Sex-Differences in Response to Treatment with Liraglutide 3.0 mg
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
- inclusion criteria: age > 18 years, presence of obesity (body mass index BMI ≥ 30 kg/m2), absence of T2D according to ADA criteria [10], and other metabolic comorbidities and treatments;
- exclusion criteria: previous anti-obesity treatment (GLP1-RAs or others) and/or bariatric surgery, pregnancy.
2.2. Data Collection and Definition
2.3. Statistical Analysis
3. Results
4. Discussion
- Both sexes showed significant reductions in WL and BMI after 3 and 6 months of liraglutide treatment, with significantly greater reductions in both weight, and BMI in men. In addition, the percentage of patients achieving WL > 5% at 3 months and WL > 10% at 6 months was significantly higher in men.
- 2.
- The analysis of metabolic parameters showed a significant reduction in total and LDL cholesterol, and FIB-4 in men compared to women. For HDL cholesterol, no significant differences were observed between men and women at baseline. This may be in contrast to the typically higher levels observed in women. A possible explanation could be that our group of women was in the peri-menopausal period, in which higher abdominal obesity may explain why lower HDL levels were found [31,32].
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.-Y.; Wang, Q.-W.; Yang, X.-Y.; Yang, W.; Li, D.-R.; Jin, J.-Y.; Zhang, H.-C.; Zhang, X.-F. GLP-1 receptor agonists for the treatment of obesity: Role as a promising approach. Front. Endocrinol. 2023, 14, 1085799. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Willet, W.C.; Hu, F.B. Nearly a decade on—Trends, risk factors and policy implications in global obesity. Nat. Rev. Endocrinol. 2020, 16, 615–616. [Google Scholar] [CrossRef] [PubMed]
- Boutari, C.; Mantzoros, C.S. A 2022 update on the epidemiology of obesity and a call to action: As its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism 2022, 133, 155217. [Google Scholar] [CrossRef] [PubMed]
- Italian Central Statistics Institute (Istituto Nazionale di Statistica). BES 2021: Equitable and Sustainable Well-Being in Italy. Available online: https://www.istat.it/it/files/2021/10/BES-Report-2020.pdf (accessed on 1 May 2024).
- Cooper, A.J.; Gupta, S.R.; Moustafa, A.F.; Chao, A.M. Sex/Gender Differences in Obesity Prevalence, Comorbidities, and Treatment. Curr. Obes. Rep. 2021, 10, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Verde, L.; Vetrani, C.; Barrea, L.; Savastano, S.; Colao, A. Obesity: A gender-view. J. Endocrinol. Investig. 2024, 47, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Cataldi, M.; Muscogiuri, G.; Savastano, S.; Barrea, L.; Guida, B.; Taglialatela, M.; Colao, A. Gender-related issues in the pharmacology of new anti-obesity drugs. Obes. Rev. 2019, 20, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Jensterle, M.; Rizzo, M.; Haluzík, M.; Janež, A. Efficacy of GLP-1 RA Approved for Weight Management in Patients with or Without Diabetes: A Narrative Review. Adv. Ther. 2022, 39, 2452–2467. [Google Scholar] [CrossRef] [PubMed]
- Santini, S.; Vionnet, N.; Pasquier, J.; Gonzalez-Rodriguez, E.; Fraga, M.; Pitteloud, N.; Favre, L. Marked weight loss on liraglutide 3.0 mg: Real-life experience of a Swiss cohort with obesity. Obesity 2022, 31, 74–82. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Gaglia, J.L.; Hilliard, M.E.; Isaacs, D.; et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46 (Suppl. S1), S19–S40. [Google Scholar] [CrossRef]
- European Association for Study of Liver; Asociacion Latinoamericana para el Estudio del Higado. EASL-ALEH Clinical Practice Guidelines: Non-invasive tests for evaluation of liver disease severity and prognosis. J. Hepatol. 2015, 63, 237–264. [Google Scholar] [CrossRef]
- Valenta, S.T.; Stecchi, M.; Perazza, F.; Nuccitelli, C.; Villanova, N.; Pironi, L.; Atti, A.R.; Petroni, M.L. Liraglutide 3.0 mg and mental health: Can psychiatric symptoms be associated to adherence to therapy? Insights from a clinical audit. Eat. Weight. Disord. 2023, 28, 99. [Google Scholar] [CrossRef] [PubMed]
- Kalra, S.; Kapoor, N.; Arora, S. Gender Disparities in People Living with Obesity—An Unchartered Territory. J. Mid-Life Health 2021, 12, 103–107. [Google Scholar] [CrossRef]
- World Obesity Federation. World Obesity Atlas 2022; World Obesity Federation: London, UK, 2002; Volume 4, pp. 1–289. Available online: https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2022 (accessed on 15 April 2024).
