Minimally Invasive Direct Coronary Artery Bypass Grafting: Sixteen Years of Single-Center Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion Criteria—Population
2.3. Operative Technique
2.4. Data Acquisition
2.5. Definitions and Outcomes
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Intraoperative Characteristics
3.3. Overall Survival and Postoperative Outcomes
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jha, A.K.; Fisher, E.S.; Li, Z.; Orav, E.J.; Epstein, A.M. Racial trends in the use of major procedures among the elderly. N. Engl. J. Med. 2005, 353, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Head, S.J.; Milojevic, M.; Taggart, D.P.; Puskas, J.D. Current Practice of State-of-the-Art Surgical Coronary Revascularization. Circulation 2017, 136, 1331–1345. [Google Scholar] [CrossRef] [PubMed]
- Zubarevich, A.; Beltsios, E.T.; Arjomandi Rad, A.; Amanov, L.; Szczechowicz, M.; Ruhparwar, A.; Weymann, A. Sutureless Aortic Valve Prosthesis in Redo Procedures: Single-Center Experience. Medicina 2023, 59, 1126. [Google Scholar] [CrossRef] [PubMed]
- Harky, A.; Chaplin, G.; Chan, J.S.K.; Eriksen, P.; MacCarthy-Ofosu, B.; Theologou, T.; Muir, A.D. The Future of Open Heart Surgery in the Era of Robotic and Minimal Surgical Interventions. Heart Lung Circ. 2020, 29, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Raja, S.G.; Garg, S.; Rochon, M.; Daley, S.; Robertis, F.D.; Bahrami, T. Short-term clinical outcomes and long-term survival of minimally invasive direct coronary artery bypass grafting. Ann. Cardiothorac. Surg. 2018, 7, 621. [Google Scholar] [CrossRef] [PubMed]
- Van Praet, K.M.; Kofler, M.; Shafti, T.Z.N.; El Al, A.A.; van Kampen, A.; Amabile, A.; Torregrossa, G.; Kempfert, J.; Falk, V.; Balkhy, H.H.; et al. Minimally Invasive Coronary Revascularisation Surgery: A Focused Review of the Available Literature. Interv. Cardiol. 2021, 16, e08. [Google Scholar] [CrossRef] [PubMed]
- Manuel, L.; Fong, L.S.; Betts, K.; Bassin, L.; Wolfenden, H. LIMA to LAD grafting returns patient survival to age-matched population: 20-year outcomes of MIDCAB surgery. Interdiscip. Cardiovasc. Thorac. Surg. 2022, 35, ivac243. [Google Scholar] [CrossRef] [PubMed]
- Reuthebuch, O.; Stein, A.; Koechlin, L.; Gahl, B.; Berdajs, D.; Santer, D.; Eckstein, F. Five-Year Survival of Patients Treated with Minimally Invasive Direct Coronary Artery Bypass (MIDCAB) Compared with the General Swiss Population. Thorac. Cardiovasc. Surg. 2023. Epub ahead of print. [Google Scholar] [CrossRef]
- Seo, D.H.; Kim, J.S.; Park, K.H.; Lim, C.; Chung, S.R.; Kim, D.J. Mid-Term Results of Minimally Invasive Direct Coronary Artery Bypass Grafting. Korean J. Thorac. Cardiovasc. Surg. 2018, 51, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Reser, D.; van Hemelrijck, M.; Pavicevic, J.; Tolboom, H.; Holubec, T.; Falk, V.; Jacobs, S. Mid-Term Outcomes of Minimally Invasive Direct Coronary Artery Bypass Grafting. Thorac. Cardiovasc. Surg. 2015, 63, 313–318. [Google Scholar] [CrossRef]
- Calafiore, A.M.; Giammarco, G.D.; Teodori, G.; Bosco, G.; D’Annunzio, E.; Barsotti, A.; Maddestra, N.; Paloscia, L.; Vitolla, G.; Sciarra, A.; et al. Left anterior descending coronary artery grafting via left anterior small thoracotomy without cardiopulmonary bypass. Ann. Thorac. Surg. 1996, 61, 1658–1663; discussion 1664–1665. [Google Scholar] [CrossRef]
