Physical Fitness Is Directly Related to Exercise Capacity and Ventilatory Response to Exercise in Men with HFrEF
Abstract
:1. Introduction
Objective
2. Materials and Methods
2.1. Study Subjects
2.2. Methods
- -
- A class: peak VO2 > 20 mL/kg/min (mild or absent deterioration),
- -
- B class: peak VO2 16.1–20 mL/kg/min (mild or moderate deterioration),
- -
- C class: peak VO2 10–16 mL/kg/min (moderate-severe deterioration) and
- -
- D class: peak VO2 < 10 mL/kg/min (severe deterioration).
2.3. The Functional Fitness Test (The Senior Fitness Test)
2.4. Statistical Analysis
3. Results
- -
- 6MWT [m] 480.0 (415.0–547.0),
- -
- stand up and go [ s] 5.5 (4.8–6.4),
- -
- chair stand [number] 14.0 (12.0–17.0),
- -
- arm curl [number] 15.0 (13.0–18.0),
- -
- chair sit and reach [cm] 0.0 (−8.0–5.0),
- -
- back scratch [cm] −8.0 (−16.0–0.0).
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Bauersachs, J.; Soltani, S. Herzinsuffizienz: Leitlinien-Update der ESC 2023 [Heart failure: Update of the ESC 2023 guidelines]. Herz 2024, 49, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Pardaens, S.; Calders, P.; Derom, E.; De Sutter, J. Exercise intolerance in heart failure: Update on exercise parameters for diagnosis, prognosis and therapeutic interventions. Acta Cardiol. 2013, 68, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Dubé, B.P.; Agostoni, P.; Laveneziana, P. Exertional dyspnoea in chronic heart failure: The role of the lung and respiratory mechanical factors. Eur. Respir. Rev. 2016, 25, 317–332. [Google Scholar] [CrossRef] [PubMed]
- Wegrzynowska-Teodorczyk, K.; Rudzińska, E.; Jankowska, E.; Grzesło, A.; Nowakowska, K.; Lazorczyk, M.; Banasiak, W.; Ponikowski, P.; Woźniewski, M. Determinants of physical fitness in males with systolic heart failure. Kardiol. Pol. 2010, 68, 146–154. [Google Scholar] [PubMed]
- Myers, J.; Arena, R.; Cahalin, L.P.; Labate, V.; Guazzi, M. Cardiopulmonary Exercise Testing in Heart Failure. Curr. Probl. Cardiol. 2015, 40, 322–372. [Google Scholar] [CrossRef] [PubMed]
- Schefold, J.C.; Filippatos, G.; Hasenfuss, G.; Anker, S.D.; von Haehling, S. Heart failure and kidney dysfunction: Epidemiology, mechanisms and management. Nat. Rev. Nephrol. 2016, 12, 610–623. [Google Scholar] [CrossRef] [PubMed]
- Kato, A. Muscle wasting is associated with reduced exercise capacity and advanced disease in patients with chronic heart failure. Future Cardiol. 2013, 9, 767–770. [Google Scholar] [CrossRef]
- Delgado, B.M.; Lopes, I.; Gomes, B.; Novo, A. Early rehabilitation in cardiology—Heart failure: The ERIC-HF protocol, a novel intervention to decompensated heart failure patients rehabilitation. Eur. J. Cardiovasc. Nurs. 2020, 19, 592–599. [Google Scholar] [CrossRef]
- Forman, D.E.; Fleg, J.L.; Kitzman, D.W.; Brawner, C.A.; Swank, A.M.; McKelvie, R.S.; Clare, R.M.; Ellis, S.J.; Dunlap, M.E.; Bittner, V. 6-min walk test provides prognostic utility comparable to cardiopulmonary exercise testing in ambulatory outpatients with systolic heart failure. J. Am. Coll. Cardiol. 2012, 60, 2653–2661. [Google Scholar] [CrossRef]