- Jaacks, L.M.; Vandevijvere, S.; Pan, A.; McGowan, C.J.; Wallace, C.; Imamura, F.; Mozaffarian, D.; Swinburn, B.; Ezzati, M. The obesity transition: Stages of the global epidemic. Lancet Diabetes Endocrinol. 2019, 7, 231–240. [Google Scholar] [CrossRef]
- Tchoukhine, E.; Takala, P.; Hakko, H.; Raidma, M.; Putkonen, H.; Räsänen, P.; Terevnikov, V.; Stenberg, J.-H.; Eronen, M.; Joffe, G. Orlistat in clozapine- or olanzapine-treated patients with overweight or obesity: A 16-week open-label extension phase and both phases of a randomized controlled trial. J. Clin. Psychiatry 2011, 72, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Robertson, C.; Avenell, A.; Boachie, C.; Stewart, F.; Archibald, D.; Douglas, F.; Hoddinott, P.; van Teijlingen, E.; Boyers, D. Should weight loss and maintenance programmes be designed differently for men? A systematic review of long-term randomised controlled trials presenting data for men and women: The ROMEO project. Obes. Res. Clin. Pract. 2016, 10, 70–84. [Google Scholar] [CrossRef]
- Stewart, J.J.; Berkel, H.J.; Parish, R.C.; Simar, M.R.; Syed, A.; Bocchini, J.A.; Wilson, J.T.; Manno, J.E. Single-Dose Pharmacokinetics of Bupropion in Adolescents: Effects of Smoking Status and Gender. J. Clin. Pharmacol. 2001, 41, 770–778. [Google Scholar] [CrossRef]
- Findlay, J.W.A.; Fleet, J.V.W.; Smith, P.G.; Butz, R.F.; Hinton, M.L.; Blum, M.R.; Schroeder, D.H. Pharmacokinetics of bupropion, a novel antidepressant agent, following oral administration to healthy subjects. Eur. J. Clin. Pharmacol. 1981, 21, 127–135. [Google Scholar] [CrossRef]
- Laib, A.K.M.; Brünen, S.; Pfeifer, P.; Vincent, P.M.; Hiemke, C. Serum concentrations of hydroxybupropion for dose optimization of depressed patients treated with bupropion. Ther. Drug Monit. 2014, 36, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Rentzeperi, E.; Pegiou, S.; Koufakis, T.; Grammatiki, M.; Kotsa, K. Sex Differences in Response to Treatment with Glucagon-like Peptide 1 Receptor Agonists: Opportunities for a Tailored Approach to Diabetes and Obesity Care. J. Pers. Med. 2022, 12, 454. [Google Scholar] [CrossRef]
- Nuffer, W.A.; Trujillo, J.M. Liraglutide: A New Option for the Treatment of Obesity. Pharmacotherapy 2015, 35, 926–934. [Google Scholar] [CrossRef]
- Wharton, S.; Liu, A.; Pakseresht, A.; Nørtoft, E.; Haase, C.L.; Mancini, J.; Power, G.S.; Vanderlelie, S.; Christensen, R.A.G. Real-World Clinical Effectiveness of Liraglutide 3.0 mg for Weight Management in Canada. Obesity 2019, 27, 917–924. [Google Scholar] [CrossRef]
- Sbraccia, P.; Busetto, L.; Santini, F.; Mancuso, M.; Nicoziani, P.; Nicolucci, A. Misperceptions and barriers to obesity management: Italian data from the ACTION-IO study. Eat. Weight Disord. 2021, 26, 817–828. [Google Scholar] [CrossRef]
- Pagoto, S.L.; Schneider, K.L.; Oleski, J.L.; Luciani, J.M.; Bodenlos, J.S.; Whited, M.C. Male inclusion in randomized controlled trials of lifestyle weight loss interventions. Obesity 2012, 20, 1234–1239. [Google Scholar] [CrossRef] [PubMed]
- Buysschaert, M.; Preumont, V.; Oriot, P.; Paris, I.; Ponchon, M.; Scarnière, D.; Selvais, P. One-year metabolic outcomes in patients with type 2 diabetes treated with exenatide in routine practice. Diabetes Metab. 2010, 36, 381–388. [Google Scholar] [CrossRef]