- Holzhey, D.M.; Cornely, J.P.; Rastan, A.J.; Davierwala, P.; Mohr, F.W. Review of a 13-year single-center experience with minimally invasive direct coronary artery bypass as the primary surgical treatment of coronary artery disease. Heart Surg. Forum. 2012, 15, E61–E68. [Google Scholar] [CrossRef] [PubMed]
- Davierwala, P.M.; Verevkin, A.; Bergien, L.; von Aspern, K.; Deo, S.V.; Misfeld, M.; Holzhey, D.; Borger, M.A. Twenty-year outcomes of minimally invasive direct coronary artery bypass surgery: The Leipzig experience. J. Thorac. Cardiovasc. Surg. 2023, 165, 115–127.e4. [Google Scholar] [CrossRef] [PubMed]
- Repossini, A.; Di Bacco, L.; Nicoli, F.; Passaretti, B.; Stara, A.; Jonida, B.; Muneretto, C. Minimally invasive coronary artery bypass: Twenty-year experience. J. Thorac. Cardiovasc. Surg. 2019, 158, 127–138.e1. [Google Scholar] [CrossRef] [PubMed]
- Hammal, F.; Nagase, F.; Menon, D.; Ali, I.; Nagendran, J.; Stafinski, T. Robot-assisted coronary artery bypass surgery: A systematic review and meta-analysis of comparative studies. Can. J. Surg. 2020, 63, E491–E508. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Bao, L.; Yang, W.; Chen, Y.; Gao, Q. Minimally invasive direct coronary artery bypass grafting with an improved rib spreader and a new-shaped cardiac stabilizer: Results of 200 consecutive cases in a single institution. BMC Cardiovasc. Disord. 2016, 16, 42. [Google Scholar] [CrossRef] [PubMed]
- Zaouter, C.; Imbault, J.; Labrousse, L.; Abdelmoumen, Y.; Coiffic, A.; Colonna, G.; Jansens, J.L.; Ouattara, A. Association of Robotic Totally Endoscopic Coronary Artery Bypass Graft Surgery Associated with a Preliminary Cardiac Enhanced Recovery After Surgery Program: A Retrospective Analysis. J. Cardiothorac. Vasc. Anesth. 2015, 29, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, V.A.; Patel, N.U. Current status of MIDCAB procedure. Curr. Opin. Cardiol. 2001, 16, 268–270. [Google Scholar] [CrossRef] [PubMed]
- Al-Mulla, A.W.; Sarhan, H.H.T.; Abdalghafoor, T.; Al-Balushi, S.; El Kahlout, M.I.; Tbishat, L.; Alwaheidi, D.F.; Maksoud, M.; Omar, A.S.; Ashraf, S.; et al. Robotic Coronary Revascularization is Feasible and Safe: 10-year Single-Center Experience. Heart Views 2022, 23, 195–200. [Google Scholar] [PubMed]
- Hueb, W.; Lopes, N.; Gersh, B.J.; Soares, P.R.; Ribeiro, E.E.; Pereira, A.C.; Favarato, D.; Rocha, A.S.; Hueb, A.C.; Ramires, J.A. Ten-year follow-up survival of the Medicine, Angioplasty, or Surgery Study (MASS II): A randomized controlled clinical trial of 3 therapeutic strategies for multivessel coronary artery disease. Circulation 2010, 122, 949–957. [Google Scholar] [CrossRef]
- Blazek, S.; Rossbach, C.; Borger, M.A.; Fuernau, G.; Desch, S.; Eitel, I.; Stiermaier, T.; Lurz, P.; Holzhey, D.; Schuler, G.; et al. Comparison of sirolimus-eluting stenting with minimally invasive bypass surgery for stenosis of the left anterior descending coronary artery: 7-year follow-up of a randomized trial. JACC Cardiovasc. Interv. 2015, 8 Pt A, 30–38. [Google Scholar] [CrossRef]
