Mediation Analysis of Racial Disparity for Infant Mortality Using Bayesian Estimation of Potential Outcomes
Abstract
:1. Introduction
2. Materials and Method
2.1. Data
2.2. Model
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Data and MultiBUGS Code for Direct Bayesian Estimation of Potential Outcomes with 3 Mediators
- model{for (i in 1:16){ r[i] ~ dbin(PO[X[i], M1[i], M2[i], M3[i]], n[i]) }
- for (j in 1:2){for (k in 1:2){for (l in 1:2){ for (m in 1:2){ PO[j,k,l,m] ~ dunif(0,1) }}}}
- for (j in 1:2){for (i in 1:16){ n.race[i,j] <- equals(X[i],j) * n[i] } #loop i end
- sum.n.race[j] <- sum(n.race[ ,j]) }
- for (j in 1:2){for (k in 1:2){for (l in 1:2){for (m in 1:2){
- n.mv[m,j,k,l] ~ dbin(PF[m,j,k,l], sum.n.race[m])
- PF[m,j,k,l] ~ dunif(0,1) }
- RRF[j,k,l] <- PF [2,j,k,l]/PF [1,j,k,l]
- RRO[j,k,l] <- PO[2,j,k,l]/PO[1,j,k,l] }}}
- for (i in 1:16){ n.mv[X[i], M1[i], M2[i], M3[i]] <- n[i]
- r.mv[X[i], M1[i], M2[i], M3[i]] <- r[i] }
- for (j in 1:2){for (k in 1:2){for (l in 1:2){
- r.X.M1.M2[j,k,l] <- sum(r.mv[j,k,l,]); n.X.M1.M2[j,k,l] <- sum(n.mv[j,k,l,])
- r.X.M1.M2[j,k,l] ~ dbin(PO.X.M1.M2[j,k,l], n.X.M1.M2[j,k,l])
- PO.X.M1.M2[j,k,l] ~ dunif(0,1)
- r.X.M1.M3[j,k,l] <- sum(r.mv[j,k,,l]); n.X.M1.M3[j,k,l] <- sum(n.mv[j,k,,l])
- r.X.M1.M3[j,k,l] ~ dbin(PO.X.M1.M3[j,k,l], n.X.M1.M3[j,k,l])
- PO.X.M1.M3[j,k,l] ~ dunif(0,1)
- r.X.M2.M3[j,k,l] <- sum(r.mv[j,,k,l]); n.X.M2.M3[j,k,l] <- sum(n.mv[j,,k,l])
- r.X.M2.M3[j,k,l] ~ dbin(PO.X.M2.M3[j,k,l], n.X.M2.M3[j,k,l])
- PO.X.M2.M3[j,k,l] ~ dunif(0,1) }
- r.X.M3[j,k] <- sum(r.X.M2.M3[j,,k]); n.X.M3[j,k] <- sum(n.X.M2.M3[j,,k])
- r.X.M3[j,k] ~ dbin(PO.X.M3[j,k], n.X.M3[j,k])
- PO.X.M3[j,k] ~ dunif(0,1)
- r.X.M2[j,k] <- sum(r.X.M2.M3[j,k,]); n.X.M2[j,k] <- sum(n.X.M2.M3[j,k,])
- r.X.M2[j,k] ~ dbin(PO.X.M2[j,k], n.X.M2[j,k])
- PO.X.M2[j,k] ~ dunif(0,1)
- r.X.M1[j,k] <- sum(r.X.M1.M2[j,k,]); n.X.M1[j,k] <- sum(n.X.M1.M2[j,k,])
- r.X.M1[j,k] ~ dbin(PO.X.M1[j,k], n.X.M1[j,k])
- PO.X.M1[j,k] ~ dunif(0,1) }
- r.X[j] <- sum(r.X.M1[j,]); n.X[j] <- sum(n.X.M1[j,])
- r.X[j] ~ dbin(PO.X[j], n.X[j])
- PO.X[j] ~ dunif(0,1) }
- r.total <- sum(r[])
- n.total <- sum(n[])
- r.total ~ dbin(m.rate, n.total)
- m.rate ~ dunif(0,1)
- TE <- PO.X [2] − PO.X [1]
- RR <- PO.X [2]/PO.X [1]
- CDE [1] <- PO.X.M1[2,1] − PO.X.M1[1,1]
- CDE [2] <- PO.X.M2[2,1] − PO.X.M2[1,1]
- CDE [3] <- PO.X.M3[2,1] − PO.X.M3[1,1]
- CDE [4] <- PO.X.M1.M2[2,1,1] − PO.X.M1.M2[1,1,1]
- CDE [5] <- PO.X.M1.M3[2,1,1] − PO.X.M1.M3[1,1,1]
- CDE [6] <- PO.X.M2.M3[2,1,1] − PO.X.M2.M3[1,1,1]
- CDE [7] <- PO[2,1,1,1] − PO[1,1,1,1]
- for (i in 1:7){ ME[i] <- TE − CDE[i]; PA[i] <- 100*ME[i]/TE }}
X[] | M1[] | M2[] | M3[] | n[] | r[] |
1 | 1 | 1 | 1 | 7,877,239 | 11,253 |
1 | 1 | 1 | 2 | 365,117 | 999 |
1 | 1 | 2 | 1 | 422,306 | 18,817 |
1 | 1 | 2 | 2 | 289,50 | 1504 |
1 | 2 | 1 | 1 | 550,823 | 2422 |
1 | 2 | 1 | 2 | 37,682 | 201 |
1 | 2 | 2 | 1 | 70,523 | 2772 |
