Infections with Klebsiella pneumoniae in Children Undergoing Anticancer Therapy or Hematopoietic Cell Transplantation: A Multicenter Nationwide Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Study
2.2. Patients and Data Collection
2.3. Definitions
2.4. Antimicrobial Prophylaxis
2.4.1. HCT Patients
2.4.2. PHO Patients
2.5. Culture, Identification, and Susceptibility to Antibiotics
2.6. Statistical Methods
3. Results
3.1. Demographics
3.2. Incidence of Infections
3.3. Coinfections with Other Pathogens
3.4. Susceptibility to Selected Antibiotics and Mechanisms of Resistance
3.5. Antibiotic Treatment
3.6. Outcome
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Childhood Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer-in-children (accessed on 25 March 2024).
- Muratore, E.; Baccelli, F.; Leardini, D.; Campoli, C.; Belotti, T.; Viale, P.; Prete, A.; Pession, A.; Masetti, R.; Zama, D. Antimicrobial Stewardship Interventions in Pediatric Oncology: A Systematic Review. J. Clin. Med. 2022, 11, 4545. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Chen, Y.; Yu, K.; Yang, Y.; Wang, X.; Yang, X.; Qian, J.; Liu, Z.-X.; Wu, B. Fatal Infections Among Cancer Patients: A Population-Based Study in the United States. Infect. Dis. Ther. 2021, 10, 871–895. [Google Scholar] [CrossRef] [PubMed]
- Zembower, T.R. Epidemiology of Infections in Cancer Patients. Infect. Complicat. Cancer Patients 2014, 161, 43–89. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Huang, Z.; Tao, X.; Li, J.; Hu, Y.; Dou, Q.; Zou, M. Risk Factors and Outcomes for Carbapenem-Resistant Klebsiella Pneumoniae Bacteremia in Onco-Hematological Patients. J. Infect. Dev. Ctries. 2019, 13, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Al-Mulla, N.A.; Taj-Aldeen, S.J.; El Shafie, S.; Janahi, M.; Al-Nasser, A.A.; Chandra, P. Bacterial Bloodstream Infections and Antimicrobial Susceptibility Pattern in Pediatric Hematology/Oncology Patients after Anticancer Chemotherapy. Infect. Drug Resist. 2014, 7, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Madney, Y.; Aboubakr, S.; Khedr, R.; Hafez, H.; Ahmed, N.; Elsheshtawy, K.; Elanany, M.; Salahelden, A.; Shalaby, L.; Galal Behairy, O. Carbapenem-Resistant Enterobacteriaceae (CRE) among Children with Cancer: Predictors of Mortality and Treatment Outcome. Antibiotics 2023, 12, 405. [Google Scholar] [CrossRef] [PubMed]
- Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Klebsiella Pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics 2023, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Huang, X.; Rao, H.; Yu, H.; Long, S.; Li, Y.; Zhang, J. Klebsiella Pneumoniae Bacteremia Mortality: A Systematic Review and Meta-Analysis. Front. Cell. Infect. Microbiol. 2023, 13, 1157010. [Google Scholar] [CrossRef] [PubMed]
- Xu, E.; Pérez-Torres, D.; Fragkou, P.C.; Zahar, J.-R.; Koulenti, D. Nosocomial Pneumonia in the Era of Multidrug-Resistance: Updates in Diagnosis and Management. Microorganisms 2021, 9, 534. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Lob, S.H.; Young, K.; Motyl, M.R.; Sahm, D.F. Activity of Ceftolozane/Tazobactam against Gram-Negative Isolates from Patients with Lower Respiratory Tract Infections—SMART United States 2018-2019. BMC Microbiol. 2021, 21, 74. [Google Scholar] [CrossRef]
- Cantón, R.; Loza, E.; Arcay, R.M.; Cercenado, E.; Castillo, F.J.; Cisterna, R.; Gálvez-Benítez, L.; González Romo, F.; Hernández-Cabezas, A.; Rodríguez-Lozano, J.; et al. Antimicrobial Activity of Ceftolozane-Tazobactam against Enterobacterales and Pseudomonas Aeruginosa Recovered during the Study for Monitoring Antimicrobial Resistance Trends (SMART) Program in Spain (2016–2018). Rev. Esp. Quim. 2021, 34, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Ponce-de-Leon, A.; Rodríguez-Noriega, E.; Morfín-Otero, R.; Cornejo-Juárez, D.P.; Tinoco, J.C.; Martínez-Gamboa, A.; Gaona-Tapia, C.J.; Guerrero-Almeida, M.L.; Martin-Onraët, A.; Vallejo Cervantes, J.L.; et al. Antimicrobial Susceptibility of Gram-Negative Bacilli Isolated from Intra-Abdominal and Urinary-Tract Infections in Mexico from 2009 to 2015: Results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). PLoS ONE 2018, 13, e0198621. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No Eskape. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef] [PubMed]
- Rekomendacje. Pałeczki Enterobacterales Wytwarzające Karbapenemazy (CPE)—Epidemiologia, Diagnostyka, Leczenie i Profilaktyka Zakażeń; Narodowy Program Ochrony Antybiotyków: Warsaw, Poland, 2022. [Google Scholar]
- Data from the ECDC Surveillance Atlas—Antimicrobial Resistance. Available online: https://www.ecdc.europa.eu/en/antimicrobial-resistance/surveillance-and-disease-data/data-ecdc (accessed on 6 May 2023).