- Blazek, S.; Holzhey, D.; Jungert, C.; Borger, M.A.; Fuernau, G.; Desch, S.; Eitel, I.; de Waha, S.; Lurz, P.; Schuler, G.; et al. Comparison of bare-metal stenting with minimally invasive bypass surgery for stenosis of the left anterior descending coronary artery: 10-year follow-up of a randomized trial. JACC Cardiovasc. Interv. 2013, 6, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Jaffery, Z.; Kowalski, M.; Weaver, W.D.; Khanal, S. A meta-analysis of randomized control trials comparing minimally invasive direct coronary bypass grafting versus percutaneous coronary intervention for stenosis of the proximal left anterior descending artery. Eur. J. Cardiothorac. Surg. 2007, 31, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Merkle, J.; Zeriouh, M.; Sabashnikov, A.; Azizov, F.; Hohmann, C.; Weber, C.; Eghbalzadeh, K.; Said, Y.; Wahlers, T.; Michels, G. Minimally invasive direct coronary artery bypass graft surgery versus percutaneous coronary intervention of the LAD: Costs and long-term outcome. Perfusion 2019, 34, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Gianoli, M.; de Jong, A.R.; Jacob, K.A.; Namba, H.F.; van der Kaaij, N.P.; van der Harst, P.; Suyker, W.J.L. Minimally invasive surgery or stenting for left anterior descending artery disease—Meta-analysis. Int. J. Cardiol. Heart Vasc. 2022, 40, 101046. [Google Scholar] [CrossRef] [PubMed]
- Raja, S.G.; Uzzaman, M.; Garg, S.; Santhirakumaran, G.; Lee, M.; Soni, M.K.; Khan, H. Comparison of minimally invasive direct coronary artery bypass and drug-eluting stents for management of isolated left anterior descending artery disease: A systematic review and meta-analysis of 7710 patients. Ann. Cardiothorac. Surg. 2018, 7, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Aziz, O.; Rao, C.; Panesar, S.S.; Jones, C.; Morris, S.; Darzi, A.; Athanasiou, T. Meta-analysis of minimally invasive internal thoracic artery bypass versus percutaneous revascularisation for isolated lesions of the left anterior descending artery. BMJ 2007, 334, 617. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, Y.; Bao, W.; Qiu, S. MIDCAB versus off-pump CABG: Comparative study. Hellenic. J. Cardiol. 2020, 61, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Lapierre, H.; Chan, V.; Sohmer, B.; Mesana, T.G.; Ruel, M. Minimally invasive coronary artery bypass grafting via a small thoracotomy versus off-pump: A case-matched study. Eur. J. Cardiothorac. Surg. 2011, 40, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Ruel, M.; Une, D.; Bonatti, J.; McGinn, J.T. Minimally invasive coronary artery bypass grafting: Is it time for the robot? Curr. Opin. Cardiol. 2013, 28, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Indraratna, P.; Doyle, M.; Tian, D.H.; Liou, K.; Munkholm-Larsen, S.; Uys, C.; Virk, S. A systematic review on robotic coronary artery bypass graft surgery. Ann. Cardiothorac. Surg. 2016, 5, 530–543. [Google Scholar] [CrossRef] [PubMed]
- Okawa, Y.; Baba, H.; Hashimoto, M.; Tanaka, T.; Toyama, M.; Matsumoto, K.; Azuma, K. Comparison of standard coronary artery bypass grafting and minimary invasive direct coronary artery bypass grafting. Early and mid-term result. Jpn J. Thorac. Cardiovasc. Surg. 2000, 48, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Fatehi Hassanabad, A.; Kang, J.; Maitland, A.; Adams, C.; Kent, W.D.T. Review of Contemporary Techniques for Minimally Invasive Coronary Revascularization. Innovations 2021, 16, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Holzhey, D.M.; Jacobs, S.; Mochalski, M.; Walther, T.; Thiele, H.; Mohr, F.W.; Falk, V. Seven-year follow-up after minimally invasive direct coronary artery bypass: Experience with more than 1300 patients. Ann. Thorac. Surg. 2007, 83, 108–114. [Google Scholar] [CrossRef] [PubMed]
