Remote Delivery of Partial Meal Replacement for Weight Loss in People Awaiting Arthroplasty
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Intervention
2.3.1. Partial Meal Replacement Plan
2.3.2. Supporting the Partial Meal Replacement Plan
2.4. Data Collection Measures
2.5. Outcomes
2.6. Statistical Analysis
2.7. Ethics Approval
3. Results
3.1. Weight Loss
3.2. Acceptability, Adherence and Safety
3.3. Changes in Biochemical Profile, Questionnaire-Based Scores, and Lifestyle Behaviours
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Angulo, P. NAFLD, obesity, and bariatric surgery. Gastroenterology 2006, 130, 1848–1852. [Google Scholar] [CrossRef]
- Lavie, C.J.; Milani, R.V.; Ventura, H.O. Obesity and cardiovascular disease: Risk factor, paradox, and impact of weight loss. J. Am. Coll. Cardiol. 2009, 53, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Sowers, M.R.; Karvonen-Gutierrez, C.A. The evolving role of obesity in knee osteoarthritis. Curr. Opin. Rheumatol. 2010, 22, 533–537. [Google Scholar] [CrossRef]
- Grima, M.; Dixon, J.B. Obesity—Recommendations for management in general practice and beyond. Aust. Fam. Physician 2013, 42, 532–541. [Google Scholar]
- Jin, X.; Gibson, A.A.; Gale, J.; Schneuer, F.; Ding, D.; March, L.; Sainsbury, A.; Nassar, N. Does weight loss reduce the incidence of total knee and hip replacement for osteoarthritis?-A prospective cohort study among middle-aged and older adults with overweight or obesity. Int. J. Obes. 2021, 45, 1696–1704. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.; Hagen, K.B.; Bijlsma, J.W.; Andreassen, O.; Christensen, P.; Conaghan, P.G.; Doherty, M.; Geenen, R.; Hammond, A.; Kjeken, I.; et al. EULAR recommendations for the non-pharmacological core management of hip and knee osteoarthritis. Ann. Rheum. Dis. 2013, 72, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, M.C.; Altman, R.D.; April, K.T.; Benkhalti, M.; Guyatt, G.; McGowan, J.; Towheed, T.; Welch, V.; Wells, G.; Tugwell, P. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis. Care Res. 2012, 64, 465–474. [Google Scholar] [CrossRef]
- RACGP. Guidelines for the Management of Knee and Hip Osteoarthritis; Royal Australian College of General Practitioners: East Melbourne, UK, 2018. [Google Scholar]
- Ackerman, I.N.; Bohensky, M.A.; Zomer, E.; Tacey, M.; Gorelik, A.; Brand, C.A.; de Steiger, R. The projected burden of primary total knee and hip replacement for osteoarthritis in Australia to the year 2030. BMC Musculoskelet. Disord. 2019, 20, 90. [Google Scholar] [CrossRef]
- Workgroup of the American Association of Hip and Knee Surgeons Evidence Based Committee. Obesity and total joint arthroplasty: A literature based review. J. Arthroplast. 2013, 28, 714–721. [Google Scholar] [CrossRef]
- Flego, A.; Dowsey, M.M.; Choong, P.F.; Moodie, M. Addressing obesity in the management of knee and hip osteoarthritis—Weighing in from an economic perspective. BMC Musculoskelet. Disord. 2016, 17, 233. [Google Scholar] [CrossRef]
- Bliddal, H.; Leeds, A.R.; Christensen, R. Osteoarthritis, obesity and weight loss: Evidence, hypotheses and horizons—A scoping review. Obes. Rev. 2014, 15, 578–586. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Klika, A.K.; Navale, S.M.; Newman, J.M.; Barsoum, W.K.; Higuera, C.A. Obesity Epidemic: Is Its Impact on Total Joint Arthroplasty Underestimated? An Analysis of National Trends. Clin. Orthop. Relat. Res. 2017, 475, 1798–1806. [Google Scholar] [CrossRef] [PubMed]