- Tumminello, G.; Guazzi, M.; Lancellotti, P.; Piérard, L.A. Exercise ventilation inefficiency in heart failure: Patho physiological and clinical significance. Eur. Heart J. 2007, 28, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.C.; Yang, N.I.; Wang, C.H.; Cherng, W.-J.; Chou, S.-L.; Pan, T.-L.; Wang, J.-S. Aerobic interval training elicits different heodynamic adaptation between heart failure patients with preserved and reduced eject fraction. Am. J. Phys. Med. Rehabil. 2016, 95, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Canada, J.M.; Trankle, C.R.; Buckley, L.F.; Carbone, S.; Abouzaki, N.A.; Kadariya, D.; Shah, K.; Cooke, R.; Kontos, M.C.; Patel, J.; et al. Severely impaired cardiorespiratory fitness in patients with recently decompensated systolic heart failure. Am. J. Cardiol. 2017, 120, 1854–1857. [Google Scholar] [CrossRef] [PubMed]
- Brawner, C.A.; Shafiq, A.; Aldred, H.A.; Ehrman, J.K.; Leifer, E.S.; Selektor, Y.; Tita, C.; Velez, M.; Williams, C.T.; Schairer, J.R.; et al. Comprehensive analysis of cardiopulmonary exercise testing and mortality in patients with systolic heart failure: The Henry Ford Hospital cardiopulmonary exercise testing (FIT-CPX) project. J. Card. Fail. 2015, 21, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Keteyian, S.J.; Patel, M.; Kraus, W.E.; Brawner, C.A.; McConnell, T.R.; Piña, I.L.; Leifer, E.S.; Fleg, J.L.; Blackburn, G.; Fonarow, G.C.; et al. (HF-ACTION Investigators). Variables Measured During Cardiopulmonary Exercise Testing as Predictors of Mortality in Chronic Systolic Heart Failure. J. Am. Coll. Cardiol. 2016, 67, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Dosbaba, F.; Žurková, P.; Baťalík, L.; Dosbaba, H.; Felšőci, M.; Vysoký, R.; Špinar, J.; Ludka, O. The importance of evaluating the effectiveness of the ventilation VE/VCO2 slope in patients with heart failure. Vnitr. Lek. Winter 2017, 63, 56–59. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. Development and validation of a functional fitness test for community-residing older adults. J. Aging Phys. Act. 1999, 7, 127–161. [Google Scholar] [CrossRef]
- Guazzi, M.; Adams, V.; Conraads, V. (EACPR/AHA Joint Scientific Statement). Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 2012, 126, 2261–2274. [Google Scholar] [CrossRef]
- Soumagne, D. Weber classification in cardiac rehabilitation. Acta Cardiol. 2012, 67, 285–290. [Google Scholar] [CrossRef]
- Węgrzynowska-Teodorczyk, K.; Dąbrowska, E.; Jankowska, E.A.; Ponikowski, P.; Banasiak, W.; Woźniewski, M. Usefulness of the Fullerton test in assessment of physical fitness in men with stable heart failure. Adv. Rehabil. 2010, 3, 11–18. [Google Scholar]
- Kitagaki, K.; Aoki, T.; Miura, H.; Shimada, Y.; Konishi, H.; Tsukamoto, Y.; Noguchi, T. Depressive symptoms, right ventricular function, and muscular strength are associated with peak oxygen uptake in patients with implantable left ventricular assist devices. Artif. Organs. 2024, 48, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Gobbo, S.; Favro, F.; Bullo, V.; Cugusi, L.; Blasio, A.D.; Bortoletto, A.; Bocalini, D.S.; Gasperetti, A.; Ermolao, A.; Bergamin, M. Muscle strength, aerobic capacity, and exercise tolerance are impaired in left ventricular assist devices recipients: A pilot study. Front. Physiol. 2022, 13, 967817. [Google Scholar] [CrossRef] [PubMed]
