Three Self-Adhesive Resin Cements and Their Influence on the Marginal Adaptation of Zirconia-Reinforced Lithium Silicate Single Crowns: An In Vitro Scanning Electron Microscope Evaluation
Abstract
:1. Introduction
2. Materials and Methods
- Group 1: G-cem ONE Automix (GCA; GC, Alsip, IL, USA).
- Group 2: TheraCem Automix (BISCO, Inc. Schaumburg, IL, USA).
- Group 3: RelyX U200 Automix (RXU200; 3M ESPE, Seefeld, Germany).
3. Results
4. Discussion
5. Conclusions
- All four groups yielded a marginal gap that is within the clinically accepted values, which are less than 120 μm.
- All three self-adhesive resin cements caused significant increases in the marginal gap compared to the control group.
- The lowest mean marginal gap was obtained at the temp-bond control group (Temp-Bond™ NE™ Unidose; KaVo Kerr, Brea, CA, USA), and the highest mean marginal gap was obtained at the RelyX U200 Automix group (RXU200; 3M ESPE, Seefeld, Germany).
- Regarding the marginal gap, all three self-adhesive resin cements can be used, but the most recommended one for CELTRA® DUO single crown regarding the marginal gap is G-cem ONE Automix (GCA; GC, Alsip, IL, USA).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsirogiannis, P.; Reissmann, D.R.; Heydecke, G. Evaluation of the marginal fit of single-unit, complete-coverage ceramic restorations fabricated after digital and conventional impressions: A systematic review and meta-analysis. J. Prosthet. Dent. 2016, 116, 328–335.e2. [Google Scholar] [CrossRef] [PubMed]
- Conrad, H.J.; Seong, W.J.; Pesun, I.J. Current ceramic materials and systems with clinical recommendations: A systematic review. J. Prosthet. Dent. 2007, 98, 389–404. [Google Scholar] [CrossRef] [PubMed]
- Contrepois, M.; Soenen, A.; Bartala, M.; Laviole, O. Marginal adaptation of ceramic crowns: A systematic review. J. Prosthet. Dent. 2013, 110, 447–454.e10. [Google Scholar] [CrossRef] [PubMed]
- Zarone, F.; Ruggiero, G.; Leone, R.; Breschi, L.; Leuci, S.; Sorrentino, R. Zirconia-reinforced lithium silicate (ZLS) mechanical and biological properties: A literature review. J. Dent. 2021, 109, 103661. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.S.; Souza, C.M.C.; Bergamo, E.T.P.; Bordin, D.; Del Bel Cury, A.A. Misfit and fracture load of implant-supported monolithic crowns in zirconia-reinforced lithium silicate. J. Appl. Oral Sci. 2017, 25, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Ben-Izhack, G.; Shely, A.; Koton, O.; Meirowitz, A.; Levartovsky, S.; Dolev, E. (In-Vitro Comparison between Closed Versus Open CAD/CAM Systems) Comparison between Closed and Open CAD/CAM Systems by Evaluating the Marginal Fit of Zirconia-Reinforced Lithium Silicate Ceramic Crowns. Appl. Sci. 2021, 11, 4534. [Google Scholar] [CrossRef]
- Holmes, J.R.; Bayne, S.C.; Holland, G.A.; Sulik, W.D. Considerations in measurement of marginal fit. J. Prosthet. Dent. 1989, 62, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Yüksel, E.; Zaimoğlu, A. Influence of marginal fit and cement types on microleakage of all-ceramic crown systems. Braz. Oral Res. 2011, 25, 261–266. [Google Scholar]
- Groten, M.; Axmann, D.; Pröbster, L.; Weber, H. Determination of the minimum number of marginal gap measurements required for practical in-vitro testing. J. Prosthet. Dent. 2000, 83, 40–49. [Google Scholar] [CrossRef]
- McLean, J.W.; von Fraunhofer, J.A. The estimation of cement film thickness by an in vivo technique. Br. Dent. J. 1971, 131, 107–111. [Google Scholar] [CrossRef]