- Jabakhanji, S.B.; Mealy, A.; Glynn, A.; Sorensen, J. Modeling the impact of obesity on cost of hip and knee arthroplasty. Ann. Epidemiol. 2021, 54, 1–6. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Piuzzi, N.S.; Ng, M.; Sodhi, N.; Khlopas, A.A.; Mont, M.A. Association Between Body Mass Index and Thirty-Day Complications After Total Knee Arthroplasty. J. Arthroplast. 2018, 33, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Kerkhoffs, G.M.; Servien, E.; Dunn, W.; Dahm, D.; Bramer, J.A.; Haverkamp, D. The influence of obesity on the complication rate and outcome of total knee arthroplasty: A meta-analysis and systematic literature review. J. Bone Jt. Surg. Am. 2012, 94, 1839–1844. [Google Scholar] [CrossRef] [PubMed]
- Naylor, J.M.; Harmer, A.R.; Heard, R.C. Severe other joint disease and obesity independently influence recovery after joint replacement surgery: An observational study. Aust. J. Physiother. 2008, 54, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Dowsey, M.M.; Liew, D.; Choong, P.F. Economic burden of obesity in primary total knee arthroplasty. Arthritis Care Res. 2011, 63, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Maradit Kremers, H.; Visscher, S.L.; Kremers, W.K.; Naessens, J.M.; Lewallen, D.G. Obesity increases length of stay and direct medical costs in total hip arthroplasty. Clin. Orthop. Relat. Res. 2014, 472, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Dowsey, M.M.; Brown, W.A.; Cochrane, A.; Burton, P.R.; Liew, D.; Choong, P.F. Effect of Bariatric Surgery on Risk of Complications After Total Knee Arthroplasty: A Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e226722. [Google Scholar] [CrossRef]
- Atukorala, I.; Makovey, J.; Lawler, L.; Messier, S.P.; Bennell, K.; Hunter, D.J. Is There a Dose-Response Relationship Between Weight Loss and Symptom Improvement in Persons With Knee Osteoarthritis? Arthritis Care Res. 2016, 68, 1106–1114. [Google Scholar] [CrossRef]
- Messier, S.P.; Mihalko, S.L.; Legault, C.; Miller, G.D.; Nicklas, B.J.; DeVita, P.; Beavers, D.P.; Hunter, D.J.; Lyles, M.F.; Eckstein, F.; et al. Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: The IDEA randomized clinical trial. JAMA 2013, 310, 1263–1273. [Google Scholar] [CrossRef] [PubMed]
- Christensen, R.; Bartels, E.M.; Astrup, A.; Bliddal, H. Effect of weight reduction in obese patients diagnosed with knee osteoarthritis: A systematic review and meta-analysis. Ann. Rheum. Dis. 2007, 66, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Alrushud, A.S.; Rushton, A.B.; Kanavaki, A.M.; Greig, C.A. Effect of physical activity and dietary restriction interventions on weight loss and the musculoskeletal function of overweight and obese older adults with knee osteoarthritis: A systematic review and mixed method data synthesis. BMJ Open 2017, 7, e014537. [Google Scholar] [CrossRef]
- Pellegrini, C.A.; Ledford, G.; Hoffman, S.A.; Chang, R.W.; Cameron, K.A. Preferences and motivation for weight loss among knee replacement patients: Implications for a patient-centered weight loss intervention. BMC Musculoskelet. Disord. 2017, 18, 327. [Google Scholar] [CrossRef] [PubMed]