1 | 2 | 2 | 2 | 4591 | 205 |
2 | 1 | 1 | 1 | 1,453,357 | 3908 |
2 | 1 | 1 | 2 | 122,824 | 455 |
2 | 1 | 2 | 1 | 170,762 | 9680 |
2 | 1 | 2 | 2 | 17,473 | 974 |
2 | 2 | 1 | 1 | 81,169 | 575 |
2 | 2 | 1 | 2 | 3764 | 25 |
2 | 2 | 2 | 1 | 19,059 | 977 |
2 | 2 | 2 | 2 | 755 | 41 |
References
- Jang, C.J.; Lee, H.C. A Review of Racial Disparities in Infant Mortality in the US. Children 2022, 9, 257. [Google Scholar] [CrossRef] [PubMed]
- Alegria, M.; Araneta, M.R.; Rivers, B. The National Advisory Council on Minority Health and Health Disparities Reflection. Am. J. Public Health 2019, 109, S14–S15. [Google Scholar] [CrossRef] [PubMed]
- Alvidrez, J.; Castille, D.; Laude-Sharp, M.; Rosario, A.; Tabor, D. The National Institute on Minority Health and Health Disparities Research Framework. Am. J. Public Health 2019, 109, S16–S20. [Google Scholar] [CrossRef] [PubMed]
- Duran, D.G.; Perez-Stable, E.J. Novel Approaches to Advance Minority Health and Health Disparities Research. Am. J. Public Health 2019, 109, S8–S10. [Google Scholar] [CrossRef] [PubMed]
- Jeffries, N.; Zaslavsky, A.M.; Roux, A.V.D.; Creswell, J.W.; Palmer, R.C.; Gregorich, S.E.; Reschovsky, J.D.; Graubard, B.I.; Choi, K.; Pfeiffer, R.M.; et al. Methodological Approaches to Understanding Causes of Health Disparities. Am. J. Public Health 2019, 109, S28–S33. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.M.; Kenny, D.A. The Moderator Mediator Variable Distinction in Social Psychological-Research: Conceptual, Strategic, and Statistical Considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- VanderWeele, T.J. Explanation in Causal Inference: Methods for Mediation and Interaction; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Bayman, E.O.; Oleson, J.J.; Dexter, F. Introduction to Bayesian Analyses for Clinical Research. Anesth. Analg. 2024, 138, 530–541. [Google Scholar] [CrossRef]
- Goudie, R.J.B.; Turner, R.M.; De Angelis, D.; Thomas, A. MultiBUGS: A Parallel Implementation of the BUGS Modeling Framework for Faster Bayesian Inference. J. Stat. Softw. 2020, 95, 1–20. [Google Scholar] [CrossRef]
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; van der Linde, A. The deviance information criterion: 12 years on. J. Roy. Stat. Soc. B 2014, 76, 485–493. [Google Scholar] [CrossRef]
- Pearl, J.; Mackenzie, D. The Book of Why: The New Science of Cause and Effect; Basic Books: New York, NY, USA, 2018. [Google Scholar]
- Pearl, J. Interpretation and Identification of Causal Mediation. Psychol. Methods 2014, 19, 459–481. [Google Scholar] [CrossRef]
- Miocevic, M.; Gonzalez, O.; Valente, M.J.; MacKinnon, D.P. A Tutorial in Bayesian Potential Outcomes Mediation Analysis. Struct. Equ. Model. 2018, 25, 121–136. [Google Scholar] [CrossRef]
- Dawid, P. On individual risk. Synthese 2017, 194, 3445–3474. [Google Scholar] [CrossRef]