- Hotta, C.; Hiraki, K.; Watanabe, S.; Izawa, K.P.; Yasuda, T.; Osada, N.; Omiya, K.; Kimura, K. Knee extensor muscle strength and index of renal function associated with an exercise capacity of 5 metabolic equivalents in male chronic heart failure patients with chronic kidney disease. Clin. Exp. Nephrol. 2014, 18, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Brunjes, D.L.; Dunlop, M.; Wu, C.; Jones, M.; Kato, T.S.; Kennel, P.J.; Armstrong, H.F.; Choo, T.H.; Bartles, M.N.; Forman, D.E.; et al. Analysis of Skeletal Muscle Torque Capacity and Circulating Ceramides in Patients with Advanced Heart Failure. J. Card. Fail. 2016, 22, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Zavin, A.; Arena, R.; Joseph, J.; Allsup, K.; Daniels, K.; Schulze, P.C.; Lecker, S.; E Forman, D. Dynamic assessment of ventilatory efficiency during recovery from peak exercise to enhance cardiopulmonary exercise testing. Eur. J. Prev. Cardiol. 2013, 20, 779–785. [Google Scholar] [CrossRef]
- Saval, M.A.; Kerrigan, D.J.; Ophaug, K.M.; Ehrman, J.K.; Keteyian, S.J. Relationship between leg muscle endurance and (.)VE/(.)VCO2 slope in patients with heart failure. J. Cardiopulm. Rehabil. Prev. 2010, 30, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Izawa, K.P.; Watanabe, S.; Oka, K.; Hiraki, K.; Morio, Y.; Kasahara, Y.; Watanabe, Y.; Katata, H.; Osada, N.; Omiya, K. Upper and lower extremity muscle strength levels associated with an exercise capacity of 5 metabolic equivalents in male patients with heart failure. J. Cardiopulm. Rehabil. Prev. 2012, 32, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Cicoira, M. Muscle changes and exercise intolerance in congestive heart failure: Main role of the periphery. Ital. Heart J. Suppl. 2002, 3, 908–912. [Google Scholar]
- Piepoli, M.F.; Coats, A.J. The ‘skeletal muscle hypothesis in heart failure’ revised. Eur. Heart J. 2013, 34, 486–488. [Google Scholar] [CrossRef]
- Kasahara, Y.; Izawa, K.P.; Watanabe, S.; Osada, N.; Omiya, K. The Relation of Respiratory Muscle Strength to Disease Severity and Abnormal Ventilation During Exercise in Chronic Heart Failure Patients. Res. Cardiovasc. Med. 2015, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- Poggio, R.; Arazi, H.C.; Giorgi, M.; Miriuka, S.G. Prediction of severe cardiovascular events by VE/VCO2 slope versus peak VO2 in systolic heart failure: A meta-analysis of the published literature. Am. Heart J. 2010, 160, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhang, X.; Ma, W.; Song, H.; Gong, Z.; Wang, Q.; Che, L.; Xu, W.; Jiang, J.; Xu, J.; et al. VE/VCO2 slope and its prognostic value in patients with chronic heart failure. Exp. Ther. Med. 2015, 9, 1407–1412. [Google Scholar] [CrossRef] [PubMed]
- Perone, F.; Bernardi, M.; Redheuil, A.; Mafrica, D.; Conte, E.; Spadafora, L.; Ecarnot, F.; Tokgozoglu, L.; Santos-Gallego, C.G.; Kaiser, S.E.; et al. Role of Cardiovascular Imaging in Risk Assessment Recent Advances, Gaps in Evidence and Future Directions. J. Clin. Med. 2023, 12, 5563. [Google Scholar] [CrossRef]