- Sultan, S.; Hegazy, M.; Shakal, M.; Magdy, S. Effect of virtual cement gap settings on the marginal fit of cemented resin-ceramic crowns on implant abutments. J. Prosthet. Dent. 2021, 125, e1–e804. [Google Scholar] [CrossRef]
- Ben-Izhack, G.; Shely, A.; Naishlos, S.; Glikman, A.; Frishman, L.; Meirowitz, A.; Dolev, E. The Influence of Three Different Digital Cement Spacers on the Marginal Gap Adaptation of Zirconia-Reinforced Lithium Silicate Crowns Fabricated by CAD-CAM System. Appl. Sci. 2021, 11, 10709. [Google Scholar] [CrossRef]
- Hitz, T.; Stawarczyk, B.; Fischer, J.; Hämmerle, C.H.; Sailer, I. Are self-adhesive resin cements a valid alternative to conventional resin cements? A laboratory study of the long-term bond strength. Dent. Mater. 2012, 28, 1183–1190. [Google Scholar] [CrossRef]
- Heboyan, A.; Vardanyan, A.; Karobari, M.I.; Marya, A.; Avagyan, T.; Tebyaniyan, H.; Mustafa, M.; Rokaya, D.; Avetisyan, A. Dental Luting Cements: An Updated Comprehensive Review. Molecules 2023, 28, 1619. [Google Scholar] [CrossRef]
- Bagheri, R. Film thickness and flow properties of resin-based cements at different temperatures. J. Dent. 2013, 14, 57–63. [Google Scholar]
- Ganapathy, D.; Sathyamoorthy, A.; Ranganathan, H.; Murthykumar, K. Effect of Resin Bonded Luting Agents Influencing Marginal Discrepancy in All Ceramic Complete Veneer Crowns. J. Clin. Diagn. Res. 2016, 10, ZC67–ZC70. [Google Scholar] [CrossRef]
- Begazo, C.C.; de Boer, H.D.; Kleverlaan, C.J.; van Waas, M.A.; Feilzer, A.J. Shear bond strength of different types of luting cements to an aluminum oxide-reinforced glass ceramic core material. Dent. Mater. 2004, 20, 901–907. [Google Scholar] [CrossRef]
- Al-Makramani, B.M.A.; Razak, A.A.A.; Abu-Hassan, M.I.; Al-Sanabani, F.A.; Albakri, F.M. Effect of Luting Cements On the Bond Strength to Turkom-Cera All-Ceramic Material. Open Access Maced. J. Med. Sci. 2018, 6, 548–553. [Google Scholar] [CrossRef]
- Reich, S.M.; Wichmann, M.; Frankenberger, R.; Zajc, D. Effect of surface treatment on the shear bond strength of three resin cements to a machinable feldspatic ceramic. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 74, 740–746. [Google Scholar] [CrossRef]
- Monticelli, F.; Osorio, R.; Mazzitelli, C.; Ferrari, M.; Toledano, M. Limited decalcification/diffusion of self-adhesive cements into dentin. J. Dent. Res. 2008, 87, 974–979. [Google Scholar] [CrossRef]
- Dapieve, K.S.; Pilecco, R.O.; Temp, R.W.; Villetti, M.A.; Pereira, G.K.R.; Valandro, L.F. Adhesion to lithium disilicate glass-ceramics after aging: Resin viscosity and ceramic surface treatment effects. J. Mech. Behav. Biomed. Mater. 2023, 142, 105819. [Google Scholar] [CrossRef]
- Habib, S.R.; Ali, M.; Al Hossan, A.; Majeed-Saidan, A.; Al Qahtani, M. Effect of cementation, cement type and vent holes on fit of zirconia copings. Saudi Dent. J. 2019, 31, 45–51. [Google Scholar] [CrossRef]
- Pilo, R.; Folkman, M.; Arieli, A.; Levartovsky, S. Marginal Fit and Retention Strength of Zirconia Crowns Cemented by Self-adhesive Resin Cements. Oper. Dent. 2018, 43, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Shely, A.; Lugassy, D.; Anufriev, M.; Nissan, J.; Rauchwerger, O.; Ben-Izhack, G. SEM Evaluation of the Marginal Gap of Zirconia-Reinforced Lithium Silicate Full Crowns and the Effect of Post Crystallization: An In Vitro Study. Dent. J. 2024, 12, 61. [Google Scholar] [CrossRef]
- Cho, L.; Choi, J.; Yi, Y.J.; Park, C.J. Effect of finish line variants on marginal accuracy and fracture strength of ceramic optimized polymer/fiber-reinforced composite crowns. J. Prosthet. Dent. 2004, 91, 554–560. [Google Scholar] [CrossRef]
