Different Models of Cardiac Telerehabilitation for People with Coronary Artery Disease: Features and Effectiveness: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Data and Literature Search
2.4. Study Selection Process
2.5. Study Risk of Bias Assessment
2.6. Data Extraction to Profile the Intervention Approach (Aim 1)
- (1)
- demographics and clinical characteristics of the sample: sex, age, characteristics of CAD diagnosis (clinical classification; time of diagnosis; type of surgical cardiac intervention; type of vascularization), LVEF and VO2 level at baseline;
- (2)
- model of cardiac rehabilitation (CTR: home-based treatment in which the rehabilitation was delivered from a distance through technological facilities (platform, devices, etc.). The program included physical activities (i.e., aerobic activity, strength training, walking program) and eventually combined educational, psychosocial, and motivational intervention [10,17]. CRh: clinic treatment combined with CTR. It could be performed either in combined or consecutive procedure. As for the CTR, the CRh involved physical activities that combined aerobic training, strength, resistance, endurance training, and walking programs, combined with educational, psychosocial, and motivational intervention. CI: standard rehabilitation program without information and communication technologies (ICTs) and no treatment. It was carried out in-clinic or at home and consisted of aerobic activity (such as walking, cycling) and strength training, with supplemental health education, and motivational or psychosocial interventions. Participants in this group also followed a stable medication regimen and performed regular follow-ups. Physical activity was not recorded using technological tools;
- (3)
- components of the communication process (model, assessment/monitoring, decision, feedback) and technology used (digital devices and digital contents);
- (4)
- type of specific intervention FITT (frequency, intensity, time, type);
- (5)
- patient-relevant structural and procedure effects and medical benefit outcome measures.
2.7. Meta-Analysis to Test the Effectiveness of CTR and CTRh versus CI (Aim 2)
3. Results
3.1. Study Selection
3.2. Risk of Bias in Studies
3.3. Participants
3.4. Descriptors of CTR and CRh
3.5. Descriptors of CI
3.6. CTR Communication Process
3.7. Adherence and Safety
3.8. Outcomes
3.9. Functional Capacity
3.9.1. Exercise Capacity
3.9.2. Physical Activity Adherence
3.9.3. Heart Rate Response to Exercise
3.9.4. Respiratory Response to Exercise
3.10. Risk Factors Control
3.10.1. Blood Values
3.10.2. Blood Pressure
3.10.3. Body Composition
3.11. Participation
3.11.1. Quality of Life
3.11.2. Mood
4. Discussion
4.1. Data Extraction to Profile the Intervention Model (Aim 1)
4.2. Meta-Analysis to Test the Effectiveness of CTR and CRh versus CI (Aim 2)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eijsvogels, T.M.H.; Maessen, M.F.H.; Bakker, E.A.; Meindersma, E.P.; van Gorp, N.; Pijnenburg, N.; Thompson, P.D.; Hopman, M.T.E. Association of Cardiac Rehabilitation With All-Cause Mortality Among Patients With Cardiovascular Disease in the Netherlands. JAMA Netw. Open 2020, 3, e2011686. [Google Scholar] [CrossRef]
- Dibben, G.O.; Faulkner, J.; Oldridge, N.; Rees, K.; Thompson, D.R.; Zwisler, A.D.; Taylor, R.S. Exercise-based cardiac rehabilitation for coronary heart disease: A meta-analysis. Eur. Heart J. 2023, 44, 452–469. [Google Scholar] [CrossRef] [PubMed]
- Pardaens, S.; Willems, A.M.; Clays, E.; Baert, A.; Vanderheyden, M.; Verstreken, S.; Du Bois, I.; Vervloet, D.; De Sutter, J. The impact of drop-out in cardiac rehabilitation on outcome among coronary artery disease patients. Eur. J. Prev. Cardiol. 2017, 24, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
- Kotseva, K.; De Backer, G.; De Bacquer, D.; Rydén, L.; Hoes, A.; Grobbee, D.; Maggioni, A.; Marques-Vidal, P.; Jennings, C.; Abreu, A.; et al. Lifestyle and impact on cardiovascular risk factor control in coronary patients across 27 countries: Results from the European Society of Cardiology ESC-EORP EUROASPIRE V registry. Eur. J. Prev. Cardiol. 2019, 26, 824–835. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, R.W.M.; Scherrenberg, M.; Kemps, H.M.C.; Dendale, P.; Snoek, J.A. Cardiac telerehabilitation: Current status and future perspectives. Neth. Heart J. 2024, 32, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Hwang, R.; Bruning, J.; Morris, N.R.; Mandrusiak, A.; Russell, T. Home-based telerehabilitation is not inferior to a centre-based program in patients with chronic heart failure: A randomised trial. J. Physiother. 