- Stafford, P.L.; Purvis, A.; Bilchick, K.; Nguyen, J.D.K.; Patil, P.; Baldeo, C.; Mehta, K.; Kwon, Y.; Breathett, K.; Shisler, D.; et al. Echocardiographic derived pulmonary artery wedge pressure is associated with mortality, heart hospitalizations and functional capacity in chronic systolic heart failure: Insights from the HF-ACTION trial. J. Echocardiogr. 2024, 22, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Pulignano, G.; Del, S.D.; Di, L.A.; Alunni, G.; Senni, M.; Tarantini, L.; Cioffi, G.; Tinti, M.D.; Barbati, G.; Minardi, G.; et al. Incremental Value of Gait Speed in Predicting Prognosis of Older Adults With Heart Failure: Insights From the IMAGE-HF Study. JACC Heart Fail. 2016, 4, 289–298. [Google Scholar] [CrossRef]
- Gardin, J.M.; Leifer, E.S.; Fleg, J.L.; Whellan, D.; Kokkinos, P.; LeBlanc, M.H.; Wolfel, E.; Kitzman, D.W. HF-ACTION Investigators. Relationship of Doppler-Echocardiographic left ventricular diastolic function to exercise performance in systolic heart failure: The HF-ACTION study. Am. Heart J. 2009, 158 (Suppl. S4), S45–S52. [Google Scholar] [CrossRef] [PubMed]
- Saji, M.; Higuchi, R.; Tobaru, T.; Iguchi, N.; Takanashi, S.; Takayama, M.; Isobe, M. Impact of Frailty Markers for Unplanned Hospital Readmission Following Transcatheter Aortic Valve Implantation. Circ. J. 2018, 82, 2191–2198. [Google Scholar] [CrossRef]
- Guazzi, M.; Myers, J.; Abella, J.; Peberdy, M.A.; Bensimhon, D.; Chase, P.; Arena, R. The added prognostic value of ventilatory efficiency to the Weber classification system in patients with heart failure. Int. J. Cardiol. 2008, 129, 86–92. [Google Scholar] [CrossRef]
Name of the Test | Methodology of the Test | Result of the Test | Agility |
---|---|---|---|
Up-and-go [UG] | The patient is asked to stand up from the chair, walk around a cone located at a distance of 2.44 m and return to the baseline position on the chair, as fast as possible. | The test was performed twice, where the shorter time (measured with a 0.1 s accuracy) was selected for further analyses. | Assessing agility and dynamic balance. |
Chair stand | The patient is asked to do as many full stands as possible within 30 s, without the assistance of arms, which remain crossed at the level of the chest. | The number of completed full stands was used as the result of the test. | Assessing the muscular endurance of the lower parts of the body. |
Arm curl | The patient is asked to lift 3.5 kg using his forearm as many times as possible within 30 s. In sitting position, the patient was asked to lift weights by flexion and pronation of the forearm of the dominant hand, followed by return to the baseline. | The total number of arm curls was used as the result of the test. | Assessing upper body muscular endurance. |
Sit-and-reach [SR] | The patient is asked to reach the toes using hands, while sitting at the edge of a chair with the dominant leg extended and the foot resting on the floor (dorsiflexion). | The test was performed twice and the shorter distance between the fingers and toes (recorded with a 0.5 cm accuracy) was selected for further analyses. | Assessing the flexibility of the lower parts of the body. |