- Ates, S.M.; Yesil Duymus, Z. Influence of Tooth Preparation Design on Fitting Accuracy of CAD-CAM Based Restorations. J. Esthet. Restor. Dent. 2016, 28, 238–246. [Google Scholar] [CrossRef]
- Rizonaki, M.; Jacquet, W.; Bottenberg, P.; Depla, L.; Boone, M.; De Coster, P.J. Evaluation of marginal and internal fit of lithium disilicate CAD-CAM crowns with different finish lines by using a micro-CT technique. J. Prosthet. Dent. 2022, 127, 890–898. [Google Scholar] [CrossRef]
- Subasi, G.; Ozturk, N.; Inan, O.; Bozogullari, N. Evaluation of marginal fit of two all-ceramic copings with two finish lines. Eur. J. Dent. 2012, 6, 163–168. [Google Scholar]
- Lins, L.; Bemfica, V.; Queiroz, C.; Canabarro, A. In vitro evaluation of the internal and marginal misfit of CAD/CAM zirconia copings. J. Prosthet. Dent. 2015, 113, 205–211. [Google Scholar] [CrossRef]
- Krasanaki, M.E.; Pelekanos, S.; Andreiotelli, M.; Koutayas, S.O.; Eliades, G. X-ray microtomographic evaluation of the influence of two preparation types on marginal fit of CAD/CAM alumina copings: A pilot study. Int. J. Prosthodont. 2012, 25, 170–172. [Google Scholar]
- Souza, R.O.; Özcan, M.; Pavanelli, C.A.; Buso, L.; Lombardo, G.H.; Michida, S.M.; Mesquita, A.M.; Bottino, M.A. Marginal and internal discrepancies related to margin design of ceramic crowns fabricated by a CAD/CAM system. J. Prosthodont. 2012, 21, 94–100. [Google Scholar] [CrossRef]
- Falahchai, M.; Babaee Hemmati, Y.; Neshandar Asli, H.; Emadi, I. Marginal gap of monolithic zirconia endocrowns fabricated by using digital scanning and conventional impressions. J. Prosthet. Dent. 2021, 125, e1–e325. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Azim, T.; Rogers, K.; Elathamna, E.; Zandinejad, A.; Metz, M.; Morton, D. Comparison of the marginal fit of lithium disilicate crowns fabricated with CAD/CAM technology by using conventional impressions and two intraoral digital scanners. J. Prosthet. Dent. 2015, 114, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Ahrberg, D.; Lauer, H.C.; Ahrberg, M.; Weigl, P. Evaluation of fit and efficiency of CAD/CAM fabricated all-ceramic restorations based on direct and indirect digitalization: A double-blinded, randomized clinical trial. Clin. Oral Investig. 2016, 20, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Soliman, S.; Casel, C.; Krug, R.; Krastl, G.; Hahn, B. Influence of filler geometry and viscosity of composite luting materials on marginal adhesive gap width and occlusal surface height of all-ceramic partial crowns. Dent. Mater. 2022, 38, 601–612. [Google Scholar] [CrossRef]
- Borges, R.; Graeff, C.F.O.; Marchi, J.; D’Alpino, P.H.P. Bonding Reactions of Dental Self-Adhesive Cements with Synthetic Hydroxyapatite as a Function of the Polymerization Protocol. Sci. World J. 2021, 2021, 4572345. [Google Scholar] [CrossRef]
- Crowley, C.M.; Doyle, J.; Towler, M.R.; Hill, R.G.; Hampshire, S. The influence of capsule geometry and cement formulation on the apparent viscosity of dental cements. J. Dent. 2006, 34, 566–573. [Google Scholar] [CrossRef]
- Dapieve, K.S.; Pereira, G.K.R.; Venturini, A.B.; Daudt, N.; Valcanaia, A.; Bottino, M.C.; Valandro, L.F. Do resin cement viscosity and ceramic surface etching influence the fatigue performance of bonded lithium disilicate glass-ceramic crowns? Dent. Mater. 2022, 38, e59–e67. [Google Scholar] [CrossRef]
