Monoclonal Antibodies in the Management of Inflammation in Wound Healing: An Updated Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria and Study Selection
2.2. Risk of Bias Selection
3. TNF-α
4. Interleukin-1 Inhibitors
5. Interleukin-6 Inhibitors
6. Interleukin-17 Inhibitors
7. Interleukin-23 Inhibitors
8. C5A Inhibitors
9. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Dissemond, J. Chronisches Ulcus cruris [Chronic leg ulcers]. Hautarzt 2017, 68, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, G.S.; Cooper, D.M.; Knighton, D.R.; Margolis, D.J.; Percoraro, R.E.; Rodeheaver, G.; Robson, M.C. Definitions and guidelines for assessment of wounds and evaluation of healing. Arch. Dermatol. 1994, 130, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Sen, C.K.; Gordillo, G.M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T.K.; Gottrup, F.; Gurtner, G.C.; Longaker, M.T. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen. 2009, 17, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Sen, C.K. Human Wound and Its Burden: Updated 2020 Compendium of Estimates. Adv. Wound Care 2021, 10, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Mostow, E.N. Diagnosis and classification of chronic wounds. Clin. Dermatol. 1994, 12, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Janowska, A.; Dini, V.; Oranges, T.; Iannone, M.; Loggini, B.; Romanelli, M. Atypical Ulcers: Diagnosis and Management. Clin. Interv. Aging 2019, 14, 2137–2143. [Google Scholar] [CrossRef] [PubMed]
- Quattrone, F.; Dini, V.; Barbanera, S.; Zerbinati, N.; Romanelli, M. Cutaneous ulcers associated with hydroxyurea therapy. J. Tissue Viability 2013, 22, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Falanga, V. Wound healing and its impairment in the diabetic foot. Lancet 2005, 366, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, A.; Boschi, E.; Stefani, A.; Spiga, S.; Romanelli, M.; Lemmi, M.; Giovannetti, A.; Longoni, B.; Mosca, F. Angiogenesis and nerve regeneration in a model of human skin equivalent transplant. Life Sci. 2003, 73, 1985–1994. [Google Scholar] [CrossRef]
- Neligan, P. Plastic Surgery; Elsevier Saunders: London, UK, 2013. [Google Scholar]
- Wilgus, T.A. Alerting the body to tissue injury: The role of alarmins and DAMPs in cutaneous wound healing. Curr. Pathobiol. Rep. 2018, 6, 55–60. [Google Scholar] [CrossRef]
- Theocharidis, G.; Thomas, B.E.; Sarkar, D.; Mumme, H.L.; Pilcher, W.J.R.; Dwivedi, B.; Sandoval-Schaefer, T.; Sîrbulescu, R.F.; Kafanas, A.; Mezghani, I.; et al. Single cell transcriptomic landscape of diabetic foot ulcers. Nat. Commun. 2022, 13, 181. [Google Scholar] [CrossRef]
- Surboyo, M.D.C.; Mahdani, F.Y.; Ernawati, D.S.; Sarasati, A.; Rezkita, F. The macrophage responses during diabetic oral ulcer healing by liquid coconut shell smoke: An immunohistochemical analysis. Eur. J. Dent. 2020, 14, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Contassot, E.; Beer, H.; French, L. Interleukin-1, inflammasomes, autoinflammation and the skin. Swiss Med. Wkly. 2012, 142, w13590. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Yan, Z.; Xiao, S.; Xia, Y. Proinflammatory cytokines regulate epidermal stem cells in wound epithelialization. Stem Cell Res. Ther. 2020, 11, 232. [Google Scholar] [CrossRef]