Back scratch [BS] | The subject tries to reach the hand held at the middle of the back using the other hand moved over the shoulder and, if possible, to overlap the fingers. | The test was performed twice and the shorter distance between the straightened fingers of both hands (measured with a 0.5 cm accuracy) was selected for further analyses. | Assessing the flexibility of the upper parts of the body. |
Six-minute walk test [6MWT] | The patient has to walk back and forth along the 30 m hospital corridor as fast as possible in order to cover the longest possible distance for 6 min. | The distance recorded with a one-meter accuracy is used as the result of this test. | Assessing aerobic capacity. |
Variables | Men with HFrEF (n = 382) | Weber Class D (n = 37) | Weber Class C (n = 132) | Weber Class B (n = 120) | Weber Class A (n = 93) |
---|---|---|---|---|---|
Age, years | 61 ± 10 | 63.1 ± 8.3 | 63.6 ± 9.6 | 61.1 ± 9.6 | 54.9 ± 9.3 |
BMI, kg/m2 | 27.9 ± 4.5 | 27.4 ± 4.8 | 28.3 ± 4.3 | 28.2 ± 4.7 | 26.4 ± 4.4 |
CHF aetiology, ischemic % | 249 (65%) | 28 (76%) | 100 (73%) | 75 (62%) | 51 (56%) |
NYHA class, I/II/III/IV | 63/190/123/6 (16/50/32/2%) | 0/7/26/4 (0/19/70/11%) | 4/73/53/2 (3/55/40/2%) | 24/69/27/0 (20/57/23/0%) | 35/51/7/0 (37/55/8/0%) |
LVEF, % | 30.5 ± 8.3 | 26.5 ± 8.5 | 29.7 ± 7.8 | 31.0 ± 8.6 | 32.5 ± 7.9 |
NT-pro BNP [pg/mL] | 2334 ± 3652 | 5705.8 ± 6299.8 | 2748 ± 4012 | 1971 ± 2285 | 774 ± 1287 |
Ex-time [min] | 10.9 (7.5–12.8) | 4.8 (4.0–6.5) | 8.5 (6.4–10.3) | 11.8 (10.3–12.7) | 14.4 (12.7–15.9) |
Peak VO2 [ml/kg/min.] | 16.5 (13.3–20.0) | 9.3 (7.6–9.6) | 13.6 (12.2–14.7) | 17.9 (16.8–18.8) | 22.8 (21.8–25.6) |
Slope VE/VCO2 | 35.7 (30.7–42.3) | 50.0 (37.5–61.2) | 38.0 (32.3–45.6) | 35.2 (30.1–39.9) | 31.6 (27.3–36.4) |
Diabetes mellitus n, (%) | 100 (26%) | 15 (40.5%) | 46 (34.8%) | 26 (21.7%) | 13 (14.0%) |
Atrial fibrillation n, (%) | 104 (27%) | 15 (40.5%) | 40 (30.3%) | 40 (33.3%) | 9 (9.7%) |
Haemoglobin, g/dL | 14.3 ± 1.4 | 13.5 ± 1.8 | 14.1 ± 1.4 | 14.3 ± 1.5 | 14.7 ± 1.1 |
Treatment: | |||||
ACE-I and/or ARB n, (%) | 352 (92%) | 32 (86.5%) | 122 (92.4%) | 111 (92.5%) | 87 (93.5%) |
Beta-blockers | 364 (95%) | 35 (94.6%) | 127 (96.2%) | 114 (95.0%) | 88 (94.6%) |
Digoxin | 105 (27%) | 16 (43.2%) | 38 (28.8%) | 35 (29.2%) | 16 (17.2%) |
Statins | 297 (77%) | 29 (78.4%) | 104 (78.8%) | 94 (78.3%) | 70 (75.3%) |
Aldosterone receptor antagonists | 176 (46%) | 21 (56.6%) | 71 (53.8%) | 46 (38.3%) | 38 (40.9%) |
Loop diuretics | 319 (83%) | 35 (94.6%) | 119 (90.2%) | 98 (81.7%) | 67 (72.0%) |
The Senior Fitness Test | Ex-Time [min] | Peak VO2 [mL/kg/min] | Slope VE/VCO2 |
---|---|---|---|
Spearman Correlation Coefficients | |||
6 min walk test [m] | 0.57 * | 0.51 * | −0.35 * |
Stand up and go [s] | −0.46 * | −0.43 * | 0.27 * |
Chair stand [number] | 0.45 * | 0.41 * | −0.28 * |
Arm curl [number] | 0.40 * | 0.45 * | −0.29 * |
Chair sit and reach [cm] | 0.04 | 0.02 | 0.04 |