- Borkowski, K.; Kotousov, A.; Kahler, B. Effect of material properties of composite restoration on the strength of the restoration-dentine interface due to polymerization shrinkage, thermal and occlusal loading. Med. Eng. Phys. 2007, 29, 671–676. [Google Scholar] [CrossRef]
- Francesco, P.; Gabriele, C.; Fiorillo, L.; Giuseppe, M.; Antonella, S.; Giancarlo, B.; Mirta, P.; Mendes Tribst, J.P.; Lo Giudice, R. The Use of Bulk Fill Resin-Based Composite in the Sealing of Cavity with Margins in Radicular Cementum. Eur. J. Dent. 2022, 16, 1–13. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Stansbury, J.W.; Burke, F.J. Self-adhesive resin cements—Chemistry, properties and clinical considerations. J. Oral Rehabil. 2011, 38, 295–314. [Google Scholar] [CrossRef] [PubMed]
Distal Surface | Mesial Surface | Palatal Surface | Buccal Surface | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean Marginal Gap (MMG) | Median | P25 P50 P75 | Min Max | Median | P25 P50 P75 | Min Max | Median | P25 P50 P75 | Min Max | Median | P25 P50 P75 | Min Max |
Control Temp-Bond (μm) | 25.26 | 19.26 25.26 29.40 | 14.29 35.87 | 25.86 | 20.41 25.86 28.72 | 15.61 44.55 | 25.47 | 22.19 25.47 28.72 | 17.64 33.15 | 21.93 | 17.47 21.93 27.14 | 12.16 43.00 |
G-cem ONE (μm) | 46.95 | 41.98 46.95 52.93 | 29.64 71.07 | 50.85 | 47.28 50.85 60.00 | 27.50 64.68 | 49.20 | 45.78 49.20 55.53 | 35.48 84.44 | 49.20 | 37.33 49.20 60.01 | 31.02 79.82 |
TheraCem (μm) | 65.87 | 54.84 65.87 70.56 | 47.30 90.57 | 70.44 | 63.35 70.44 78.83 | 42.52 84.41 | 68.94 | 57.74 68.94 72.23 | 45.69 88.34 | 59.24 | 55.53 59.24 72.54 | 43.55 92.56 |
RelyX U200 (μm) | 71.57 | 64.11 71.57 80.73 | 42.96 100.94 | 77.79 | 63.32 77.79 85.88 | 46.25 90.02 | 70.48 | 67.49 70.48 76.53 | 38.69 84.18 | 70.34 | 58.32 70.34 75.23 | 36.09 87.18 |
Total Mean Marginal Gap (TMMG) | Median | P25 P50 P75 | Min Max |
---|---|---|---|
Control Temp-Bond (μm) | 23.60 | 22.57 23.60 26.12 | 16.86 35.29 |
G-cem ONE (μm) | 50.66 | 43.99 50.66 56.89 | 37.67 58.36 |
TheraCem (μm) | 66.87 | 59.09 66.87 69.54 | 54.49 84.47 |
RelyX U200 (μm) | 73.83 | 63.55 73.83 77.09 | 42.76 80.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shely, A.; Nissan, J.; Lugassy, D.; Rosner, O.; Zenziper, E.; Egbaria, T.; Ben-Izhack, G. Three Self-Adhesive Resin Cements and Their Influence on the Marginal Adaptation of Zirconia-Reinforced Lithium Silicate Single Crowns: An In Vitro Scanning Electron Microscope Evaluation. J. Clin. Med. 2024, 13, 3330. https://doi.org/10.3390/jcm13113330
Shely A, Nissan J, Lugassy D, Rosner O, Zenziper E, Egbaria T, Ben-Izhack G. Three Self-Adhesive Resin Cements and Their Influence on the Marginal Adaptation of Zirconia-Reinforced Lithium Silicate Single Crowns: An In Vitro Scanning Electron Microscope Evaluation. Journal of Clinical Medicine. 2024; 13(11):3330. https://doi.org/10.3390/jcm13113330
Chicago/Turabian StyleShely, Asaf, Joseph Nissan, Diva Lugassy, Ofir Rosner, Eran Zenziper, Tharaa Egbaria, and Gil Ben-Izhack. 2024. "Three Self-Adhesive Resin Cements and Their Influence on the Marginal Adaptation of Zirconia-Reinforced Lithium Silicate Single Crowns: An In Vitro Scanning Electron Microscope Evaluation" Journal of Clinical Medicine 13, no. 11: 3330. https://doi.org/10.3390/jcm13113330
APA StyleShely, A., Nissan, J., Lugassy, D., Rosner, O., Zenziper, E., Egbaria, T., & Ben-Izhack, G. (2024). Three Self-Adhesive Resin Cements and Their Influence on the Marginal Adaptation of Zirconia-Reinforced Lithium Silicate Single Crowns: An In Vitro Scanning Electron Microscope Evaluation. Journal of Clinical Medicine, 13(11), 3330. https://doi.org/10.3390/jcm13113330