2017, 63, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Batalik, L.; Dosbaba, F.; Hartman, M.; Batalikova, K.; Spinar, J. Benefits and effectiveness of using a wrist heart rate monitor as a telerehabilitation device in cardiac patients: A randomized controlled trial. Medicine 2020, 99, e19556. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, H.J.; Jiang, Y.; Tam, W.W.S.; Yeo, T.J.; Wang, W. Effectiveness of home-based cardiac telerehabilitation as an alternative to Phase 2 cardiac rehabilitation of coronary heart disease: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2022, 29, 1017–1043. [Google Scholar] [CrossRef] [PubMed]
- Jin Choo, Y.; Chang, M.C. Effects of telecardiac rehabilitation on coronary heart disease: A PRISMA-compliant systematic review and meta-analysis. Medicine 2022, 101, e29459. [Google Scholar] [CrossRef]
- Isernia, S.; Pagliari, C.; Morici, N.; Toccafondi, A.; Banfi, P.I.; Rossetto, F.; Borgnis, F.; Tavanelli, M.; Brambilla, L.; Baglio, F. Telerehabilitation Approaches for People with Chronic Heart Failure: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 12, 64. [Google Scholar] [CrossRef]
- Brouwers, R.W.M.; van Exel, H.J.; van Hal, J.M.C.; Jorstad, H.T.; de Kluiver, E.P.; Kraaijenhagen, R.A.; Kuijpers, P.; van der Linde, M.R.; Spee, R.F.; Sunamura, M.; et al. Cardiac telerehabilitation as an alternative to centre-based cardiac rehabilitation. Neth. Heart J. 2020, 28, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Heindl, B.; Ramirez, L.; Joseph, L.; Clarkson, S.; Thomas, R.; Bittner, V. Hybrid cardiac rehabilitation—The state of the science and the way forward. Prog. Cardiovasc. Dis. 2022, 70, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.S.; Afzal, J.; Dalal, H.M. The promise and challenge of telerehabilitation in cardiac rehabilitation. Eur. J. Prev. Cardiol. 2022, 29, 1015–1016. [Google Scholar] [CrossRef]
- Cavalheiro, A.H.; Silva Cardoso, J.; Rocha, A.; Moreira, E.; Azevedo, L.F. Effectiveness of Tele-rehabilitation Programs in Heart Failure: A Systematic Review and Meta-analysis. Health Serv. Insights 2021, 14, 11786329211021668. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Isernia, S.; Pagliari, C.; Bianchi, L.N.C.; Banfi, P.I.; Rossetto, F.; Borgnis, F.; Tavanelli, M.; Brambilla, L.; Baglio, F. Characteristics, Components, and Efficacy of Telerehabilitation Approaches for People with Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 15165. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Avila, A.; Claes, J.; Goetschalckx, K.; Buys, R.; Azzawi, M.; Vanhees, L.; Cornelissen, V. Home-Based Rehabilitation with Telemonitoring Guidance for Patients with Coronary Artery Disease (Short-Term Results of the TRiCH Study): Randomized Controlled Trial. J. Med. Internet Res. 2018, 20, e225. [Google Scholar] [CrossRef]
- Avila, A.; Claes, J.; Buys, R.; Azzawi, M.; Vanhees, L.; Cornelissen, V. Home-based exercise with telemonitoring guidance in patients with coronary artery disease: Does it improve long-term physical fitness? Eur. J. Prev. Cardiol. 2020, 27, 367–377. [Google Scholar] [CrossRef]
- Batalik, L.; Pepera, G.; Papathanasiou, J.; Rutkowski, S.; Líška, D.; Batalikova, K.; Hartman, M.; Felšőci, M.; Dosbaba, F. Is the Training Intensity in Phase Two Cardiovascular Rehabilitation Different in Telehealth versus Outpatient Rehabilitation? J. Clin. Med. 2021, 10, 4069. [Google Scholar] [CrossRef] [PubMed]
- Batalik, L.; Dosbaba, F.; Hartman, M.; Konecny, V.; Batalikova, K.; Spinar, J. Long-term exercise effects after cardiac telerehabilitation in patients with coronary artery disease: 1-year follow-up results of the randomized study. Eur. J. Phys. Rehabil. Med. 2021, 57, 807–814. [Google Scholar] [CrossRef]
- Bravo-Escobar, R.; González-Represas, A.; Gómez-González, A.M.; Heredia-Torres, Á. Effectiveness of e-Health cardiac rehabilitation program on quality of life associated with symptoms of anxiety and depression in moderate-risk patients. Sci. Rep. 2021, 11, 3760. [Google Scholar] [CrossRef]
- Bravo-Escobar, R.; González-Represas, A.; Gómez-González, A.M.; Montiel-Trujillo, A.; Aguilar-Jimenez, R.; Carrasco-Ruíz, R.; Salinas-Sánchez, P. Effectiveness and safety of a home-based cardiac rehabilitation programme of mixed surveillance in patients with ischemic heart disease at moderate cardiovascular risk: A randomised, controlled clinical trial. BMC Cardiovasc. Disord. 2017, 17, 66. [Google Scholar] [CrossRef] [PubMed]