- Dani, A. Colonization and Infection. Cent. Eur. J. Urol. 2014, 67, 86–87. [Google Scholar] [CrossRef]
- Infectious Diseases Working Party (IDWP). Available online: https://www.ebmt.org/working-parties/infectious-diseases-working-party-idwp (accessed on 23 May 2024).
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Chemotherapy Protocols. Available online: http://www.bccancer.bc.ca/health-professionals/clinical-resources/chemotherapy-protocols (accessed on 23 May 2024).
- Hryniewicz, W.; Ozorowski, T.; Pawlik, K.; Stefaniuk, E. (Eds.) Wskazania do Wykonywania Badań Mikrobiologicznych u Pacjentów Hospitalizowanych; Narodowy Instytut Leków: Warsaw, Poland, 2015; ISBN 978-83-938000-0-1. [Google Scholar]
- Eucast: Clinical Breakpoints and Dosing of Antibiotics. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 30 April 2024).
- Schonardie, A.P.; Beck, E.; Rigatto, M.H. Prevalence of Bloodstream Infection Pathogens in Hemato-Oncological Patients and Predictors of Carbapenem-Resistant Gram-Negative Bacterial Infections during Febrile Neutropenia. Braz. J. Infect. Dis. 2023, 27, 102758. [Google Scholar] [CrossRef]
- Khan, S.; Phe, K.; Tam, V.H. Real Life Experience with Ceftolozane/Tazobactam Therapy for Pseudomonas Aeruginosa Bacteremia. J. Chemother. 2021, 33, 595–597. [Google Scholar] [CrossRef]
- Bhat, S.; Muthunatarajan, S.; Mulki, S.S.; Archana Bhat, K.; Kotian, K.H. Bacterial Infection among Cancer Patients: Analysis of Isolates and Antibiotic Sensitivity Pattern. Int. J. Microbiol. 2021, 2021, 8883700. [Google Scholar] [CrossRef]
- Amanati, A.; Sajedianfard, S.; Khajeh, S.; Ghasempour, S.; Mehrangiz, S.; Nematolahi, S.; Shahhosein, Z. Bloodstream Infections in Adult Patients with Malignancy, Epidemiology, Microbiology, and Risk Factors Associated with Mortality and Multi-Drug Resistance. BMC Infect. Dis. 2021, 21, 636. [Google Scholar] [CrossRef]
- Perdikouri, E.I.A.; Arvaniti, K.; Lathyris, D.; Apostolidou Kiouti, F.; Siskou, E.; Haidich, A.B.; Papandreou, C. Infections Due to Multidrug-Resistant Bacteria in Oncological Patients: Insights from a Five-Year Epidemiological and Clinical Analysis. Microorganisms 2019, 7, 277. [Google Scholar] [CrossRef]
- López-Cubillos, J.F.; Díaz, A.; Cárdenas, V.C.; Camacho-Moreno, G.; Cantor, E.; Arcila, E.M.; Hurtado, I.C.; Correa, A.M.; Tierradentro, T.M.; Ramirez, O.; et al. Carbapenem Resistance in Enterobacterales Bloodstream Infections among Children with Cancer or Post-Haematopoietic Stem Cell Transplant: A Retrospective Cohort Study. J. Antimicrob. Chemother. 2023, 78, 2462–2470. [Google Scholar] [CrossRef]
- Jungrungrueng, T.; Anugulruengkitt, S.; Lauhasurayotin, S.; Chiengthong, K.; Poparn, H.; Sosothikul, D.; Techavichit, P. The Pattern of Microorganisms and Drug Susceptibility in Pediatric Oncologic Patients with Febrile Neutropenia. J. Pathog. 2021, 2021, 6692827. [Google Scholar] [CrossRef]