- López-Gómez, J.J.; Izaola-Jáuregui, O.; Torres-Torres, B.; Gómez-Hoyos, E.; Castro Lozano, M.; Ortolá-Buigues, A.; Martín Ferrero, M.; De Luis-Román, D.A. Influence of a meal-replacement diet on quality of life in women with obesity and knee osteoarthritis before orthopedic surgery. Nutr. Hosp. 2018, 35, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Khoo, C.L.; Chimoriya, R.; Simmons, D.; Piya, M.K. Partial meal replacement for people with type 2 diabetes: 2-year outcomes from an Australian general practice. Aust. J. Prim. Health 2022, 29, 74–80. [Google Scholar] [CrossRef]
- Middleton, F.R.; Boardman, D.R. Total hip arthroplasty does not aid weight loss. Ann. R. Coll. Surg. Engl. 2007, 89, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Seward, M.W.; Briggs, L.G.; Bain, P.A.; Chen, A.F. Preoperative Nonsurgical Weight Loss Interventions Before Total Hip and Knee Arthroplasty: A Systematic Review. J. Arthroplast. 2021, 36, 3796–3806.e3798. [Google Scholar] [CrossRef] [PubMed]
- Genel, F.; Pavlovic, N.; Gao, M.; Hackett, D.; Lewin, A.; Piya, M.; Mills, K.; Brady, B.; Dennis, S.; Boland, R.; et al. Optimising body weight in people with obesity prior to knee or hip arthroplasty: A feasibility study utilising a dietitian-led low inflammatory diet. Musculoskelet. Care 2024, 22, e1867. [Google Scholar] [CrossRef]
- Kobuch, S.; Tsang, F.; Chimoriya, R.; Gossayn, D.; O’Brien, S.; Jamal, J.; Laks, L.; Tahrani, A.; Kormas, N.; Piya, M.K. Obstructive sleep apnoea and 12-month weight loss in adults with class 3 obesity attending a multidisciplinary weight management program. BMC Endocr. Disord. 2021, 21, 227. [Google Scholar] [CrossRef]
- Kodsi, R.; Chimoriya, R.; Medveczky, D.; Grudzinskas, K.; Atlantis, E.; Tahrani, A.A.; Kormas, N.; Piya, M.K. Clinical Use of the Edmonton Obesity Staging System for the Assessment of Weight Management Outcomes in People with Class 3 Obesity. Nutrients 2022, 14, 967. [Google Scholar] [CrossRef]
- Piya, M.K.; Chimoriya, R.; Yu, W.; Grudzinskas, K.; Myint, K.P.; Skelsey, K.; Kormas, N.; Hay, P. Improvement in Eating Disorder Risk and Psychological Health in People with Class 3 Obesity: Effects of a Multidisciplinary Weight Management Program. Nutrients 2021, 13, 1425. [Google Scholar] [CrossRef]
- Chimoriya, R.; Ho, V.; Wang, Z.V.; Chang, R.; Boumelhem, B.B.; Simmons, D.; Kormas, N.; Gorrell, M.D.; Piya, M.K. Application and Diagnostic Performance of Two-Dimensional Shear Wave Elastography and Liver Fibrosis Scores in Adults with Class 3 Obesity. Nutrients 2023, 16, 74. [Google Scholar] [CrossRef]
- Des Jarlais, D.C.; Lyles, C.; Crepaz, N. Improving the reporting quality of nonrandomized evaluations of behavioral and public health interventions: The TREND statement. Am. J. Public Health 2004, 94, 361–366. [Google Scholar] [CrossRef]
- Chimoriya, R.; Mitlehner, K.; Khoo, C.L.; Osuagwu, U.L.; Thomson, R.; Si, L.; Lean, M.; Simmons, D.; Piya, M.K. Translation of a Diabetes Remission Service into Australian Primary Care: Findings from the Evaluation of DiRECT-Australia. J. Diabetes Res. 2024, 2024, 2350551. [Google Scholar] [CrossRef]
- Le Foll, D.; Lechaux, D.; Rascle, O.; Cabagno, G. Weight loss and quality of life after bariatric surgery: A 2-year longitudinal study. Surg. Obes. Relat. Dis. 2020, 16, 56–64. [Google Scholar] [CrossRef]