Parameter | n (%) |
---|---|
age | 63.3 ± 10.9 |
female gender | 95 (30.6%) |
CAD1 | 197 (63.5%) |
CAD2 | 71 (22.9%) |
CAD3 | 42 (13.5%) |
acute STEMI | 2 (0.6%) |
acute NSTEMI | 15 (4.8%) |
previous PCI | 73 (23.5%) |
active smoker | 93 (30%) |
IDDM | 9 (2.9%) |
NIDDM | 48 (15.5%) |
hyperlipoproteinemia | 160 (51.6%) |
arterial hypertension | 280 (90.3%) |
kidney function impairment | 25 (8.1%) |
terminal KI with dialysis | 3 (1%) |
LVEF, % | 57.1 ± 6.5 |
EuroSCORE II, % | 0.9 (0.7–1.2) |
Parameter | n (%) |
---|---|
urgency | |
elective | 236 (76.1%) |
urgency | 61 (19.7%) |
emergent | 13 (4.2%) |
MIDCAB (LIMA-LAD) | 310 (100%) |
operating time, min | 129.7 ± 35.3 |
conversion to sternotomy | 3 (1%) |
conversion to CPB | 3 (1%) |
blood transfusion, Units | 0.0 (0.0–2.0) |
blood transfusion | 87(28.0%) |
Parameter | n (%) |
---|---|
in-hospital stay, days | 8.7 ± 5.5 |
ICU stay, days | 1.0 (0–1.0) |
new onset AF | 7 (2.3%) |
max CK | 577.5 ± 430.6 |
max CK MB | 35.5 ± 20.7 |
max Troponin | 28.0 (21.7–37.3) |
perioperative myocardial infarction | 2 (0.64%) |
stroke | 0 |
new onset dialysis | 0 |
postoperative angiography | 2 (6.4%) |
postoperative LAD intervention, graft occlusion | 1 (0.3%) |
re-exploration for bleeding | 4 (1.3%) |
blood transfusion in the ICU, Units | 0.0 (0–4.0) |
Parameter | n (%) |
---|---|
Follow-up time, years | 16.3 ± 6.3 |
in-hospital mortality | 2 (0.64%) |
6-months mortality | 3 (0.97%) |
1-year mortality | 3 (0.97%) |
5-year mortality | 1.3% |
10-year mortality | 5.7% |
Death at follow-up | 31 (10%) |
cardiac cause of death | 6 (1.9%) |
neurological cause of death | 7 (2.3%) |
oncological cause of death | 8 (2.6%) |
other cause of death | 10 (3.2%) |
coronary angiography | 63 (20.3%) |
bypass closure | 5 (1.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weymann, A.; Amanov, L.; Beltsios, E.; Arjomandi Rad, A.; Szczechowicz, M.; Merzah, A.S.; Ali-Hasan-Al-Saegh, S.; Schmack, B.; Ismail, I.; Popov, A.-F.; et al. Minimally Invasive Direct Coronary Artery Bypass Grafting: Sixteen Years of Single-Center Experience. J. Clin. Med. 2024, 13, 3338. https://doi.org/10.3390/jcm13113338
Weymann A, Amanov L, Beltsios E, Arjomandi Rad A, Szczechowicz M, Merzah AS, Ali-Hasan-Al-Saegh S, Schmack B, Ismail I, Popov A-F, et al. Minimally Invasive Direct Coronary Artery Bypass Grafting: Sixteen Years of Single-Center Experience. Journal of Clinical Medicine. 2024; 13(11):3338. https://doi.org/10.3390/jcm13113338
Chicago/Turabian StyleWeymann, Alexander, Lukman Amanov, Eleftherios Beltsios, Arian Arjomandi Rad, Marcin Szczechowicz, Ali Saad Merzah, Sadeq Ali-Hasan-Al-Saegh, Bastian Schmack, Issam Ismail, Aron-Frederik Popov, and et al. 2024. "Minimally Invasive Direct Coronary Artery Bypass Grafting: Sixteen Years of Single-Center Experience" Journal of Clinical Medicine 13, no. 11: 3338. https://doi.org/10.3390/jcm13113338
APA StyleWeymann, A., Amanov, L., Beltsios, E., Arjomandi Rad, A., Szczechowicz, M., Merzah, A. S., Ali-Hasan-Al-Saegh, S., Schmack, B., Ismail, I., Popov, A. -F., Ruhparwar, A., & Zubarevich, A. (2024). Minimally Invasive Direct Coronary Artery Bypass Grafting: Sixteen Years of Single-Center Experience. Journal of Clinical Medicine, 13(11), 3338. https://doi.org/10.3390/jcm13113338