- Al Battashi, A.; Al Harrassi, B.; Al Maskari, N.; Al Hashami, H.; Al Awaidy, S. Alarming Antibiotic Resistance in Pediatric Oncology Patients: A Three-Year Prospective Cohort Study from Oman. Infect. Drug Resist. 2022, 15, 3939–3947. [Google Scholar] [CrossRef] [PubMed]
- Lubwama, M.; Kateete, D.; Katende, G.; Kigozi, E.; Orem, J.; Phipps, W.; Bwanga, F. CTX-M, TEM, and SHV Genes in Escherichia Coli, Klebsiella Pneumoniae, and Enterobacter spp. Isolated from Hematologic Cancer Patients with Bacteremia in Uganda. Infect. Drug Resist. 2024, 17, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Darmofalska, K.; Skowrońska, A.; Woźniak, A.; Pawelec, M.; Skrzeczyńska, J.; Ochman, E.; Magdziak, A. Etiological Factors of Bloodstream Infections in Oncological Patients, Who Was Hospitalized at the National Institute of Maria Skłodowska-Curie—National Research Institute in Warsaw in 2020–2022. Przegl. Epidemiol. 2023, 77, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Joudeh, N.; Sawafta, E.; Abu Taha, A.; Hamed Allah, M.; Amer, R.; Odeh, R.Y.; Salameh, H.; Sabateen, A.; Aiesh, B.M.; Zyoud, S.H. Epidemiology and Source of Infection in Cancer Patients with Febrile Neutropenia: An Experience from a Developing Country. BMC Infect. Dis. 2023, 23, 106. [Google Scholar] [CrossRef] [PubMed]
- Erbaş, İ.C.; Çakıl Güzin, A.; Özdem Alataş, Ş.; Karaoğlu Asrak, H.; Akansu, İ.; Akyol, Ş.; Özlü, C.; Tüfekçi, Ö.; Yılmaz, Ş.; Ören, H.; et al. Etiology and Factors Affecting Severe Complications and Mortality of Febrile Neutropenia in Children with Acute Leukemia. Turk. J. Haematol. 2023, 40, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Averbuch, D.; Tridello, G.; Hoek, J.; Mikulska, M.; Akan, H.; Yaňez San Segundo, L.; Pabst, T.; Özçelik, T.; Klyasova, G.; Donnini, I.; et al. Antimicrobial Resistance in Gram-Negative Rods Causing Bacteremia in Hematopoietic Stem Cell Transplant Recipients: Intercontinental Prospective Study of the Infectious Diseases Working Party of the European Bone Marrow Transplantation Group. Clin. Infect. Dis. 2017, 65, 1819–1828. [Google Scholar] [CrossRef] [PubMed]
- Garg, V.K.; Mishra, S.; Gupta, N.; Garg, R.; Sachidanand, B.; Vinod, K.; Gautam, H.; Kapil, A.; Bhatnagar, S. Microbial and Antibiotic Susceptibility Profile among Isolates of Clinical Samples of Cancer Patients Admitted in the Intensive Care Unit at Regional Tertiary Care Cancer Center: A Retrospective Observational Study. Indian J. Crit. Care Med. 2019, 23, 67–72. [Google Scholar] [CrossRef]
- Nirmal, G.; Jithin, T.K.; Gopakumar, K.G.; Parthiban, R.; Nair, C. Prevalence and Outcomes of Carbapenem-Resistant Bloodstream Infection in Children with Cancer. J. Pediatr. Hematol. Oncol. 2023, 45, e678–e682. [Google Scholar] [CrossRef]