- Sharifiaghdam, M.; Shaabani, E.; Faridi-Majidi, R.; De Smedt, S.C.; Braeckmans, K.; Fraire, J.C. Macrophages as a therapeutic target to promote diabetic wound healing. Mol. Ther. 2022, 30, 2891–2908. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.L.; Demers, M.; Martinod, K.; Gallant, M.; Wang, Y.; Goldfine, A.B.; Kahn, C.R.; Wagner, D.D. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 2015, 21, 815–819. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Zhou, L.; Liu, M.; Liang, G.; Yan, R.; Jiang, Y.; Hao, J.; Zhang, X.; Hu, X.; et al. Vγ4 T Cells Inhibit the Pro-healing Functions of Dendritic Epidermal T Cells to Delay Skin Wound Closure Through IL-17A. Front. Immunol. 2018, 9, 240. [Google Scholar] [CrossRef]
- Mathur, A.N.; Zirak, B.; Boothby, I.C.; Tan, M.; Cohen, J.N.; Mauro, T.M.; Mehta, P.; Lowe, M.M.; Abbas, A.K.; Ali, N.; et al. Treg-Cell Control of a CXCL5-IL-17 Inflammatory Axis Promotes Hair-Follicle-Stem-Cell Differentiation During Skin-Barrier Repair. Immunity 2019, 50, 655–667.e4. [Google Scholar] [CrossRef]
- Falanga, V. Classifications for wound bed preparation and stimulation of chronic wounds. Wound Repair Regen. 2000, 8, 347–352. [Google Scholar]
- Dini, V.; Romanelli, M.; Piaggesi, A.; Stefani, A.; Mosca, F. Cutaneous tissue engineering and lower extremity wounds (part 2). Int. J. Low. Extrem. Wounds 2006, 5, 27–34. [Google Scholar] [CrossRef]
- Romanelli, M.; Piaggesi, A.; Scapagnini, G.; Dini, V.; Janowska, A.; Iacopi, E.; Scarpa, C.; Fauverghe, S.; Bassetto, F. EUREKA Study Group. Evaluation of fluorescence biomodulation in the real-life management of chronic wounds: The EUREKA trial. J. Wound Care 2018, 27, 744–753. [Google Scholar] [CrossRef]
- Janowska, A.; Dini, V.; Panduri, S.; Macchia, M.; Oranges, T.; Romanelli, M. Epidermal skin grafting in vitiligo: A pilot study. Int. Wound J. 2016, 13 (Suppl. 3), 47–51. [Google Scholar] [CrossRef] [PubMed]
- Romanelli, M.; Dini, V.; Rogers, L.C.; Hammond, C.E.; Nixon, M.A. Clinical evaluation of a wound measurement and documentation system. Wounds 2008, 20, 258–264. [Google Scholar] [PubMed]
- Matzeu, G.; Losacco, M.; Parducci, E.; Pucci, A.; Dini, V.; Romanelli, M.; Di Francesco, F. Skin temperature monitoring by a wireless sensor. In Proceedings of the IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, VIC, Australia, 7–10 November 2011; pp. 3533–3535. [Google Scholar]
- Mani, R.; Margolis, D.J.; Shukla, V.; Akita, S.; Lazarides, M.; Piaggesi, A.; Falanga, V.; Teot, L.; Xie, T.; Bing, F.X.; et al. Optimizing Technology Use for Chronic Lower-Extremity Wound Healing: A Consensus Document. Int. J. Low. Extrem. Wounds 2016, 15, 102–119. [Google Scholar] [CrossRef] [PubMed]
- Izzetti, R.; Oranges, T.; Janowska, A.; Gabriele, M.; Graziani, F.; Romanelli, M. The Application of Ultra-High-Frequency Ultrasound in Dermatology and Wound Management. Int. J. Low. Extrem. Wounds 2020, 19, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Shepard, H.M.; Phillips, G.L.; DThanos, C.; Feldmann, M. Developments in therapy with monoclonal antibodies and related proteins. Clin. Med. 2017, 17, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Fathi, R.; Armstrong, A.W. The Role of Biologic Therapies in Dermatology. Med. Clin. N. Am. 2015, 99, 1183–1194. [Google Scholar] [CrossRef] [PubMed]