- Pfaeffli Dale, L.; Whittaker, R.; Jiang, Y.; Stewart, R.; Rolleston, A.; Maddison, R. Text Message and Internet Support for Coronary Heart Disease Self-Management: Results From the Text4Heart Randomized Controlled Trial. J. Med. Internet Res. 2015, 17, e237. [Google Scholar] [CrossRef]
- De Lima, A.P.; Pereira, D.G.; Nascimento, I.O.; Martins, T.H.; Oliveira, A.C.; Nogueira, T.S.; Britto, R.R. Cardiac telerehabilitation in a middle-income country: Analysis of adherence, effectiveness and cost through a randomized clinical trial. Eur. J. Phys. Rehabil. Med. 2022, 58, 598–605. [Google Scholar] [CrossRef]
- Dorje, T.; Zhao, G.; Tso, K.; Wang, J.; Chen, Y.; Tsokey, L.; Tan, B.K.; Scheer, A.; Jacques, A.; Li, Z.; et al. Smartphone and social media-based cardiac rehabilitation and secondary prevention in China (SMART-CR/SP): A parallel-group, single-blind, randomised controlled trial. Lancet Digit. Health 2019, 1, e363–e374. [Google Scholar] [CrossRef]
- Fang, J.; Huang, B.; Xu, D.; Li, J.; Au, W.W. Innovative Application of a Home-Based and Remote Sensing Cardiac Rehabilitation Protocol in Chinese Patients after Percutaneous Coronary Intervention. Telemed. J. E Health 2019, 25, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, B.; Jackson, A.C.; Noorchenarboo, M.; Mandegar, M.H.; Sharifi, F.; Mirmoghtadaie, Z.; Bahramnezhad, F. Comparing the Effects of Gamification and Teach-Back Training Methods on Adherence to a Therapeutic Regimen in Patients After Coronary Artery Bypass Graft Surgery: Randomized Clinical Trial. J. Med. Internet Res. 2021, 23, e22557. [Google Scholar] [CrossRef]
- He, C.J.; Zhu, C.Y.; Zhu, Y.J.; Zou, Z.X.; Wang, S.J.; Zhai, C.L.; Hu, H.L. Effect of exercise-based cardiac rehabilitation on clinical outcomes in patients with myocardial infarction in the absence of obstructive coronary artery disease (MINOCA). Int. J. Cardiol. 2020, 315, 9–14. [Google Scholar] [CrossRef]
- Hong, P.C.; Chen, K.J.; Chang, Y.C.; Cheng, S.M.; Chiang, H.H. Effectiveness of Theory-Based Health Information Technology Interventions on Coronary Artery Disease Self-Management Behavior: A Clinical Randomized Waitlist-Controlled Trial. J. Nurs. Scholarsh. 2021, 53, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Kraal, J.J.; Van den Akker-Van Marle, M.E.; Abu-Hanna, A.; Stut, W.; Peek, N.; Kemps, H.M. Clinical and cost-effectiveness of home-based cardiac rehabilitation compared to conventional, centre-based cardiac rehabilitation: Results of the FIT@Home study. Eur. J. Prev. Cardiol. 2017, 24, 1260–1273. [Google Scholar] [CrossRef] [PubMed]
- Kraal, J.J.; Peek, N.; Van den Akker-Van Marle, M.E.; Kemps, H.M. Effects of home-based training with telemonitoring guidance in low to moderate risk patients entering cardiac rehabilitation: Short-term results of the FIT@Home study. Eur. J. Prev. Cardiol. 2014, 21, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lee, J.; Seo, H.; Kim, K.; Min, D.; Choi, J. Effects of Home-based Exercise Training with Wireless Monitoring on the Left Ventricular Function of Acute Coronary Syndrome Patients. J. Phys. Ther. Sci. 2013, 25, 631–633. [Google Scholar] [CrossRef]
- Lee, Y.H.; Hur, S.H.; Sohn, J.; Lee, H.M.; Park, N.H.; Cho, Y.K.; Park, H.S.; Yoon, H.J.; Kim, H.; Nam, C.W.; et al. Impact of home-based exercise training with wireless monitoring on patients with acute coronary syndrome undergoing percutaneous coronary intervention. J. Korean Med. Sci. 2013, 28, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Maddison, R.; Pfaeffli, L.; Whittaker, R.; Stewart, R.; Kerr, A.; Jiang, Y.; Kira, G.; Leung, W.; Dalleck, L.; Carter, K.; et al. A mobile phone intervention increases physical activity in people with cardiovascular disease: Results from the HEART randomized controlled trial. Eur. J. Prev. Cardiol. 2015, 22, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Maddison, R.; Rawstorn, J.C.; Stewart, R.A.H.; Benatar, J.; Whittaker, R.; Rolleston, A.; Jiang, Y.; Gao, L.; Moodie, M.; Warren, I.; et al. Effects and costs of real-time cardiac telerehabilitation: Randomised controlled non-inferiority trial. Heart 2019, 105, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Reid, R.D.; Morrin, L.I.; Beaton, L.J.; Papadakis, S.; Kocourek, J.; McDonnell, L.; Slovinec D’Angelo, M.E.; Tulloch, H.; Suskin, N.; Unsworth, K.; et al. Randomized trial of an internet-based computer-tailored expert system for physical activity in patients with heart disease. Eur. J. Prev. Cardiol. 2012, 19, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.J.; Liu, Y.; Jiang, T.T.; Zhang, H.R.; Shi, T.Y. Effects of multidisciplinary exercise management on patients after percutaneous coronary intervention: A randomized controlled study. Int. J. Nurs. Sci. 2022, 9, 286–294. [Google Scholar] [CrossRef]
