.; Piergentili, I.; Parchi, P.; et al. Instability Severity Index Score Does Not Predict the Risk of Shoulder Dislocation after a First Episode Treated Conservatively. Int. J. Environ. Res. Public Health 2021, 18, 12026. [Google Scholar] [CrossRef]
- Weber, S.C. The Instability Severity Index Score in Arthroscopic Instability Surgery (ISIS): Failure to Validate Its Predictive Value in the Selection of Arthroscopic Instability Surgery. J. Shoulder Elbow Surg. 2014, 23, e231. [Google Scholar] [CrossRef]
- Bishop, J.Y.; Jones, G.L.; Rerko, M.A.; Donaldson, C. 3-D CT Is the Most Reliable Imaging Modality When Quantifying Glenoid Bone Loss. Clin. Orthop. 2013, 471, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.W.; Powell, K.A.; Yum, J.K.; Brems, J.J.; Iannotti, J.P. Use of Three-Dimensional Computed Tomography for the Analysis of the Glenoid Anatomy. J. Shoulder Elbow Surg. 2005, 14, 85–90. [Google Scholar] [CrossRef]
- Miyatake, K.; Takeda, Y.; Fujii, K.; Takasago, T.; Iwame, T. Validity of Arthroscopic Measurement of Glenoid Bone Loss Using the Bare Spot. Open Access J. Sports Med. 2014, 5, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Altan, E.; Ozbaydar, M.U.; Tonbul, M.; Yalcin, L. Comparison of Two Different Measurement Methods to Determine Glenoid Bone Defects: Area or Width? J. Shoulder Elbow Surg. 2014, 23, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Mauro, C.S.; Voos, J.E.; Hammoud, S.; Altchek, D.W. Failed Anterior Shoulder Stabilization. J. Shoulder Elbow Surg. 2011, 20, 1340–1350. [Google Scholar] [CrossRef] [PubMed]
- Yon, C.-J.; Cho, C.-H.; Kim, D.-H. Revision Arthroscopic Bankart Repair: A Systematic Review of Clinical Outcomes. J. Clin. Med. 2020, 9, 3418. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, J.; Jia, Y.; Zhang, G.; Zhou, J.; Wu, D.; Jiang, J.; Yun, X. Risk Factors for Recurrence after Bankart Repair: A Systematic Review and Meta-Analysis. J. Orthop. Surg. 2022, 17, 113. [Google Scholar] [CrossRef]
- Bankart, A.S.B. Recurrent or habitual dislocation of the shoulder-joint. Br. Med. J. 1923, 2, 1132–1133. [Google Scholar] [CrossRef]
- Imhoff, A.B.; Ansah, P.; Tischer, T.; Reiter, C.; Bartl, C.; Hench, M.; Spang, J.T.; Vogt, S. Arthroscopic Repair of Anterior-Inferior Glenohumeral Instability Using a Portal at the 5:30-o’clock Position: Analysis of the Effects of Age, Fixation Method, and Concomitant Shoulder Injury on Surgical Outcomes. Am. J. Sports Med. 2010, 38, 1795–1803. [Google Scholar] [CrossRef]
- Yamamoto, N.; Muraki, T.; Sperling, J.W.; Steinmann, S.P.; Cofield, R.H.; Itoi, E.; An, K.-N. Stabilizing Mechanism in Bone-Grafting of a Large Glenoid Defect. J. Bone Jt. Surg. Am. 2010, 92, 2059–2066. [Google Scholar] [CrossRef]
Author (Year) | Confounding | Selection of Participants | Classification of Interventions | Deviations from Intended Interventions | Missing Data | Measurement of Outcomes | Selection of the Reported Result | Overall Bias | Notes |
---|---|---|---|---|---|---|---|---|---|
Lee (2023) [8] | + | + | + | + | + | + | + | Low-Risk | |
Slaven (2023) [10] | ? | − | + | + | + | + | + | High-risk | Lack of matching; Military sample |
Clowez (2021) [11] | − | + | − | + | + | + | + | High-risk | Variable surgery (Latarjet or Bristow) |
Sinha (2021) [12] | + | + | + | + | + | + | + | Low-Risk | |
Calvo (2021) [13] | ? | + | + | + | + | + | + | Uncertain | Lack of matching |
Park (2021) [14] | + | + | + | + | + | + | + | Low-Risk | |
O’Neill (2020) [15] | + | + | + | + | + | + | + | Low-Risk | |
Elamo (2020) [9] | − | + | + | + | + | + | + | High-risk | GBL cutoff and engaging HSL not reported |
Su (2018) [16] | − | + | + | + | + | + | + | High-risk | Variable index surgery |
Mahure (2018) [17] | − | + | ? | + | + | + | + | High-risk | Variable surgery (ARBR, OCT, capsulorrhaphy) |