- Richert-Przygonska, M.; Czyzewski, K.; Dziedzic, M.; Zalas-Wiecek, P.; Gryniewicz-Kwiatkowska, O.; Gietka, A.; Malas, Z.; Semczuk, K.; Chelmecka, L.; Zak, I.; et al. Infections with Stenotrophomonas Maltophilia in Children Undergoing Anticancer Therapy or Hematopoietic Cell Transplantation: A Multicenter Nationwide Study. Pediatr. Infect. Dis. J. 2022, 41, 846. [Google Scholar] [CrossRef] [PubMed]
- Çalık Başaran, N.; Karaağaoğlu, E.; Hasçelik, G.; Durusu Tanrıöver, M.; Akova, M. Prospective Evaluation of Infection Episodes in Cancer Patients in a Tertiary Care Academic Center: Microbiological Features and Risk Factors for Mortality. Turk. J. Hematol. 2016, 33, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Hattori, T.; Inaba, Y.; Ichinohe, S.; Kitano, T.; Kobayashi, D.; Saisu, T.; Ozaki, T. The Epidemiology of Developmental Dysplasia of the Hip in Japan: Findings from a Nationwide Multi-Center Survey. J. Orthop. Sci. 2017, 22, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Chumbita, M.; Puerta-Alcalde, P.; Yáñez, L.; Cuesta, M.A.; Chinea, A.; Español Morales, I.; Fernández Abellán, P.; Gudiol, C.; Guerreiro, M.; González-Sierra, P.; et al. Resistance to Empirical β-Lactams Recommended in Febrile Neutropenia Guidelines in Gram-Negative Bacilli Bloodstream Infections in Spain: A Multicentre Study. J. Antimicrob. Chemother. 2022, 77, 2017–2023. [Google Scholar] [CrossRef] [PubMed]
PHO Patients | HCT Patients | |||
---|---|---|---|---|
Total | 443/9121 | (4.86%) | 84/1697 | (4.95%) |
ALL | 176/2323 | (7.58%) | 33/427 | (7.73%) |
AML | 47/432 | (10.88%) | 12/241 | (4.98%) |
NHL | 35/583 | (6.00%) | 4/58 | (6.90%) |
HL | 6/675 | (0.89%) | 1/57 | (1.75%) |
MDS | 1/47 | (2.13%) | 3/73 | (4.11%) |
LCH | 5/162 | (3.09%) | ||
CNST | 56/1512 | (3.70%) | 9/169 | (5.33%) |
NBL | 43/775 | (5.55%) | 6/177 | (3.39%) |
ES | 10/158 | (6.33%) | ||
OS | 12/109 | (11.01%) | 6/245 | (2.45%) |
RMS/STS | 23/385 | (5.97%) | 2/78 | (2.56%) |
WT | 15/521 | (2.88%) | ||
GCT | 11/358 | (3.07%) | ||
Other | 3/1081 | (0.27%) | 8/172 | (4.65%) |
PHO Centers (n = 443) | HCT Centers (n = 84) | ||
---|---|---|---|
Diagnosis | Diagnosis | ||
ALL | 176 (39.7%) | ALL | 33 (39.3%) |
AML | 47 (10.6%) | AML | 12 (14.3%) |
NHL | 35 (7.9%) | NHL | 4 (4.8%) |
HL | 6 (1.4%) | HL | 1 (1.2%) |
MDS | 1 (0.2%) | MDS | 3 (3.6%) |
LCH | 5 (1.1%) | ||
CNST | 56 (12.6%) | CNST | 9 (10.7%) |
NBL | 43 (9.7%) | NBL | 6 (7.1%) |
ES | 10 (2.3%) | ||
OS | 12 (2.7%) | OS | 6 (7.1%) |
RMS/STS | 23 (5.2%) | RMS/STS | 2 (2.4%) |
WT | 15 (3.4%) | ||
GCT | 11 (2.5%) | ||
Other | 3 (0.7%) | Other | 8 (9.5%) |
Age (median, min max) [years] | 5.8 (0.01–18.0) | Age (median, min max) [years] | 9.3 (0.01–19.1) |
Gender | Gender | ||
Girls | 191 (43.1%) | Girls | 37 (44.0%) |
Boys | 252 (56.9%) | Boys | 47 (56.0%) |
Source of infection | Source of infection | ||
Blood | 195 (44.0%) | Blood | 24 (28.6%) |
Urine | 235 (53.0%) | Urine | 56 (66.6%) |