- Skobel, E.; Knackstedt, C.; Martinez-Romero, A.; Salvi, D.; Vera-Munoz, C.; Napp, A.; Luprano, J.; Bover, R.; Glöggler, S.; Bjarnason-Wehrens, B.; et al. Internet-based training of coronary artery patients: The Heart Cycle Trial. Heart Vessel. 2017, 32, 408–418. [Google Scholar] [CrossRef]
- Snoek, J.A.; Prescott, E.I.; van der Velde, A.E.; Eijsvogels, T.M.H.; Mikkelsen, N.; Prins, L.F.; Bruins, W.; Meindersma, E.; González-Juanatey, J.R.; Peña-Gil, C.; et al. Effectiveness of Home-Based Mobile Guided Cardiac Rehabilitation as Alternative Strategy for Nonparticipation in Clinic-Based Cardiac Rehabilitation Among Elderly Patients in Europe: A Randomized Clinical Trial. JAMA Cardiol. 2021, 6, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Snoek, J.A.; Meindersma, E.P.; Prins, L.F.; Van’t Hof, A.W.; de Boer, M.J.; Hopman, M.T.; Eijsvogels, T.M.; de Kluiver, E.P. The sustained effects of extending cardiac rehabilitation with a six-month telemonitoring and telecoaching programme on fitness, quality of life, cardiovascular risk factors and care utilisation in CAD patients: The TeleCaRe study. J. Telemed. Telecare 2021, 27, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Ren, C.; Liu, P.; Tao, L.; Zhao, W.; Gao, W. Effect of Smartphone-Based Telemonitored Exercise Rehabilitation among Patients with Coronary Heart Disease. J. Cardiovasc. Transl. Res. 2020, 13, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Su, J.J.; Yu, D.S. Effects of a nurse-led eHealth cardiac rehabilitation programme on health outcomes of patients with coronary heart disease: A randomised controlled trial. Int. J. Nurs. Stud. 2021, 122, 104040. [Google Scholar] [CrossRef] [PubMed]
- Vieira, Á.; Melo, C.; Machado, J.; Gabriel, J. Virtual reality exercise on a home-based phase III cardiac rehabilitation program, effect on executive function, quality of life and depression, anxiety and stress: A randomized controlled trial. Disabil. Rehabil. Assist. Technol. 2018, 13, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Ambrosetti, M.; Abreu, A.; Corrà, U.; Davos, C.H.; Hansen, D.; Frederix, I.; Iliou, M.C.; Pedretti, R.F.E.; Schmid, J.P.; Vigorito, C.; et al. Secondary prevention through comprehensive cardiovascular rehabilitation: From knowledge to implementation. 2020 update. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2021, 28, 460–495. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Fu, C.; Xu, L.; Sun, X.; Wang, S.; He, C.; Wei, Q. Effects of home-based cardiac telerehabilitation programs in patients undergoing percutaneous coronary intervention: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2023, 23, 101. [Google Scholar] [CrossRef]
- Bierbauer, W.; Scholz, U.; Bermudez, T.; Debeer, D.; Coch, M.; Fleisch-Silvestri, R.; Nacht, C.A.; Tschanz, H.; Schmid, J.P.; Hermann, M. Improvements in exercise capacity of older adults during cardiac rehabilitation. Eur. J. Prev. Cardiol. 2020, 27, 1747–1755. [Google Scholar] [CrossRef]
- Keteyian, S.J.; Brawner, C.A.; Savage, P.D.; Ehrman, J.K.; Schairer, J.; Divine, G.; Aldred, H.; Ophaug, K.; Ades, P.A. Peak aerobic capacity predicts prognosis in patients with coronary heart disease. Am. Heart J. 2008, 156, 292–300. [Google Scholar] [CrossRef]
- Balady, G.J.; Arena, R.; Sietsema, K.; Myers, J.; Coke, L.; Fletcher, G.F.; Forman, D.; Franklin, B.; Guazzi, M.; Gulati, M.; et al. Clinician’s Guide to cardiopulmonary exercise testing in adults: A scientific statement from the American Heart Association. Circulation 2010, 122, 191–225. [Google Scholar] [CrossRef]
Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Testex |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Eligibility | Randomization | Allocation | Groups Similar at Baseline | Assessor Blinding | Outcome Measures | Intention-to-Treat | Between groups Statistical Comparison | Point Measures and Measures of Variability | Activity Monitoring in Control Group | Exercise Intensity Remained Constant | Exercise Volume and Energy Expenditure | ||
Avila et al., 2018 [19] | 1 | 1 | 0 | 1 | 0 | 3 | 1 | 2 | 0 | 0 | 1 | 1 | 11 |
Avila et al., 2019 [20] | 1 | 1 | 0 | 1 | 0 | 2 | 0 | 2 | 0 | 0 | 1 | 1 | 9 |
Batalik et al., 2021 [21] | 1 | 1 | 1 | 1 | 0 | 3 | 0 | 1 | 0 | 0 | 1 | 1 | 10 |
Batalik et al., 2021a [22] | 1 | 1 | 0 | 1 | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 1 | 10 |
Batalik et al., 2020 [7] | 1 | 1 | 1 | 1 | 0 | 3 | 0 | 2 | 0 | 1 | 1 | 1 | 12 |
Bravo-Escobar et al., 2021 [23] | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 1 | 5 |