- Chimoriya, R.; MacMillan, F.; Lean, M.; Simmons, D.; Piya, M.K. A qualitative study of the perceptions and experiences of participants and healthcare professionals in the DiRECT-Australia type 2 diabetes remission service. Diabet. Med. 2024, 41, e15301. [Google Scholar] [CrossRef]
- Dawson, J.; Fitzpatrick, R.; Carr, A.; Murray, D. Questionnaire on the perceptions of patients about total hip replacement. J. Bone Jt. Surg. Br. 1996, 78, 185–190. [Google Scholar] [CrossRef]
- Dawson, J.; Fitzpatrick, R.; Murray, D.; Carr, A. Questionnaire on the perceptions of patients about total knee replacement. J. Bone Jt. Surg. Br. 1998, 80, 63–69. [Google Scholar] [CrossRef]
- Gusi, N.; Olivares, P.R.; Rajendram, R. The EQ-5D Health-Related Quality of Life Questionnaire. In Handbook of Disease Burdens and Quality of Life Measures; Preedy, V.R., Watson, R.R., Eds.; Springer: New York, NY, USA, 2010; pp. 87–99. [Google Scholar]
- Topp, C.W.; Østergaard, S.D.; Søndergaard, S.; Bech, P. The WHO-5 Well-Being Index: A Systematic Review of the Literature. Psychother. Psychosom. 2015, 84, 167–176. [Google Scholar] [CrossRef]
- Kessler, R.C.; Andrews, G.; Colpe, L.J.; Hiripi, E.; Mroczek, D.K.; Normand, S.L.; Walters, E.E.; Zaslavsky, A.M. Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychol. Med. 2002, 32, 959–976. [Google Scholar] [CrossRef]
- Simmons, D.; Mesui, J. Decisional balance and stage of change in relation to weight loss, exercise and dietary fat reduction among Pacific Islands people. Asia. Pac. J. Clin. Nutr. 1999, 8, 39–45. [Google Scholar] [CrossRef]
- Ndwiga, D.W.; McBride, K.A.; Simmons, D.; MacMillan, F. Diabetes, its risk factors and readiness to change lifestyle behaviours among Australian Samoans living in Sydney: Baseline data for church-wide interventions. Health Promot. J. Aust. 2020, 31, 268–278. [Google Scholar] [CrossRef]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef]
- Muirhead, R.; Kizirian, N.; Lal, R.; Black, K.; Prys-Davies, A.; Nassar, N.; Baur, L.; Sainsbury, A.; Sweeting, A.; Markovic, T.; et al. A Pilot Randomized Controlled Trial of a Partial Meal Replacement Preconception Weight Loss Program for Women with Overweight and Obesity. Nutrients 2021, 13, 3200. [Google Scholar] [CrossRef]
- de Luis, D.A.; Izaola, O.; García Alonso, M.; Aller, R.; Cabezas, G.; de la Fuente, B. Effect of a commercial hypocaloric diet in weight loss and post surgical morbidities in obese patients with chronic arthropathy, a randomized clinical trial. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 1814–1820. [Google Scholar]
- Liljensøe, A.; Laursen, J.O.; Bliddal, H.; Søballe, K.; Mechlenburg, I. Weight Loss Intervention Before Total Knee Replacement: A 12-Month Randomized Controlled Trial. Scand. J. Surg. 2021, 110, 3–12. [Google Scholar] [CrossRef]
- Hamdy, O.; Zwiefelhofer, D. Weight management using a meal replacement strategy in type 2 diabetes. Curr. Diab. Rep. 2010, 10, 159–164. [Google Scholar] [CrossRef]
- Lin, A.L.; Vittinghoff, E.; Olgin, J.E.; Pletcher, M.J.; Marcus, G.M. Body Weight Changes During Pandemic-Related Shelter-in-Place in a Longitudinal Cohort Study. JAMA Netw. Open 2021, 4, e212536. [Google Scholar] [CrossRef]