Buckup (2018) [18] | + | ? | + | + | + | + | + | Uncertain | Male-only sample |
Shin (2016) [19] | + | + | + | + | + | + | + | Low-Risk | |
Neviaser (2015) [20] | − | ? | + | + | + | + | + | High-risk | Lack of matching; Variable index Surgery |
Arce (2012) [21] | ? | + | + | + | + | + | + | Uncertain | Male-only sample |
Bartl (2011) [22] | + | + | + | + | + | + | + | Low-Risk | |
Ryu (2011) [23] | + | + | + | + | + | + | + | Low-Risk | |
Krueger (2011) [24] | − | ? | + | + | + | + | + | High-risk | Lack of matching; Variable index surgery |
Cho (2009) [25] | + | + | + | + | + | + | + | Low-Risk | |
Boileau (2009) [26] | + | + | + | + | + | + | + | Low-Risk | |
Barnes (2009) [27] | + | ? | + | + | + | + | + | Uncertain | Lack of matching |
Franceschi (2008) [28] | + | + | + | + | + | + | + | Low-Risk | |
Neri (2007) [29] | + | + | + | + | + | + | + | Low-Risk | |
Creighton (2007) [30] | − | + | + | + | + | + | + | High-risk | Variable Index Surgery |
Sisto (2007) [31] | + | + | + | + | + | + | + | Low-Risk | |
Kim (2002) [32] | + | + | + | + | + | + | + | Low-Risk |
Author (Year) | N | Minimum Follow-Up (Months) | Experimental Group (N) | Control Group (N) | Recurrent Instability Definition | Experimental Recurrence (%) | Control Recurrence (%) | Critical GBL (%) | Critical GBL Treatment | Off-Track Hill-Sachs Lesion Treatment | Conclusions |
---|---|---|---|---|---|---|---|---|---|---|---|
Lee (2023) [8] | 48 | 6 | ARBR (24) | APBR (24) | A/S/D | 12.5 | 4.2 | 20 | Excluded | Included (remplissage) | ARBR has a nonsignificant (p = 0.06) but increased recurrence and decreased capsulolabral height compared to APBR |
Slaven (2023) [10] | 41 | 24 | ARBR (41) | − | S/D | 44 | − | 20 | Excluded | Included | Recurrence rate is approximately 50% in a young (22.9 ± 4.3 yrs) military population |
Clowez (2021) [11] | 59 | 24 | Arthroscopic OCT (34) | Open coracoid transfer (25) | S/D | 7 | 0 | − | − | Included | Arthroscopic has increased recurrence compared to OCT, and recurrence is related to Calandra grade III HSLs |
Sinha (2021) [12] | 42 | 24 | ARBR with remplissage (42) | − | S/D | 9.5 | − | 25 | Excluded | Included | ARBR with remplissage is associated with recurrence <10% for patients with off-track HSLs |
Calvo (2021) [13] | 45 | 24 | ARBR (17) | Arthroscopic Latarjet (28) | S/D | 11.8 | 17.9 | 15 | Included (Latarjet) | Included | ARBR and arthroscopic Latarjet have similar recurrence rates regardless of GBL; however, this study used a lower threshold than most others (15% versus 25%) |
Park (2021) [14] | 55 | 24 | ARBR for capsular tear (10) | ARBR for labral retear (45) | D | 40 | 10.2 | 25 | Excluded | Included (all in labral retear group) | Capsular tears with healed labra are associated with increased recurrence compared to labral retears |
O’Neill (2020) [15] | 45 | 24 | ARBR with remplissage (21) | Open Latarjet (24) | A/S/D | 38 | 29 | 20 | Included (Latarjet) | Included | ARBR with remplissage for off-track HSLs and open Latarjet for critical GBL have similar recurrence rates. |
Elamo (2020) [9] | 48 | 12 | ARBR (30) | Open Latarjet (18) | S/D | 43.3 | 0 | − | − | − | ARBR has increased recurrence compared to open Latarjet; however, neither the cutoff nor the number of patients for critical GBL were defined. |
Su (2018) [16] | 92 | 24 | ARBR (92) | − | S/D | 42 | − | 20 | Included (ARBR) | Included | Recurrence was associated with off-track lesions and capsulolabral insufficiency, and ARBR recurrence rate is <20% when excluding these factors |
Mahure (2018) [17] | 344 | 36 | ARBR (225) | Revision open stabilization (119) | D | 12.4 | 5.1 | − | − | − | ARBR has increased recurrence compared to open restabilization; however, neither the cutoff nor the number of patients for critical GBL were defined. |