Bravo-Escobar et al., 2017 [24] | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 1 | 1 | 7 |
Dale et al., 2015 [25] | 1 | 1 | 1 | 0 | 0 | 3 | 1 | 2 | 0 | 0 | 0 | 1 | 10 |
De Lima et al., 2022 [26] | 1 | 1 | 1 | 0 | 1 | 3 | 1 | 2 | 0 | 0 | 1 | 1 | 12 |
Dorje et al., 2019 [27] | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 2 | 1 | 0 | 0 | 0 | 12 |
Fang et al., 2019 [28] | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 4 |
Ghorbani et al., 2021 [29] | 1 | 1 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 7 |
He et al., 2020 [30] | 1 | 1 | 1 | 1 | 1 | 2 | 0 | 2 | 0 | 0 | 1 | 1 | 11 |
Hong et al., 2020 [31] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 8 |
Kraal et al., 2017 [32] | 1 | 1 | 1 | 1 | 0 | 3 | 1 | 2 | 0 | 1 | 1 | 1 | 13 |
Kraal et al., 2014 [33] | 1 | 0 | 1 | 0 | 0 | 3 | 0 | 2 | 1 | 1 | 1 | 1 | 11 |
Lee et al., 2013 [34] | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 0 | 0 | 1 | 1 | 7 |
Lee et al., 2013a [35] | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 1 | 5 |
Maddison et al., 2015 [36] | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 2 | 0 | 0 | 1 | 0 | 12 |
Maddison et al., 2019 [37] | 1 | 1 | 0 | 1 | 1 | 3 | 1 | 2 | 0 | 0 | 1 | 1 | 12 |
Reid et al., 2011 [38] | 1 | 1 | 1 | 1 | 1 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 9 |
Shi et al., 2022 [39] | 1 | 1 | 0 | 1 | 0 | 2 | 0 | 2 | 0 | 1 | 0 | 0 | 8 |
Skobel et al., 2017 [40] | 1 | 1 | 0 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 1 | 1 | 9 |
Snoek et al., 2021 [41] | 1 | 1 | 0 | 1 | 1 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 8 |
Snoek et al., 2021a [42] | 1 | 1 | 0 | 1 | 0 | 3 | 1 | 2 | 0 | 0 | 1 | 1 | 11 |
Song et al., 2020 [43] | 1 | 1 | 1 | 1 | 0 | 3 | 0 | 2 | 0 | 0 | 1 | 1 | 11 |
Su and Yu, 2021 [44] | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 0 | 10 |
Vieira et al., 2018 [45] | 1 | 1 | 0 | 1 | 0 | 2 | 0 | 2 | 0 | 1 | 1 | 1 | 10 |
Study | Group | Subjects [n] | Sex [n male; female] | Age (y) [M; SD] | LVEF [M; SD] | VO2 [M; SD] |
---|---|---|---|---|---|---|
Avila et al., 2018 [19] | CTR | 30 | 26; 4 | 58.6; 13 | - | 26.7; 6.55 |
CI | 30 | 27; 3 | 61.9; 7.3 | - | 25.4; 7.32 | |
Avila et al., 2020 [20] | CTR | 26 | 23; 3 | 62.2; 7.1 | - | 26.7; 6.55 |
CI | 29 | 23; 3 | 62.0; 7.4 | - | 25.4; 7.3 | |
Batalik et al., 2021 [21] | CRh | 23 | 19; 4 | 56.1; 6.8 | 59.9; 5.9 | 23.7; 4.0 |
CI | 25 | 22; 3 | 57.2; 7.5 | 58.1; 5.8 | 23.1; 3.0 | |
Batalik et al., 2021a [22] | CRh | 28 | 17; 11 | 56.1; 6.8 | 60.1; 5.8 | 23.7; 4.0 |
CI | 28 | 19; 9 | 57.1; 7.9 | 58.9; 5.5 | 23.0; 3.0 | |
Batalik et al., 2020 [7] | CRh | 25 | 20; 5 | 56.5; 6.9 | 60.2; 5.6 | 23.7; 4.1 |
CI | 26 | 22; 4 | 57.7; 7.6 | 59.2; 5.7 | 23.4; 3.3 | |
Bravo-Escobar et al., 2021 [23] | CRh | 33 | 31; 2 | 56.18; 8.71 | 40–55% | - |
CI | 38 | 35; 3 | 55.32; 7.97 | 40–55% | - | |
Bravo-Escobar et al., 2017 [24] | CRh | 13 | 14; 0 | 56.50; 6.01 | 51.00; 7.9 | - |
CI | 14 | 14; 0 | 55.64; 11.3 | 52.33; 3.51 | - | |
Dale et al., 2015 [25] | CRh | 61 | 48; 13 | 59.0; 10.5 | - | - |
CI | 62 | 52; 10 | 59.9; 11.8 | - | - | |
De Lima et al., 2022 [26] | CRh | 23 | 19; 4 | 58.13; 8.94 | - | - |
CI | 26 | 23; 3 | 54.81; 11.4 | - | - | |
Dorje et al., 2019 [27] | CTR | 156 | 128; 28 | 59.1; 9.4 | 62.9; 6.4 | - |
CI | 156 | 126; 30 | 61.9; 8.7 | 63.2; 6.9 | - | |
Fang et al., 2019 [28] | CTR | 33 | 21; 12 | 60.24; 9.3 | 62.97; 6.8 | - |
CI | 34 | 21; 13 | 61.41; 10.1 | 62.15; 1.16 | - | |
Ghorbani et al., 2021 [29] | CTR | 37 | 24; 13 | - | - | - |
CI | 37 | 19; 18 | - | - | - | |
He et al., 2020 [30] | CRh | 37 | 24; 13 | - | - | - |
CI | 37 | 19; 18 | - | - | - | |
Hong et al., 2020 [31] | CTR | 30 | 23; 7 | 61–70 (53.4%) | - | - |
CI | 30 | 20; 10 | 41–60 (53.4%) | - | - | |
Kraal et al., 2017 [32] | CRh | 45 | 40; 5 | 60.5; 8.8 | - | 24.4; 6.7 |
CI | 45 | 40; 5 | 57.7; 8.7 | - | 24.0; 5.6 | |
Kraal et al., 2014 [33] | CRh | 25 | 22; 3 | 60.6; 7.5 | - | 22.8; 4.2 |
CI | 25 | 21; 4 | 56.1; 8.7 | - | 23.7; 6.4 | |
Lee et al., 2013 [34] | CTR | 26 | 22; 4 | 54.3; 8.9 | 55; 10 | - |
CI | 29 | 22; 7 | 57.8; 7.5 | 50; 10 | - | |
Lee et al., 2013a [35] | CRh | 25 | 18; 7 | 55.56; 9.23 | 52.48; 9.40 | - |
CI | 25 | 19; 6 | 57.88; 7.90 | 62.04; 9.42 | - | |
Maddison et al., 2015 [36] | CTR | 85 | 69; 16 | 61.4; 8.9 | - | 26.8; 6.4 |
CI | 86 | 70; 16 | 59.0; 9.5 | - | 27.1; 6.5 | |
Maddison et al., 2018 [37] | CTR | 82 | 69; 13 | 61.0; 13.2 | - | 27.22; 7.91 |
CI | 80 | 70; 10 | 61.5; 12.2 | - | 27.70; 6.77 | |
Reid et al., 2011 [38] | CTR | 115 | 95; 20 | 56.7; 9.0 | - | - |