- Huang, J.; Chan, S.C.; Ko, S.; Wang, H.H.X.; Yuan, J.; Xu, W.; Zheng, Z.J.; Xue, H.; Zhang, L.; Jiang, J.Y.; et al. Factors associated with weight gain during COVID-19 pandemic: A global study. PLoS ONE 2023, 18, e0284283. [Google Scholar] [CrossRef]
- Robinson, E.; Boyland, E.; Chisholm, A.; Harrold, J.; Maloney, N.G.; Marty, L.; Mead, B.R.; Noonan, R.; Hardman, C.A. Obesity, eating behavior and physical activity during COVID-19 lockdown: A study of UK adults. Appetite 2021, 156, 104853. [Google Scholar] [CrossRef]
- Fischer, M.; Weimann, T.; Oberänder, N.; Schupitza, L.; Hösel, J.; Weimann, A. Remote Treatment Successfully Delivers a Usual Care Weight Loss and Lifestyle Intervention in Adults with Morbid Obesity. Ann. Nutr. Metab. 2022, 78, 328–335. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Khoong, E.C.; Lipsitz, S.R.; Lyles, C.R.; Bates, D.W.; Samal, L. Telehealth Experience Among Patients With Limited English Proficiency. JAMA Netw. Open 2024, 7, e2410691. [Google Scholar] [CrossRef]
- Goldstein, S.P.; Goldstein, C.M.; Bond, D.S.; Raynor, H.A.; Wing, R.R.; Thomas, J.G. Associations between self-monitoring and weight change in behavioral weight loss interventions. Health Psychol. 2019, 38, 1128–1136. [Google Scholar] [CrossRef]
- Ross, L.J.; Wallin, S.; Osland, E.J.; Memon, M.A. Commercial Very Low Energy Meal Replacements for Preoperative Weight Loss in Obese Patients: A Systematic Review. Obes. Surg. 2016, 26, 1343–1351. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; van Mierlo, C.A.; van der Knaap, H.C.; Heo, M.; Frier, H.I. Weight management using a meal replacement strategy: Meta and pooling analysis from six studies. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 537–549. [Google Scholar] [CrossRef]
- Astbury, N.M.; Piernas, C.; Hartmann-Boyce, J.; Lapworth, S.; Aveyard, P.; Jebb, S.A. A systematic review and meta-analysis of the effectiveness of meal replacements for weight loss. Obes. Rev. 2019, 20, 569–587. [Google Scholar] [CrossRef]
- Hirsch, K.R.; Wolfe, R.R.; Ferrando, A.A. Pre- and Post-Surgical Nutrition for Preservation of Muscle Mass, Strength, and Functionality Following Orthopedic Surgery. Nutrients 2021, 13, 1675. [Google Scholar] [CrossRef]
Variable/Outcome | Baseline | 12 Weeks |
---|---|---|
Demographics (e.g., age, sex, education, ethnic background) | √ | |
Past medical history | √ | |
Weight and body mass index (BMI) | √ | √ |
Medications (names, dose, and frequency of all medications currently prescribed) | √ | √ |
Biochemical measures (blood sugar and insulin, lipid profile, liver function test, kidney function test, full blood counts and micronutrients) | √ | √ |
Index joint symptoms (Oxford Knee and Hip Score) [40,41] | √ | √ |
Quality of life using the EuroQol Five-Dimension Visual Analog Scale (EQ-5D VAS) [42] | √ | √ |
Wellbeing using the World Health Organisation Five (WHO-5) Well-being Index [43] | √ | √ |
Psychological distress using the Kessler Psychological Distress Scale (K10) [44] | √ | √ |
Readiness to change lifestyle behaviour using a validated questionnaire based on the Transtheoretical (“stages of change”) questionnaire, which includes readiness to change physical activity (5 items), diet (7 items) and weight (1 item) [45,46] | √ | √ |
International Physical Activity Questionnaire (IPAQ) Short Form 7 days [47] | √ | √ |
Acceptability—adherence (count of meal replacements issued; weight change) | √ | |