- Ratchataswan, T.; Banzon, T.M.; Thyssen, J.P.; Weidinger, S.; Guttman-Yassky, E.; Phipatanakul, W. Biologics for Treatment of Atopic Dermatitis: Current Status and Future Prospect. J. Allergy Clin. Immunol. Pract. 2021, 9, 1053–1065. [Google Scholar] [CrossRef] [PubMed]
- Patruno, C.; Napolitano, M.; Argenziano, G.; Peris, K.; Ortoncelli, M.; Girolomoni, G.; Offidani, A.; Ferrucci, S.M.; Amoruso, G.F.; Rossi, M.; et al. DADE-Dupilumab for Atopic Dermatitis of the Elderly study group. Dupilumab therapy of atopic dermatitis of the elderly: A multicentre, real-life study. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 958–964. [Google Scholar] [CrossRef]
- Zouboulis, C.C.; Frew, J.W.; Giamarellos-Bourboulis, E.J.; Jemec, G.B.E.; Del Marmol, V.; Marzano, A.V.; Nikolakis, G.; Sayed, C.J.; Tzellos, T.; Wolk, K.; et al. Target molecules for future hidradenitis suppurativa treatment. Exp. Dermatol. 2021, 30 (Suppl. 1), 8–17. [Google Scholar] [CrossRef]
- Maronese, C.A.; Pimentel, M.A.; Li, M.M.; Genovese, G.; Ortega-Loayza, A.G.; Marzano, A.V. Pyoderma Gangrenosum: An Updated Literature Review on Established and Emerging Pharmacological Treatments. Am. J. Clin. Dermatol. 2022, 23, 615–634. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Vilcek, J.; Palombella, V.J.; Henriksen-DeStefano, D.; Swenson, C.; Feinman, R.; Hirai, M.; Tsujimoto, M. Fibroblast growth enhancing activity of tumor necrosis factor and its relationship to other polypeptide growth factors. J. Exp. Med. 1986, 163, 632–643. [Google Scholar] [CrossRef] [PubMed]
- Polunovsky, V.; Wendt, C.; Ingbar, D. Induction of endothelial cell apoptosis by TNF alpha: Modulation and inhibitors of protein synthesis. Exp. Cell Res. 1994, 214, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Detmar, M.; Orfanos, C. Tumor necrosis factor-alpha inhibits cell proliferation and induces class II antigens and cell adhesion molecules in cultured normal keratinocytes in vitro. Arch. Dermatol. Res. 1990, 282, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Trengove, N.J.; Stacey, M.C.; MacAuley, S.; Bennett, N.; Gibson, J.; Burslem, F.; Murphy, G.; Schultz, G. Analysis of the acute and chronic wound environments: The role of proteases and their inhibitors. Wound Repair Regen. 1999, 7, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Mirshahi, S.; Soria, J.; Mirshahi, M.; Soria, C.; Lenoble, M.; Vasmant, D.; Cambazard, F.; Claudy, A. Expression of elastase and fibrin in venous leg ulcer biopsies: A pilot study of pentoxifylline versus placebo. J. Cardiovasc. Pharmacol. 1995, 25 (Suppl. 2), S101–S105. [Google Scholar] [CrossRef] [PubMed]
- Charles, C.A.; Romanelli, P.; Martinez, Z.B.; Ma, F.; Roberts, B.; Kirsner, R.S. Tumor necrosis factor-alfa in nonhealing venous leg ulcers. J. Am. Acad. Dermatol. 2009, 60, 951–955. [Google Scholar] [CrossRef] [PubMed]
- Wallace, H.J.; Stacey, M.C. Levels of tumor necrosis factor-alpha (TNF-alpha) and soluble TNF receptors in chronic venous leg ulcers—Correlations to healing status. J. Investig. Dermatol. 1998, 110, 292–296. [Google Scholar] [CrossRef]
- Murphy, M.A.; Joyce, W.P.; Condron, C.; Bouchier-Hayes, D. A reduction in serum cytokine levels parallels healing of venous ulcers in patients undergoing compression therapy. Eur. J. Vasc. Surg. 2002, 23, 349–352. [Google Scholar] [CrossRef]