CI | 108 | 93; 15 | 56.0; 9.0 | - | - | |
Shi et al., 2022 [39] | CRh | 25 | 21; 4 | 49.80; 7.74 | - | - |
CI | 26 | 19; 7 | 51.38; 7.54 | - | - | |
Skobel et al., 2017 [40] | CRh | 55 | 50; 5 | 60 (50.5%) | 56 (50.65%) | 21.5 (17.2; 24.8) |
CI | 63 | 55; 8 | 58 (52.67%) | 61 (57.70%) | 20 (17.23%) | |
Snoek et al., 2021 [41] | CTR | 89 | 20 | 72.4; 5.4 | - | 18.9; 5.4 |
CI | 90 | 14 | 73.6; 5.5 | - | 20.3; 5.7 | |
Snoek et al., 2021a [42] | CTR | 61 | 50; 11 | 60.0; 8.4 | - | 22.8; 6.0 |
CI | 61 | 50; 11 | 59.0; 10.7 | - | 22.1; 4.8 | |
Song et al., 2020 [43] | CTR | 48 | 43; 5 | 54.17; 8.76 | 63.98; 10.7 | 20.40; 4.57 |
CI | 48 | 40; 8 | 54.83; 9.13 | 66.25; 9.06 | 18.83; 3.98 | |
Su and Yu, 2021 [44] | CTR | 73 | 62; 11 | 55.53; 7.30 | - | - |
CI | 73 | 60; 13 | 56.03; 7.02 | - | - | |
Vieira et al., 2018 [45] | CRh | 11 | - | 55; 9.0 | - | - |
CI | 11 | - | 59; 11.3 | - | - |
Study | Models of CR | FITT Descriptors of Specific Physical Intervention | Technology | Components of Communication Process | |||
---|---|---|---|---|---|---|---|
Model/ Monitoring | Assessment | Decision | Feedback | ||||
Avila et al., 2018 [19] | CTR Individual, Unimodal | Frequency: 6–7 sessions/W × 12 W (n sessions = 72) Intensity: 70–80% HRR Time: 150 min/W Type: aerobic activity | Device: Garmin HR monitor Digital content: web application (Garmin platform) | A | Y | Y | Offline |
Avila et al., 2020 [20] | CTR Individual, Unimodal | Frequency: 6–7 sessions/W × 12 W (n sessions = 72) Intensity: 70–80% HRR Time: 150 min/W Type: aerobic activity | Device: Garmin HR monitor Digital content: web application (Garmin platform) | A | Y | Y | Offline |
Batalik et al., 2021 [21] | CRh consecutive Individual, Multimodal (educational) | Frequency: 3 sessions/W × 12 W (n sessions = 2 in clinic + 34 at home) Intensity: 70–80% HR Time: 60 min Type: aerobic activity | Device: Polar HR device Digital content: web-based training diary | A | Y | Y | Offline |
Batalik et al., 2021a [22] | CRh consecutive Individual, Multimodal (educational) | Frequency: 3 sessions/W × 12 W (n sessions = 2 in clinic + 34 at home) Intensity: 70–80% HRR Time: 60 min Type: aerobic activity | Device: HR Polar wrist monitor Digital content: application | A | Y | Y | Offline |
Batalik et al., 2020 [7] | CRh consecutive Individual, Unimodal | Frequency: 3 sessions/W × 12 W (n sessions = 2 in clinic + 34 at home) Intensity: 70–80% HRR Time: 80 min Type: physical activity | Device: wrist heart rate monitor (M430) Digital content: Polar Flow web application | A | Y | Y | Offline |
Bravo-Escobar et al., 2021 [23] | CRh combined Individual, Multimodal (educational and psychosocial intervention) | Frequency: at least 3 sessions/W × 8 W (n sessions = 8 in clinic + 16 at home) Intensity: 70–80% HRR Time: 60 min Type: aerobic and strength training | Device: NUUBO electrocardiographic monitoring device (Bluetooth) + smartphone Digital content: NUUBO application | A | Y | N | - |
Bravo-Escobar et al., 2017 [24] | CRh combined Individual, Multimodal (educational and psychosocial intervention) | Frequency: at least 3 sessions/W × 8 W (n sessions = 8 in clinic + 16 at home) Intensity: 70–80% HRR Time: 60 min Type: walking program + aerobic and strength training | Device: NUUBO electrocardiographic monitoring device (Bluetooth) + smartphone Digital content: NUUBO application | A | Y | N | - |
Dale et al., 2015 [25] | CRh combined Individual, Multimodal (educational) | Frequency: 7 sessions/W × 24 W (n sessions = 24 in clinic + 144 at home) Intensity: moderate to vigorous (50–85% HRR) Time: 150 min/W Type: aerobic activity | Device: mobile phone + pedometer Digital content: website | A | Y | N | Offline |
De Lima et al., 2022 [26] | CRh consecutive Individual, Multimodal (educational) | Frequency: 5 sessions/W × 12 W (n sessions = 2 in clinic + 58 at home) Intensity: 60–80% HRR Time: 60 min Type: aerobic activity | Device: G Pulse HR monitor + smartphone + pedometer Digital content: monitor | A | Y | Y | Offline |
Dorje et al., 2019 [27] | CTR Individual, Multimodal (educational) | Frequency: 5 sessions/W × 24 W (n sessions = 120) Intensity: 10 000 steps/day Time: - Type: walking program | Device: blood pressure monitoring device + smartphone + WeChat pedometer Digital content: data management portal | A | Y | N | Offline |
Fang et al., 2019 [28] | CTR Individual, Multimodal (educational) | Frequency: 3 or more sessions/W × 6 W (n sessions = 18) Intensity: - Time: - Type: walking program | Device: smartphone + belt strap with sensor Digital content: application and web portal | A | Y | Y | Offline |