Wound | 8 (1.8%) | Wound | 1 (1.2%) |
Others | 5 (1.2%) | Others | 3 (3.6%) |
ESβL-Positive | ESβL-Negative | MDR | XDR | Carbapenemase-Positive | |
---|---|---|---|---|---|
2020/2021 (n = 105) | 55 (52.4%) | 50 (47.6%) | 39 | 3 | 3 (KPC, VIM, NDM) |
2018/2019 (n = 98) | 69 (70.4%) | 29 (29.6%) | 42 | 1 | - |
2016/2017 (n = 115) | 48 (41.7%) | 67 (58.3%) | 39 | 1 | 1 (VIM) |
2014/2015 (n = 75) | 39 (52.0%) | 36 (48.0%) | 21 | - | - |
2012/2013 (n = 50) | 30 (60.0%) | 20 (40.0%) | 3 | - | - |
Total (n = 443) | 241 (54.4%) | 202 (45.6%) | 144 | 5 | 4 |
ESβL-Positive | ESβL-Negative | MDR | XDR | Carbapenemase-Positive | |
---|---|---|---|---|---|
2020/2021 (n = 20) | 11 (55.0%) | 9 (45.0%) | 6 | 3 | 2 (VIM, NDM) |
2018/2019 (n = 27) | 19 (70.4%) | 8 (29.6%) | 11 | 2 | 1 (VIM) |
2016/2017 (n = 20) | 15 (75.0%) | 5 (25.0%) | 7 | - | - |
2014/2015 (n = 7) | 7 (100.0%) | - | 6 | - | - |
2012/2013 (n = 10) | 8 (80.0%) | 2 (20.0%) | 3 | - | - |
Total (n = 84) | 60 (71.4%) | 24 (28.6%) | 33 | 5 | 3 |
Antimicrobials Used in Therapy | PHO (n = 443) | HCT (n = 84) |
---|---|---|
Amoxicillin/clavulanic acid | 11 (2.5%) | - |
Piperacillin/tazobactam | 71 (16.0%) | 10 (11.9%) |
Cefuroxime | 17 (3.8%) | 1 (1.2%) |
Ceftazidime | 33 (7.4%) | 6 (7.1%) |
Cefotaxime | 4 (0.9%) | 1 (1.2%) |
Ceftriaxone | 9 (2.0%) | - |
Cefepime | 33 (7.4%) | 6 (7.1%) |
Cefoperazone/sulperazon | 14 (3.2%) | - |
Ceftazidime/avibactam | - | 1 (1.2%) |
Meropenem | 201 (45.4%) | 33 (39.3%) |
Imipenem | 33 (7.4%) | 6 (7.1%) |
Ertapenem | 6 (1.4%) | - |
Gentamicin | 3 (0.7%) | - |
Amikacin | 120 (27.1%) | 24 (28.6%) |
Ciprofloxacin | 20 (4.5%) | 3 (3.6%) |
Trimethoprim/sulphametoxazole | 17 (3.8%) | - |
Tigecycline | 2 (0.5%) | - |
Colistin | 6 (1.4%) | 6 (7.1%) |
Vancomycin | 50 (11.3%) | 9 (10.7%) |
Teicoplanin | 16 (3.6%) | 12 (14.3%) |
Linezolid | 13 (2.9%) | 2 (2.4%) |
Cloxacillin | 3 (0.7%) | - |
Clarithromycin | 1 (0.2%) | - |
Azithromycin | 1 (0.2%) | - |
Clindamycin | 1 (0.2%) | 2 (2.4%) |
No data | 18 (4.1%) | 15 (17.9%) |
HCT/ PHO | Sex | Age (Years) | Disease | Source of Infection | Time from Infection to Death (Days) | Cause of Death | Monomicrobial Infection | ESβL | Carbapenem Resitance | Phenotype of Isolate | Antibiotics Used in Therapy | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | HCT | F | 1.7 | AML | Blood | 8 d | Sepsis | Yes | + | No | MDR | IPM, TEC |
2 | HCT | F | 18.4 | AML | Blood | 1 d | Bacteremia | Yes | - | No | MDS | MEM, ETP, CIP, CLR, VA, TEC |
3 | PHO | F | 16.3 | ALL | Blood | 15 d | Progression of maligancy | No E. coli | - | No | MDS | FEP, MEM, AN, VA, LZD |
4 | PHO | F | 14.9 | ALL | Blood | 3 d | Septic shock | Yes | + | No | MDR | MEM, VA, MTR |
5 | PHO | M | 15.6 | ALL | Urine | 7 d | MOF | Yes | + | No | XDR | IPM |
6 | PHO | M | 15.6 | ALL | Blood | 20 d | MOF | Yes | + | No | XDR | TZP, MEM |