Willingness to pay (participants were asked to state their maximum willingness-to-pay for the low-calorie shakes per fortnight) | √ | √ |
Safety—instances of acute kidney injury or nutritional deficiencies | √ |
Characteristics * | Mean (95% CI) or n (%) |
---|---|
Sociodemographic Characteristics | |
Age (in years) | 63.0 (60.2, 65.8) |
Sex (female) | 19 (65.5%) |
Employment (in paid employment) | 7 (24.1%) |
Country of birth (Australia) | 12 (41.4%) |
Comorbidities and Clinical Characteristics | |
Weight (in kg) | 105.8 (98.2, 113.3) |
Body mass index (BMI) (in kg/m2) | 39.4 (36.7, 42.2) |
Type 2 diabetes | 9 (31.0%) |
Hypertension | 16 (55.2%) |
Dyslipidaemia | 11 (37.9%) |
Obstructive sleep apnoea | 7 (24.1%) |
Variable Mean (95% CI) or n (%) | Baseline (n = 29) | 12 Weeks (n = 22) | Paired Difference Mean (95% CI) | p-Value |
---|---|---|---|---|
Weight (in kg) | 104.1 (94.9, 113.3) | 97.8 (88.8, 106.9) | −6.3 (−4.8, −7.7) | <0.001 |
BMI (in kg/m2) | 38.6 (35.8, 41.4) | 36.2 (33.6, 38.9) | −2.4 (−1.7, −3.0) | <0.001 |
Questionnaire-based scores | ||||
Oxford Knee Score a | 16.2 (11.7, 20.7) | 17.9 (12.1, 23.7) | 1.7 (6.5, −3.1) | 0.472 |
Oxford Hip Score b | 13.3 (7.5, 19.2) | 11.2 (4.7, 17.7) | −2.2 (1.9, −6.3) | 0.234 |
EQ-5D VAS | 48.3 (39.9, 56.7) | 53.3 (45.3, 61.6) | 5.0 (14.5, −4.5) | 0.284 |
WHO-5 Well-being Index | 42.8 (32.5, 53.2) | 46.4 (35.9, 56.0) | 3.0 (12.2, −6.1) | 0.493 |
K10 | 22.7 (18.2, 27.2) | 22.1 (17.8, 26.3) | −0.7 (1.8, −3.1) | 0.585 |
Biochemical profile c | ||||
Measures of blood sugar and insulin | ||||
HbA1c (in %) | 6.2 (5.8, 6.6) | 6.0 (5.7, 6.3) | −0.2 (−0.0, −0.4) | 0.020 |
Fasting plasma glucose (in mmol/L) | 6.3 (5.3, 7.4) | 5.9 (5.2, 6.7) | −0.4 (0.3, −1.0) | 0.462 |
Fasting insulin (in mU/L) | 21.1 (16.2, 26.0) | 19.7 (15.0, 24.4) | −1.4 (1.4, −4.2) | 0.494 |
Lipid profile | ||||
Total cholesterol (in mmol/L) | 4.7 (4.1, 5.1) | 4.4 (4.1, 4.9) | −0.2 (0.2, −0.5) | 0.290 |
Triglyceride (in mmol/L) | 1.8 (1.5, 2.1) | 1.7 (1.4, 2.0) | −0.1 (0.2, −0.4) | 0.498 |
HDL (in mmol/L) | 1.4 (1.1, 1.7) | 1.5 (1.1, 1.9) | 0.1 (0.4, −0.2) | 0.472 |
LDL (in mmol/L) | 2.8 (1.9, 3.8) | 2.5 (1.4, 3.6) | −0.3 (−0.1, −0.5) | 0.004 |
Biochemistry and micronutrients | ||||
Creatinine (in μmol/L) | 75.8 (68.0, 83.6) | 70.1 (60.4, 80.0) | −5.59 (3.9, −15.1) | 0.235 |
eGFR (in ml/min/1.73 m2) | 79.1 (73.4, 84.7) | 78.0 (69.1, 86.9) | −1.1 (5.8, −8.0) | 0.364 |
Vitamin D (in nmol/L) | 61.4 (51.6, 71.1) | 74.1 (49.4, 98.7) | 12.7 (35.6, −10.3) | 0.261 |
Adjusted calcium (in mmol/L) | 2.4 (2.4, 2.5) | 2.4 (2.4, 2.5) | 0.0 (0.0, −0.1) | 0.206 |
Magnesium (in mmol/L) | 0.9 (0.8, 0.9) | 0.8 (0.8, 0.9) | −0.1 (0.0, −0.1) | 0.085 |
Phosphate (in mmol/L) | 1.3 (0.9, 1.7) | 1.2 (1.1, 1.2) | −0.2 (0.2, −0.5) | 0.602 |
Iron (in μmol/L) | 15.2 (12.9, 17.5) | 15.9 (10.9, 21.0) | 0.8 (5.2, −3.7) | 0.823 |
Vitamin B12 (in pmol/L) | 275.2 (218.2, 332.1) | 270.7 (230.8, 310.6) | −4.5 (37.0, −46.0) | 0.999 |
Folate (in nmol/L) | 29.8 (24.8, 34.9) | 27.2 (23.1, 31.4) | −2.6 (0.6, −5.8) | 0.107 |
Liver function test | ||||
ALP (in IU/L) | 81.9 (68.0, 95.7) | 83.7 (73.3, 94.1) | 1.8 (10.7, −7.1) | 0.677 |
GGT (in IU/L) | 36.7 (29.1, 44.3) | 34.0 (25.9, 42.1) | −2.7 (2.4, −7.8) | 0.455 |
ALT (in IU/L) | 35.8 (22.3, 49.4) | 31.3 (24.1, 38.5) | −4.5 (11.8, −20.9) | 0.767 |