- Quan, H.; Zhang, H.; Wei, W.; Fang, T. Gender-related different effects of a combined therapy of Exenatide and Metformin on overweight or obesity patients with type 2 diabetes mellitus. J. Diabetes Its Complicat. 2016, 30, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.; Chiefari, E.; Caroleo, P.; Arcidiacono, B.; Corigliano, D.M.; Giuliano, S.; Brunetti, F.S.; Tanyolaç, S.; Foti, D.P.; Puccio, L.; et al. Long-Term Effectiveness of Liraglutide for Weight Management and Glycemic Control in Type 2 Diabetes. Int. J. Environ. Res. Public Health 2020, 17, 207. [Google Scholar] [CrossRef]
- Overgaard, R.V.; Petri, K.C.; Jacobsen, L.V.; Jensen, C.B. Liraglutide 3.0 mg for Weight Management: A Population Pharmacokinetic Analysis. Clin. Pharmacokinet. 2016, 55, 1413–1422. [Google Scholar] [CrossRef] [PubMed]
- Kodoth, V.; Scaccia, S.; Aggarwal, B. Adverse Changes in Body Composition During the Menopausal Transition and Relation to Cardiovascular Risk: A Contemporary Review. Women’s Health Rep. 2022, 3, 573–581. [Google Scholar] [CrossRef]
- Fernandez, M.L.; Murillo, A.G. Postmenopausal Women Have Higher HDL and Decreased Incidence of Low HDL than Premenopausal Women with Metabolic Syndrome. Healthcare 2016, 4, 20. [Google Scholar] [CrossRef]
- Ko, S.-H.; Kim, H.-S. Menopause-Associated Lipid Metabolic Disorders and Foods Beneficial for Postmenopausal Women. Nutrients 2020, 12, 202. [Google Scholar] [CrossRef]
- Durden, E.; Lenhart, G.; Lopez-Gonzalez, L.; Hammer, M.; Langer, J. Predictors of glycemic control and diabetes-related costs among type 2 diabetes patients initiating therapy with liraglutide in the United States. J. Med. Econ. 2015, 19, 403–413. [Google Scholar] [CrossRef]
- Pencek, R.; Blickensderfer, A.; Li, Y.; Brunell, S.C.; Anderson, P.W. Exenatide twice daily: Analysis of effectiveness and safety data stratified by age, sex, race, duration of diabetes, and body mass index. Postgrad. Med. 2012, 124, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Ryczkowska, K.; Adach, W.; Janikowski, K.; Banach, M.; Bielecka-Dabrowa, A. Menopause and women’s cardiovascular health: Is it really an obvious relationship? Arch. Med. Sci. 2023, 19, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Sun, J.; Huang, N.; Ma, Y.; Han, F.; Liu, Y.; Hou, N.; Sun, X. Liraglutide improves obesity-induced renal injury by alleviating uncoupling of the glomerular VEGF–NO axis in obese mice. Clin. Exp. Pharmacol. Physiol. 2020, 47, 1978–1984. [Google Scholar] [CrossRef]
- Lv, X.; Dong, Y.; Hu, L.; Lu, F.; Zhou, C.; Qin, S. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) for the management of nonalcoholic fatty liver disease (NAFLD): A systematic review. Endocrinol. Diabetes Metab. 2020, 3, e00163. [Google Scholar] [CrossRef] [PubMed]
- Yen, F.-S.; Hou, M.-C.; Wei, J.C.-C.; Shih, Y.-H.; Hwu, C.-M.; Hsu, C.-C. Effects of glucagon-like peptide-1 receptor agonists on liver-related and cardiovascular mortality in patients with type 2 diabetes. BMC Med. 2024, 22, 8. [Google Scholar] [CrossRef]
- Newsome, P.N.; Cramb, R.; Davison, S.M.; Dillon, J.F.; Foulerton, M.; Godfrey, E.M.; Hall, R.; Harrower, U.; Hudson, M.; Langford, A.; et al. Guidelines on the management of abnormal liver blood tests. Gut 2018, 67, 6–19. [Google Scholar] [CrossRef]