7 | PHO | M | 3.6 | ALL | Urine | 19 d | Septic shock | Yes | + | No | MDR | MEM |
8 | PHO | M | 11.6 | ALL | Blood | 2 d | Septic shock | Yes | + | No | MDR | CAZ, MEM |
9 | PHO | M | 9.6 | ALL | Urine | 14 d | MOF | Yes | + | IPM-S MEM-R | XDR | MEM, AN, LZD |
10 | PHO | F | 14.8 | AML | Blood | 1 d | Septic shock | Yes | + | No | MDR | MEM, COL, VA |
11 | PHO | F | 10.1 | AML | Blood | 8 d | Septic shock | Yes | + | IPM-R MEM-R | XDR | MEM, AN, LZD |
12 | PHO | F | 17.7 | AML | Blood | 22 d | Sepsis | Yes | - | No | MDS | TZP, MEM, LZD |
13 | PHO | M | 1.3 | CNST | Urine | 3 d | Progression of maligancy | No P. mirabilis | + | No | MDR | IPM |
14 | PHO | F | 12.4 | CNST | Blood | 5 d | Sepsis | Yes | - | No | MDS | IPM, CIP, MTR |
15 | PHO | M | 1.7 | WT | Blood | 1 d | Sepsis | Yes | - | No | MDS | MEM, VA |
16 | PHO | F | 17.7 | OS | Urine | 17 d | Progression of maligancy | Yes | - | No | MDS | TZP, FEP |
17 | PHO | M | 6.4 | RMS | Wound swab | 29 d | Progression of maligancy | Yes | + | No | MDR | TGC, LZD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sękowska, A.; Czyżewski, K.; Jaremek, K.; Zalas-Więcek, P.; Zając-Spychała, O.; Wachowiak, J.; Szmydki-Baran, A.; Hutnik, Ł.; Gietka, A.; Gryniewicz-Kwiatkowska, O.; et al. Infections with Klebsiella pneumoniae in Children Undergoing Anticancer Therapy or Hematopoietic Cell Transplantation: A Multicenter Nationwide Study. J. Clin. Med. 2024, 13, 4078. https://doi.org/10.3390/jcm13144078
Sękowska A, Czyżewski K, Jaremek K, Zalas-Więcek P, Zając-Spychała O, Wachowiak J, Szmydki-Baran A, Hutnik Ł, Gietka A, Gryniewicz-Kwiatkowska O, et al. Infections with Klebsiella pneumoniae in Children Undergoing Anticancer Therapy or Hematopoietic Cell Transplantation: A Multicenter Nationwide Study. Journal of Clinical Medicine. 2024; 13(14):4078. https://doi.org/10.3390/jcm13144078
Chicago/Turabian StyleSękowska, Alicja, Krzysztof Czyżewski, Kamila Jaremek, Patrycja Zalas-Więcek, Olga Zając-Spychała, Jacek Wachowiak, Anna Szmydki-Baran, Łukasz Hutnik, Agnieszka Gietka, Olga Gryniewicz-Kwiatkowska, and et al. 2024. "Infections with Klebsiella pneumoniae in Children Undergoing Anticancer Therapy or Hematopoietic Cell Transplantation: A Multicenter Nationwide Study" Journal of Clinical Medicine 13, no. 14: 4078. https://doi.org/10.3390/jcm13144078
APA StyleSękowska, A., Czyżewski, K., Jaremek, K., Zalas-Więcek, P., Zając-Spychała, O., Wachowiak, J., Szmydki-Baran, A., Hutnik, Ł., Gietka, A., Gryniewicz-Kwiatkowska, O., Dembowska-Bagińska, B., Semczuk, K., Dzierżanowska-Fangrat, K., Czogała, W., Balwierz, W., Żak, I., Tomaszewska, R., Szczepański, T., Bień, E., ... Styczyński, J. (2024). Infections with Klebsiella pneumoniae in Children Undergoing Anticancer Therapy or Hematopoietic Cell Transplantation: A Multicenter Nationwide Study. Journal of Clinical Medicine, 13(14), 4078. https://doi.org/10.3390/jcm13144078