AST (in IU/L) | 26.7 (20.4, 33.1) | 23.2 (20.2, 26.2) | −3.5 (1.1, −8.3) | 0.177 |
Serum based liver fibrosis score | ||||
FiB-4 Score | 1.2 (0.8, 1.6) | 1.1 (0.8, 1.3) | −0.1 (0.1, −0.3) | 0.758 |
APRI Score | 0.3 (0.2, 0.4) | 0.2 (0.2, 0.3) | −0.1 (0.0, −0.1) | 0.277 |
Variable n (%) | Baseline | 12 Weeks | p-Value |
---|---|---|---|
Readiness to change lifestyle behaviour (n and %) for action and maintenance stage | |||
Dietary change—readiness to change diet | |||
Do drink water and other non-sugary drinks instead of sugary drinks/fruit juice | 18 (85.7%) | 20 (95.2%) | 0.606 |
Do you eat at least four or more servings of vegetables daily | 9 (42.9%) | 14 (66.7%) | 0.215 |
Do you eat at least three different proteins foods every 1–2 days | 17 (80.9%) | 19 (90.5%) | 0.662 |
Do you eat less fat overall? | 13 (61.9%) | 19 (90.5%) | 0.067 |
Have you reduced the amount of food you eat at each sitting | 16 (81.0%) | 20 (95.5%) | 0.183 |
Do you eat more foods with fibre | 15 (71.4%) | 20 (95.2%) | 0.093 |
Do you eat less sugary foods and carbohydrates | 14 (66.7%) | 21 (100.0%) | 0.009 |
Physical activity—readiness to change physical activity | |||
Are you making yourself stronger? | 10 (47.6%) | 19 (90.5%) | 0.006 |
Do you plan more activity in your weekday? | 7 (33.3%) | 11 (52.4%) | 0.350 |
Do you plan more activity on weekends? | 7 (23.8%) | 13 (61.9%) | 0.121 |
Have you increased the number of steps you take each day? | 9 (42.9%) | 11 (52.4%) | 0.758 |
Have you reduced the amount of time you spend sitting? | 7 (33.3%) | 12 (57.1%) | 0.215 |
Weight—readiness to change weight | |||
Are you trying to reach your best weight? | 10 (47.6%) | 20 (95.2%) | 0.001 |
Physical activity IPAQ—Short Form 7 days a | |||
Have you participated in vigorous activity in the past 7 days | 4 (20.0%) | 2 (10.0%) | 0.661 |
Have you participated in moderate activity in the past 7 days | 5 (25.0%) | 7 (35.0%) | 0.731 |
Have you walked more than 10 min at a time in the last 7 days | 17 (85.0%) | 17 (85.0%) | 1.000 |
IPAQ: MET-min per week | 338.3 (1072.5) b | 179.0 (1388.3) b | 0.246 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chimoriya, R.; Naylor, J.; Mitlehner, K.; Adie, S.; Harris, I.; Bell-Higgs, A.; Brosnahan, N.; Piya, M.K. Remote Delivery of Partial Meal Replacement for Weight Loss in People Awaiting Arthroplasty. J. Clin. Med. 2024, 13, 3227. https://doi.org/10.3390/jcm13113227
Chimoriya R, Naylor J, Mitlehner K, Adie S, Harris I, Bell-Higgs A, Brosnahan N, Piya MK. Remote Delivery of Partial Meal Replacement for Weight Loss in People Awaiting Arthroplasty. Journal of Clinical Medicine. 2024; 13(11):3227. https://doi.org/10.3390/jcm13113227
Chicago/Turabian StyleChimoriya, Ritesh, Justine Naylor, Kimberly Mitlehner, Sam Adie, Ian Harris, Anna Bell-Higgs, Naomi Brosnahan, and Milan K. Piya. 2024. "Remote Delivery of Partial Meal Replacement for Weight Loss in People Awaiting Arthroplasty" Journal of Clinical Medicine 13, no. 11: 3227. https://doi.org/10.3390/jcm13113227
APA StyleChimoriya, R., Naylor, J., Mitlehner, K., Adie, S., Harris, I., Bell-Higgs, A., Brosnahan, N., & Piya, M. K. (2024). Remote Delivery of Partial Meal Replacement for Weight Loss in People Awaiting Arthroplasty. Journal of Clinical Medicine, 13(11), 3227. https://doi.org/10.3390/jcm13113227