Ghorbani et al., 2021 [29] | CTR Individual, Multimodal (educational) | Frequency: 7 sessions/W × 4 W (n sessions = 28) Intensity: - Time: 45–60 min Type: walking program | Device: smartphone Digital content: application | A | N | N | - |
He et al., 2020 [30] | CRh consecutive Individual, Unimodal | Frequency: 3 sessions/W × 156 W (n sessions = 2 in clinic + 466 at home) Intensity: 65–75% HRR Time: 47 min Type: aerobic activity | Device: MI electronic band + smartphone (WeChat) Digital content: HaiTai software | A | Y | Y | - |
Hong et al., 2020 [31] | CTR Individual, Multimodal (educational) | Frequency: 7 sessions/W × 24 W (n sessions = 168) Intensity: - Time: - Type: walking program | Device: sphygmomanometer and wristband-wearable device Digital content: Health IT teleweb platform + system application | A | Y | N | Offline |
Kraal et al., 2017 [32] | CRh consecutive Individual, Unimodal | Frequency: at least 2 sessions/W × 12 W (n sessions = 3 in clinic + 21 at home) Intensity: 70–85% HRR Time: 60 min Type: aerobic activity | Device: Garmin heart rate monitor Digital content: Garmin web application | A | Y | N | Offline |
Kraal et al., 2014 [33] | CRh consecutive Individual, Unimodal | Frequency: 2 sessions/W × 12 W (n sessions = 3 in clinic + 21 at home) Intensity: 70–85% HR Time: 45–60 min Type: aerobic activity | Device: heart rate monitor (Garmin) Digital content: web application (Garmin Connect) | A | Y | Y | Offline |
Lee et al., 2013 [34] | CTR Individual, Multimodal (educational) | Frequency: 5 sessions/W × 12 W (n sessions = 60) Intensity: 40–80% HRR Time: 50 min Type: walking program | Device: wireless monitoring equipment (HeartCall) + smartphone Digital content: smartphone | A | Y | Y | Offline |
Lee et al., 2013a [35] | CRh consecutive Individual, Multimodal (educational) | Frequency: 4 sessions/W × 12 W (n sessions = 2 in clinic + 46 at home) Intensity: 40–80% Time: 50 min Type: walking program | Device: wireless monitoring equipment (HeartCall) + smartphone Digital content: smartphone | A | Y | Y | Offline |
Maddison et al., 2015 [36] | CTR Individual, Multimodal (educational) | Frequency: 5 sessions/W × 24 W (n sessions = 120) Intensity: moderate to vigorous (50–85% HRR) Time: minimum 30 min Type: aerobic activity | Device: mobile phone Digital content: web applications, middleware | A | N | N | - |
Maddison et al., 2019 [37] | CTR Individual, Multimodal (educational) | Frequency: 3 sessions/W × 12 W (n sessions = 36) Intensity: 40–65% HRR Time: 30–60 min Type: aerobic activity | Device: smartphone and wearable sensor Digital content: web applications, middleware | A | Y | Y | Offline |
Reid et al., 2011 [28 | CTR Individual, Multimodal (educational) | Frequency: 7 sessions/W × 20 W (n sessions = 140) Intensity: moderate (50–70% HRR) Time: 30 min Type: walking program | Device: Digi-Walker pedometer Digital content: log book | A | Y | Y | Offline |
Shi et al., 2022 [39] | CRh consecutive Individual, Multimodal (educational) | Frequency: 7 sessions/W × 8 W (n sessions = 1 in clinic + 55 at home) Intensity: - Time: - Type: aerobic activity | Device: ECG monitoring equipment + mobile app Digital content: mobile app | A | Y | Y | Offline |
Skobel et al., 2017 [40] | CRh consecutive Individual, Multimodal (educational) | Frequency: 2–3 sessions/W × 24 W (n sessions = 1 in clinic + 47 at home) Intensity: 11–13 Borg scale Time: 30–60 min Type: endurance and resistance training | Device: smartphone-guided training system (GEX system) Digital content: GEX system | A | Y | Y | Offline |
Snoek et al., 2021 [41] | CTR Individual, Multimodal (educational) | Frequency: 5 sessions/W × 24 W (n sessions = 120) Intensity: moderate (50–70% HRR) Time: at least 30 min Type: aerobic activity | Device: heart rate belt + smartphone Digital content: application (MobiHealth) | A | Y | Y | Offline |
Snoek et al., 2021a [42] | CTR Individual, Multimodal (motivational intervention) | Frequency: 5 sessions/W × 26 W (n sessions = 130) Intensity: moderate to vigorous (50–85% HRR) Time: at least 30 min Type: aerobic activity | Device: smartphone + Bluetooth connected heart rate belt (Zephyr) Digital content: website | A | Y | Y | Offline |
Song et al., 2020 [43] | CTR Individual, Multimodal (educational) | Frequency: 3–5 sessions/W × 24 W (n sessions = 72) Intensity: HR @ AT ± 5 bpm Time: 40 min Type: aerobic activity | Device: smartphone (WeChat) + heart rate belt (Suunto) Digital content: Medicus monitoring device computer terminal | A | Y | Y | Offline |