- Marzano, A.V.; Fanoni, D.; Antiga, E.; Quaglino, P.; Caproni, M.; Crosti, C.; Meroni, P.L.; Cugno, M. Expression of cytokines, chemokines and other effector molecules in two prototypic autoinflammatory skin diseases, pyoderma gangrenosum and Sweet’s syndrome. Clin. Exp. Immunol. 2014, 178, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Dige, A.; Nordholm-Carstensen, A.; Hagen, K.; Hougaard, H.T.; Krogh, K.; Agnholt, J.; Pedersen, B.G.; Lundby, L. Effectiveness of infliximab treatment of complex idiopathic anal fistulas. Scand. J. Gastroenterol. 2021, 56, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Barde, C.; Laffitte, E.; Campanelli, A.; Saurat, J.H.; Thielen, A.M. Intralesional infliximab in noninfectious cutaneous granulomas: Three cases of necrobiosis lipoidica. Dermatology 2011, 222, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Andrews, J.M. Systematic review: IBD-associated pyoderma gangrenosum in the biologic era, the response to therapy. Aliment. Pharmacol. Ther. 2013, 38, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.W.; Bevona, C.; Winterfield, L.; Qureshi, A.A.; Li, V.W. Treatment of refractory ulcerative necrobiosis lipoidica diabeticorum with infliximab: Report of a case. Arch. Dermatol. 2009, 145, 437–439. [Google Scholar] [CrossRef] [PubMed]
- Kolde, G.; Muche, J.M.; Schulze, P.; Fischer, P.; Lichey, J. Infliximab: A promising new treatment option for ulcerated necrobiosis lipoidica. Dermatology 2003, 206, 180–181. [Google Scholar] [CrossRef] [PubMed]
- Drosou, A.; Kirsner, R.S.; Welsh, E.; Sullivan, T.P.; Kerdel, F.A. Use of infliximab, an anti-tumor necrosis alpha antibody, for inflammatory dermatoses. J. Cutan. Med. Surg. 2003, 7, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Conte, H.; Milpied, B.; Kaloga, M.; Lalanne, N.; Belin, E.; Jouary, T.; Taieb, A.; Ezzedine, K. Treatment of pre-ulcerative necrobiosis lipoidica with infliximab. Acta Derm. Venereol. 2011, 91, 587–588. [Google Scholar] [CrossRef]
- Basoulis, D.; Fragiadaki, K.; Tentolouris, N.; Sfikakis, P.P.; Kokkinos, A. Anti-TNFα treatment for recalcitrant ulcerative necrobiosis lipoidica diabeticorum: A case report and review of the literature. Metabolism 2016, 65, 569–573. [Google Scholar] [CrossRef]
- Teich, N.; Klugmann, T. Rapid improvement of refractory pyoderma gangrenosum with infliximab gel in a patient with ulcerative colitis. J. Crohn’s Colitis 2014, 8, 85–86. [Google Scholar] [CrossRef]
- Streit, M.; Beleznay, Z.; Braathen, L.R. Topical application of the tumour necrosis factor-alpha antibody infliximab improves healing of chronic wounds. Int. Wound J. 2006, 3, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.D.; Baquerizo-Nole, K.L.; Keegan, B.R.; Macquhae, F.; Escandon, J.; Espinosa, A.; Perez, C.; Romanelli, P.; Kirsner, R.S. Adalimumab treatment leads to reduction of tissue tumor necrosis factor-alpha correlated with venous leg ulcer improvement: A pilot study. Int. Wound J. 2016, 13, 963–966. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, V.K.; Alavi, A. The role of anti-tumour necrosis factor in wound healing: A case report of refractory ulcerated necrobiosis lipoidica treated with adalimumab and review of the literature. SAGE Open Med. Case Rep. 2019, 7, 2050313X19881594. [Google Scholar] [CrossRef] [PubMed]