- Dawid, A.P.; Musio, M.; Fienberg, S.E. From Statistical Evidence to Evidence of Causality. Bayesian Anal. 2016, 11, 725–752. [Google Scholar] [CrossRef]
- Dawid, A.P. Causal inference without counterfactuals. J. Am. Stat. Assoc. 2000, 95, 407–424. [Google Scholar] [CrossRef]
- Weinberg, C.R. Can DAGs clarify effect modification? Epidemiology 2007, 18, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Attia, J.; Holliday, E.; Oldmeadow, C. A proposal for capturing interaction and effect modification using DAGs. Int. J. Epidemiol. 2022, 51, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Zugna, D.; Popovic, M.; Fasanelli, F.; Heude, B.; Scelo, G.; Richiardi, L. Applied causal inference methods for sequential mediators. BMC Med. Res. Methodol. 2022, 22, 301. [Google Scholar] [CrossRef] [PubMed]
- Tai, A.S.; Lin, S.H. Multiply robust estimation of natural indirect effects with multiple ordered mediators. Stat. Med. 2024, 43, 656–673. [Google Scholar] [CrossRef] [PubMed]
- Tai, A.S.; Lin, S.H. Integrated multiple mediation analysis: A robustness-specificity trade-off in causal structure. Stat. Med. 2021, 40, 4541–4567. [Google Scholar] [CrossRef]
- Steen, J.; Loeys, T.; Moerkerke, B.; Vansteelandt, S. Flexible Mediation Analysis with Multiple Mediators. Am. J. Epidemiol. 2017, 186, 184–193. [Google Scholar] [CrossRef]
- Loh, W.W.; Moerkerke, B.; Loeys, T.; Vansteelandt, S. Disentangling indirect effects through multiple mediators without assuming any causal structure among the mediators. Psychol. Methods 2022, 27, 982–999. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Song, P.X.K. A Simultaneous Likelihood Test for Joint Mediation Effects of Multiple Mediators. Stat. Sin. 2023, 33, 2305–2326. [Google Scholar] [CrossRef]
- Altman, D.G. Categorizing Continuous-Variables. Brit J. Cancer 1991, 64, 975. [Google Scholar] [CrossRef]
- Thompson, J.A. Disentangling the roles of maternal and paternal age on birth prevalence of down syndrome and other chromosomal disorders using a Bayesian modeling approach. BMC Med. Res. Methodol. 2019, 19, 82. [Google Scholar] [CrossRef] [PubMed]
- Boulware, L.E.; Cooper, L.A.; Ratner, L.E.; LaVeist, T.A.; Powe, N.R. Race and trust in the health care system. Public Health Rep. 2003, 118, 358–365. [Google Scholar] [CrossRef]
- Bazargan-Hejazi, S.; Ruiz, M.; Ullah, S.; Siddiqui, G.; Bangash, M.; Khan, S.; Shang, W.; Moradi, P.; Shaheen, M. Racial and ethnic disparities in chronic health conditions among women with a history of gestational diabetes mellitus. Health Promot. Perspect. 2021, 11, 54–59. [Google Scholar] [CrossRef]
Mediator | Counterfactual Definition of CDE | Model Estimator of CDE 1 |
---|---|---|
M1 | P(Y)|X = 2, M1 = 1 − P(Y)|X = 1, M1 = 1 | PO[2,1,NA,NA] − PO[1,1,NA,NA] |
M2 | P(Y)|X = 2, M2 = 1 − P(Y)|X = 1, M2 = 1 | PO[2,NA,1,NA] − PO[1,NA,1,NA] |
M3 | P(Y)|X = 2, M3 = 1 − P(Y)|X = 1, M3 = 1 | PO[2,NA,NA,1] − PO[1,NA,NA,1] |