Su and Yu, 2021 [44] | CTR Individual, Multimodal (educational and motivational intervention) | Frequency: 3 sessions/W for 12 W (n sessions = 36) Intensity: moderate (50–60% HRR) Time: 150 min/W Type: walking program | Device: smartphone (WeChat) Digital content: web platform + tele-care platform | A | Y | Y | Offline |
Vieira et al., 2018 [45] | CRh consecutive Individual, Multimodal (educational) | Frequency: 3 sessions/W for 24 W (n sessions = 1 in clinic + 71 at home) Intensity: 65–70% HRR Time: 70–90 min Type: endurance, strength and flexibility training | Device: Kinect virtual reality + heart rate monitor + computer Digital content: Kinect software | A | Y | Y | Offline |
Outcome | Domain | Subdomain | Evaluation Tools | Study | ||
---|---|---|---|---|---|---|
Measures | per-Based | pr-Based | ||||
Medical Benefit | Functional capacity | Physical activity monitoring | Steps per day | x | [19,38,44] | |
Physical activity level | x | [32] | ||||
PAEE | x | [32] | ||||
METS | x | [24,34,44] | ||||
IPAQ | x | [42,44] | ||||
DASI | x | [26] | ||||
Exercise capacity | VO2 | x | [7,19,20,22,30,32,33,37,40,41,42] | |||
Aerobic threshold/6MWT | x | [27,28,32,39,43] | ||||
Peak load | x | [7,19,22,32,33,41,42] | ||||
Respiratory response to exercise | VT | x | [19,20] | |||
RER | x | [19,20,22,32,33,41,42] | ||||
Borg scale | x | [19,20,24,41,42] | ||||
Heart rate response to exercise | Peak heart rate | x | [19,20,21,22,24,27,30,32,33,34,40,41,42,43] | |||
Systolic function | LVEF | x | [35,40] | |||
Risk factors control | Blood values | Total cholesterol | x | [20,24,25,26,27,37,40,41,42] | ||
HDL-cholesterol | x | [20,24,25,27,37,40,41] | ||||
LDL-cholesterol | x | [20,24,25,27,37,40,41,42] | ||||
Triglycerides | x | [20,24,27,37] | ||||
Glucose | x | [20,24,26,37,40] | ||||
HOMA index | x | [20] | ||||
HbA1c | x | [24,41] | ||||
Blood pressure | SBP | x | [19,20,24,25,26,27,28,31,34,37,40,41,42,44] | |||
DBP | x | [19,20,24,25,26,28,31,34,37,40,41,42,44] | ||||
Body composition | Weight | x | [19,20,37,42] | |||
Body Mass Index | x | [19,20,22,24,25,32,37,41,42,44] | ||||
Waist-hip ratio | x | [24,25,27] | ||||
Waist circumference | x | [19,20,22,26,37,42,44] | ||||
Hip circumference | x | [19,20,37] | ||||
Participation | Quality of life | SF-36 | x | [7,19,22,24,26,28,41] | ||
SF-12 | x | [27,32] | ||||
WHOQOL | x | [31] | ||||
27-item MacNew | x | [33,38,44,45] | ||||
EQ-5D | x | [37,40] | ||||
Mood | HADS | x | [25,32,40,42] | |||
CDS | x | [28] | ||||
PHQ-9 | x | [32,41,42] | ||||
PSSS | x | [39] | ||||
MPSS | x | [42] | ||||
DASS-21 | x | [44,45] | ||||
Mortality | Number of deaths | [21,22,24,29,30,32,38,41,42] | ||||
Patient-Relevant Structural and Procedure Effects | Participation rate | [7,21,24,26,33,38,40,45] | ||||
Adherence | % who carried out the training | [7,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45] | ||||
Safety | Adverse events | [7,19,21,22,24,25,26,29,30,32,33,36,37,38,39,40,41,42,43] | ||||
Self-efficacy | Client satisfaction questionnaire | x | [27,32,33] | |||
Partner in health | x | [31] | ||||
Overall Illness Threat | x | [25] | ||||
Overall Self-efficacy | x | [25] | ||||
SECDS | x | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagliari, C.; Isernia, S.; Rapisarda, L.; Borgnis, F.; Lazzeroni, D.; Bini, M.; Geroldi, S.; Baglio, F.; Brambilla, L. Different Models of Cardiac Telerehabilitation for People with Coronary Artery Disease: Features and Effectiveness: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 3396. https://doi.org/10.3390/jcm13123396
Pagliari C, Isernia S, Rapisarda L, Borgnis F, Lazzeroni D, Bini M, Geroldi S, Baglio F, Brambilla L. Different Models of Cardiac Telerehabilitation for People with Coronary Artery Disease: Features and Effectiveness: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2024; 13(12):3396. https://doi.org/10.3390/jcm13123396
Chicago/Turabian StylePagliari, Chiara, Sara Isernia, Laura Rapisarda, Francesca Borgnis, Davide Lazzeroni, Matteo Bini, Simone Geroldi, Francesca Baglio, and Lorenzo Brambilla. 2024. "Different Models of Cardiac Telerehabilitation for People with Coronary Artery Disease: Features and Effectiveness: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 13, no. 12: 3396. https://doi.org/10.3390/jcm13123396
APA StylePagliari, C., Isernia, S., Rapisarda, L., Borgnis, F., Lazzeroni, D., Bini, M., Geroldi, S., Baglio, F., & Brambilla, L. (2024). Different Models of Cardiac Telerehabilitation for People with Coronary Artery Disease: Features and Effectiveness: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 13(12), 3396. https://doi.org/10.3390/jcm13123396