- James, W.P.T. WHO recognition of the global obesity epidemic. Int. J. Obes. 2008, 32 (Suppl. S7), S120–S126. [Google Scholar] [CrossRef]
- Crimmins, E.M.; Shim, H.; Zhang, Y.S.; Kim, J.K. Differences between Men and Women in Mortality and the Health Dimensions of the Morbidity Process. Clin. Chem. 2019, 65, 135–145. [Google Scholar] [CrossRef]
Men | Women | p-Value | |
---|---|---|---|
Sex (%) | 16/47 (34.0%) | 31/47 (65.9%) | |
Age (years) | 52 ± 14.3 | 50 ± 11.5 | p = 0.46 |
Weight (kg) | 115.4 ± 18.1 | 108.3 ± 12.2 | p = 0.12 |
BMI (kg/m2) | 37.5 ± 5.6 | 40.1 ± 5.2 | p = 0.10 |
FBG (mg/dL) | 99.8 ± 20.9 | 92.3 ± 13.6 | p = 0.16 |
HbA1c (%) | 5.7 ± 0.54 | 5.54 ± 0.3 | p = 0.16 |
Total cholesterol (mg/dL) | 180.2 ± 42.7 | 180.9 ± 26.6 | p = 0.95 |
LDL (mg/dL) | 106.0 ± 33.6 | 103.3± 25.3 | p = 0.79 |
HDL (mg/dL) | 50.2 ± 6.3 | 51.3 ± 9.8 | p = 0.72 |
TG (mg/dL) | 141.6 ± 73.5 | 115.6 ± 68.0 | p = 0.31 |
Creatinine /mg/dL) | 1.0 ± 0.2 | 0.7 ± 0.1 | <0.0001 |
AST (U/L) | 23.45 ± 9.4 | 18.2 ± 4.2 | <0.0001 |
ALT (U/L) | 33.2 ± 19.4 | 20.5 ± 6.7 | <0.0001 |
FIB-4 | 1.1 ± 0.3 | 0.7 ± 0.3 | <0.0001 |
Men | Women | p-Value | |
---|---|---|---|
Weight (kg) | |||
T1–T0 | −10.7 ± 6.1 | −7.1 ± 3.1 | <0.0001 |
T2–T1 | −17.9 ± 6.7 | −11.9 ± 5.3 | <0.0001 |
BMI (kg/m2) | |||
T1–T0 | −3.6 ± 2.4 | −2.6 ± 1.1 | p = 0.08 |
T2–T0 | −6.0 ± 2.7 | −4.4 ± 1.9 | p = 0.07 |
%WL | |||
T1–T0 | −9.2 ± 5.1 | −6.5 ± 2.9 | <0.0001 |
T2–T1 | −15.2 ± 5.4 | −10.5 ± 4.4 | <0.0001 |
WL > 5% | N = 15/16, 93.7% | N = 18/31, 58.0% | <0.0001 |
WL > 10% | N = 14/16, 87.5% | N = 9/31, 29.0% | <0.0001 |
Men | Women | p-Value | |
---|---|---|---|
FBG (mg/dL) T2–T0 | −8.1 ± 16.4 | −5.4 ± 9.4 | p = 0.61 |
HbA1c (%) T2–T0 | −0.23 ± 0.9 | −0.16 ± 0.6 | p = 0.83 |
Total cholesterol (mg/dL) T2–T0 | −14.0± 32.6 | 9.5 ± 22.1 | <0.0001 |
LDL (mg/dL) T2–T0 | −19.0 ± 16.5 | 6.8 ± 21.2 | <0.0001 |
HDL (mg/dL) T2–T0 | −2.0 ± 14.5 | 1.1 ± 7.1 | p = 0.14 |
TG (mg/dL) T2–T0 | −9.1 ± 59.9 | 2.8 ± 51.9 | p = 0.56 |
Creatinine (mg/dL) T2–T0 | −0.02 ± 0.14 | −0.02 ± 0.06 | p = 0.99 |
AST (U/L) T2–T0 | −3.5 ± 5.6 | −2.1 ± 4.8 | p = 0.54 |
ALT (U/L) T2–T0 | −5.0 ± 15.1 | −3.4 ± 7.7 | p = 0.74 |
FIB-4 T2–T0 | −0.25 ± 0.23 | −0.003 ± 0.12 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milani, I.; Guarisco, G.; Chinucci, M.; Gaita, C.; Leonetti, F.; Capoccia, D. Sex-Differences in Response to Treatment with Liraglutide 3.0 mg. J. Clin. Med. 2024, 13, 3369. https://doi.org/10.3390/jcm13123369
Milani I, Guarisco G, Chinucci M, Gaita C, Leonetti F, Capoccia D. Sex-Differences in Response to Treatment with Liraglutide 3.0 mg. Journal of Clinical Medicine. 2024; 13(12):3369. https://doi.org/10.3390/jcm13123369
Chicago/Turabian StyleMilani, Ilaria, Gloria Guarisco, Marianna Chinucci, Chiara Gaita, Frida Leonetti, and Danila Capoccia. 2024. "Sex-Differences in Response to Treatment with Liraglutide 3.0 mg" Journal of Clinical Medicine 13, no. 12: 3369. https://doi.org/10.3390/jcm13123369
APA StyleMilani, I., Guarisco, G., Chinucci, M., Gaita, C., Leonetti, F., & Capoccia, D. (2024). Sex-Differences in Response to Treatment with Liraglutide 3.0 mg. Journal of Clinical Medicine, 13(12), 3369. https://doi.org/10.3390/jcm13123369