Back scratch [cm] | 0.10 | 0.11 | 0.05 |
The Senior Fitness Test | Weber Class D N = 37 | Weber Class C N = 132 | Weber Class B N = 120 | Weber Class A N = 93 | Weber Class D vs. Weber Class C | Weber Class C vs. Weber Class B | Weber Class B vs. Weber Class A |
---|---|---|---|---|---|---|---|
6 min walk test [m] | 336 (270–405) | 450 (398–500) | 504 (450–562) | 540 (480–605) | p < 0.05 | p < 0.0001 | p < 0.0001 |
Stand up and go [s] | 7.0 (6.0–8.1) | 5.8 (5.1–6.7) | 5.4 (4.8–5.9) | 4.8 (4.3–5.3) | p < 0.001 | ns | p < 0.05 |
Chair stand [number] | 10 (9.8–12) | 13 (11–16) | 14 (13–17) | 16 (14–19) | p < 0.05 | p < 0.0001 | p < 0.0001 |
Arm curl [number] | 10.5 (9–13) | 14 (12–17) | 16 (13–19) | 18 (15–21) | p < 0.001 | p < 0.0001 | p < 0.0001 |
Chair sit and reach [cm] | −4.5 (−11.0–0.0) | 0.0 (−8.0–7.0) | 0.0 (−7.0–5.0) | 0.0 (−8.0–3.5) | ns | ns | ns |
Back scratch [cm] | −9.0 (−21.0 = 0.0) | −9.0 (−18.0–0.0) | −7.5 (−13.0–0.0) | −4.5 (−11.0–2.0) | ns | ns | ns |
The Senior Fitness Test | Peak VO2 > 18 mL/kg/min and VE/VCO2 Slope ≤ 35 Median (Upper and Lower Quartile) N = 90 | Peak VO2 > 18 mL/kg/min and VE/VCO2 Slope > 35 Median (Upper and Lower Quartile) N = 67 | p Value |
---|---|---|---|
6 min walk test [m] | 550 (490–601) | 499 (456–547) | p < 0.0001 |
Stand up and go [s] | 4.8 (4.3–5.5) | 5.3 (4.7–5.9) | p < 0.0001 |
Chair stand [number] | 17 (14.0–18.0) | 14.0 (12.5–16.0) | p < 0.0001 |
Arm curl [number] | 19 (16.0–21.0) | 15.0 (13.0–18.0) | p < 0.00001 |
Chair sit and reach [cm] | 0.0 (−7.5–5.5) | 0.0 (−8.0–3.0) | p = 0.96 |
Back scratch [cm] | −7.0 (−12.0–2.0) | −4.0 (−13.0–2.0) | p = 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kisiel-Sekura, O.; Wójciak, M.; Siennicka, A.; Tkaczyszyn, M.; Drozd, M.; Jankowska, E.A.; Doroszko, A.; Banasiak, W.; Węgrzynowska-Teodorczyk, K. Physical Fitness Is Directly Related to Exercise Capacity and Ventilatory Response to Exercise in Men with HFrEF. J. Clin. Med. 2024, 13, 3465. https://doi.org/10.3390/jcm13123465
Kisiel-Sekura O, Wójciak M, Siennicka A, Tkaczyszyn M, Drozd M, Jankowska EA, Doroszko A, Banasiak W, Węgrzynowska-Teodorczyk K. Physical Fitness Is Directly Related to Exercise Capacity and Ventilatory Response to Exercise in Men with HFrEF. Journal of Clinical Medicine. 2024; 13(12):3465. https://doi.org/10.3390/jcm13123465
Chicago/Turabian StyleKisiel-Sekura, Olga, Magdalena Wójciak, Agnieszka Siennicka, Michał Tkaczyszyn, Marcin Drozd, Ewa A. Jankowska, Adrian Doroszko, Waldemar Banasiak, and Kinga Węgrzynowska-Teodorczyk. 2024. "Physical Fitness Is Directly Related to Exercise Capacity and Ventilatory Response to Exercise in Men with HFrEF" Journal of Clinical Medicine 13, no. 12: 3465. https://doi.org/10.3390/jcm13123465
APA StyleKisiel-Sekura, O., Wójciak, M., Siennicka, A., Tkaczyszyn, M., Drozd, M., Jankowska, E. A., Doroszko, A., Banasiak, W., & Węgrzynowska-Teodorczyk, K. (2024). Physical Fitness Is Directly Related to Exercise Capacity and Ventilatory Response to Exercise in Men with HFrEF. Journal of Clinical Medicine, 13(12), 3465. https://doi.org/10.3390/jcm13123465