M1,M2 | P(Y)|X = 2, M1 = 1, M2 = 1 − P(Y)|X = 1, M1 = 1, M2 = 1 | PO[2,1,1,NA] − PO[1,1,1,NA] |
M1,M3 | P(Y)|X = 2, M1 = 1, M3 = 1 − P(Y)|X = 1, M1 = 1, M3 = 1 | PO[2,1,NA,1] − PO[1,1,NA,1] |
M2,M3 | P(Y)|X = 2, M2 = 1, M3 = 1 − P(Y)|X = 1, M1 = 1, M3 = 1 | PO[2,NA,1,1] − PO[1,NA,1,1] |
M1,M2,M3 | P(Y)|X = 2, M1 = 1, M2 = 1, M3 = 1 − P(Y)|X = 1, M1 = 1, M2 = 1, M3 = 1 | PO[2,1,1,1] − PO[1,1,1,1] |
Mediating Factor(s) | Proportion of Racial Disparity Attributed to the Mediating Factor(s) |
---|---|
Smoking | 0.01 (−0.03, 0.05) |
Low birthweight | 0.73 (0.71, 0.75) |
Teenage maternity | −0.00 (−0.05, 0.04) |
Smoking and low birthweight | 0.73 (0.71, 0.75) |
Smoking and teenage maternity | 0.02 (−0.03, 0.06) |
Low birthweight and teenage maternity | 0.73 (0.71, 0.75) |
Smoking, low birthweight, and teenage maternity | 0.74 (0.72, 0.76) |
Model | DIC 1 | Effective Parameters |
---|---|---|
Intercept | 127,700 | 1 |
Race | 121,400 | 2 |
Race and teenage maternity | 120,700 | 4 |
Race and smoking | 118,300 | 4 |
Race, smoking, and teenage maternity | 117,700 | 8 |
Race and low birthweight | 3023 | 4 |
Race, low birthweight, and teenage maternity | 2621 | 8 |
Race, smoking, and low birthweight | 562 | 8 |
Race, smoking, low birthweight, and teenage maternity | 171 | 16 |
Presence of Maternal/Neonatal Factors (Yes/No) | Probability of Mortality (Potential Outcome) | |||
---|---|---|---|---|
Maternal Smoking | Low Birthweight | Teenage Maternity | Non-Black Infant | Black Infant |
No | No | No | 0.0014 (0.0014, 0.0015) | 0.0027 (0.0026, 0.0028) |
No | No | Yes | 0.0027 (0.0026, 0.0029) | 0.0037 (0.0034, 0.0041) |
No | Yes | No | 0.045 (0.044, 0.045) | 0.057 (0.056, 0.058) |
No | Yes | Yes | 0.052 (0.050, 0.055) | 0.056 (0.052, 0.059) |
Yes | No | No | 0.0044 (0.0042, 0.0046) | 0.0071 (0.0065, 0.0077) |
Yes | No | Yes | 0.0054 (0.0047, 0.0061) | 0.0069 (0.0045, 0.0097) |
Yes | Yes | No | 0.039 (0.038, 0.041) | 0.051 (0.048, 0.055) |
Yes | Yes | Yes | 0.045 (0.039, 0.051) | 0.056 (0.041, 0.073) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thompson, J. Mediation Analysis of Racial Disparity for Infant Mortality Using Bayesian Estimation of Potential Outcomes. J. Clin. Med. 2024, 13, 3464. https://doi.org/10.3390/jcm13123464
Thompson J. Mediation Analysis of Racial Disparity for Infant Mortality Using Bayesian Estimation of Potential Outcomes. Journal of Clinical Medicine. 2024; 13(12):3464. https://doi.org/10.3390/jcm13123464
Chicago/Turabian StyleThompson, James. 2024. "Mediation Analysis of Racial Disparity for Infant Mortality Using Bayesian Estimation of Potential Outcomes" Journal of Clinical Medicine 13, no. 12: 3464. https://doi.org/10.3390/jcm13123464
APA StyleThompson, J. (2024). Mediation Analysis of Racial Disparity for Infant Mortality Using Bayesian Estimation of Potential Outcomes. Journal of Clinical Medicine, 13(12), 3464. https://doi.org/10.3390/jcm13123464