Buckup (2018) [18] | 47 | 24 | ARBR (25) | Healthy controls (22) | D | 12 | − | 20 | Excluded | ARBR is associated with chronic atrophy of supraspinatus and infraspinatus. | |
Shin (2016) [19] | 122 | 24 | ARBR (89) | APBR (33) | A/S/D | 18 | 3 | 25 | Excluded | Excluded | ARBR has a significantly higher recurrence rate (p = 0.039) compared to APBR |
Neviaser (2015) [20] | 30 | 120 | ARBR (30) | − | A/S/D | 0 | − | − | − | Included | ARBR has negligible recurrent instability with good-to-excellent PROs in the majority of patients |
Arce (2012) [21] | 16 | 24 | ARBR (16) | − | S/D | 18.8 | − | 25 | Excluded | Excluded | ARBR has <20% recurrence and good-to-excellent PROs in the majority of patients |
Bartl (2011) [22] | 56 | 24 | ARBR (56) | − | S/D | 11 | − | 20 | Excluded | Excluded | ARBR has <15% recurrence and good-to-excellent PROs in the majority of patients |
Ryu (2011) [23] | 15 | 18 | ARBR (15) | − | S/D | 27 | − | 20 | Included (ARBR) | Included | ARBR has <30% recurrent instability, and recurrence is not related to critical GBL |
Krueger (2011) [24] | 40 | 24 | ARBR (20) | APBR (20) | A/S/D | 10 | 0 | 25 | Excluded | ARBR has an increased risk of recurrent instability and poorer patient-reported outcomes compared to APBR | |
Cho (2009) [25] | 26 | 24 | ARBR (26) | − | A/S/D | 11.5 | − | 20 | Included (ARBR) | Included | ARBR has <15% recurrence and fair PROs in the majority of patients |
Boileau (2009) [26] | 22 | 24 | ARBR after open index (22) | − | A/S/D | 13.6 | − | 25 | Excluded | Excluded | ARBR has <15% recurrence and good-to-excellent PROs in the majority of patients |
Barnes (2009) [27] | 18 | 24 | ARBR (18) | − | D | 5.6 | − | − | − | − | ARBR has <10% recurrence and good-to-excellent PROs in the majority of patients |
Franceschi (2008) [28] | 10 | 46 | ARBR (10) | − | D | 10 | − | 30 | Excluded | Excluded | ARBR has 10% recurrent instability and good-to-excellent PROs in the majority of patients |
Neri (2007) [29] | 12 | 24 | ARBR (12) | − | S/D | 25 | − | 30 | Excluded | Excluded | ARBR has 25% recurrent instability and good-to-excellent PROs in the majority of patients |
Creighton (2007) [30] | 18 | 24 | ARBR (18) | − | S/D | 16.7 | − | 25 | Excluded | Excluded | ARBR has <20% recurrent instability and good-to-excellent PROs in the majority of patients |
Sisto (2007) [31] | 30 | 24 | ARBR (30) | − | A/S/D | 0 | − | − | − | Excluded | ARBR has negligible recurrent instability with good-to-excellent PROs in the majority of patients |
Kim (2002) [32] | 23 | 24 | ARBR (23) | − | A/S/D | 21.7 | − | 30 | Excluded | Included | ARBR has <25% recurrent instability and good-to-excellent PROs in the majority of patients |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baur, A.; Raghuwanshi, J.; Gwathmey, F.W. Is Revision Arthroscopic Bankart Repair a Viable Option? A Systematic Review of Recurrent Instability following Bankart Repair. J. Clin. Med. 2024, 13, 3067. https://doi.org/10.3390/jcm13113067
Baur A, Raghuwanshi J, Gwathmey FW. Is Revision Arthroscopic Bankart Repair a Viable Option? A Systematic Review of Recurrent Instability following Bankart Repair. Journal of Clinical Medicine. 2024; 13(11):3067. https://doi.org/10.3390/jcm13113067
Chicago/Turabian StyleBaur, Alexander, Jasraj Raghuwanshi, and F. Winston Gwathmey. 2024. "Is Revision Arthroscopic Bankart Repair a Viable Option? A Systematic Review of Recurrent Instability following Bankart Repair" Journal of Clinical Medicine 13, no. 11: 3067. https://doi.org/10.3390/jcm13113067
APA StyleBaur, A., Raghuwanshi, J., & Gwathmey, F. W. (2024). Is Revision Arthroscopic Bankart Repair a Viable Option? A Systematic Review of Recurrent Instability following Bankart Repair. Journal of Clinical Medicine, 13(11), 3067. https://doi.org/10.3390/jcm13113067