- Leister, L.; Körber, A.; Dissemond, J. Erfolgreiche Behandlung einer Patientin mit therapierefraktärer, exulzerierter Necrobiosis lipoidica non diabeticorum mit Adalimumab [Successful treatment of a patient with ulcerated necrobiosis lipoidica non diabeticorum with adalimumab]. Hautarzt 2013, 7, 509–511. [Google Scholar] [CrossRef]
- Zhang, K.S.; Quan, L.T.; Hsu, S. Treatment of necrobiosis lipoidica with etanercept and adalimumab. Dermatol. Online J. 2009, 15, 12. [Google Scholar] [CrossRef]
- McKenzie, F.; Cash, D.; Gupta, A.; Cummings, L.W.; Ortega-Loayza, A.G. Biologic and small-molecule medications in the management of pyoderma gangrenosum. J. Dermatol. Treat. 2019, 30, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Yamanaka, K.; Zhao, Y.; Iwano, S.; Takei, K.; Suzuki, K.; Yamamoto, T. Adalimumab in Japanese patients with active ulcers of pyoderma gangrenosum: Twenty-six-week phase 3 open-label study. J. Dermatol. 2020, 47, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T. An update on adalimumab for pyoderma gangrenosum. Drugs Today 2021, 57, 535–542. [Google Scholar] [CrossRef]
- Cummins, D.L.; Hiatt, K.M.; Mimouni, D.; Vander Kolk, C.A.; Cohen, B.A.; Nousari, C.H. Generalized necrobiosis lipoidica treated with a combination of split-thickness autografting and immunomodulatory therapy. Int. J. Dermatol. 2004, 43, 852–854. [Google Scholar] [CrossRef]
- Zeichner, J.A.; Stern, D.W.K.; Lebwohl, M. Treatment of necrobiosis lipoidica with the tumor necrosis factor antagonist etanercept. J. Am. Acad. Dermatol. 2006, 54 (Suppl. 2), S120–S121. [Google Scholar] [CrossRef]
- Suarez-Amor, O.; Perez-Bustillo, A.; Ruiz-Gonzalez, I.; Rodríguez-Prieto, M. Necrobiosis lipoidica therapy with biologicals: An ulcerated case responding to etanercept and a review of the literature. Dermatology 2010, 221, 117–121. [Google Scholar] [CrossRef]
- Guedes, R.; Leite, I.; Baptista, A.; Rocha, N. Ulcerative necrobiosis lipoidica: Is there a place for anti-TNFα treatment? Case Rep. Med. 2012, 2012, 854738. [Google Scholar] [CrossRef] [PubMed]
- Ben Abdallah, H.; Fogh, K.; Bech, R. Pyoderma gangrenosum and tumor necrosis factor alpha inhibitors: A semi-systematic review. Int. Wound J. 2019, 16, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Charles, C.A.; Leon, A.; Banta, M.R.; Kirsner, R.S. Etanercept for the treatment of refractory pyoderma gangrenosum: A brief series. Int. J. Dermatol. 2007, 46, 1095–1099. [Google Scholar] [CrossRef] [PubMed]
- Melikoglu, M.; Fresko, I.; Mat, C.; Ozyazgan, Y.; Gogus, F.; Yurdakul, S.; Hamuryudan, V.; Yazici, H. Short-term trial of etanercept in Behçet’s disease: A double blind, placebo controlled study. J. Rheumatol. 2005, 32, 98–105. [Google Scholar] [PubMed]
- Cowin, A.J.; Hatzirodos, N.; Rigden, J.; Fitridge, R.; Belford, D.A. Etanercept decreases tumor necrosis factor-alpha activity in chronic wound fluid. Wound Repair Regen. 2006, 14, 421–426. [Google Scholar] [CrossRef]
- Hübner, G.; Brauchle, M.; Smola, H.; Madlener, M.; Fässler, R.; Werner, S. Differential Regulation of Pro-Inflammatory Cytokines During Wound Healing in Normal and Glucocorticoid-Treated mice. Cytokine 1996, 8, 548–556. [Google Scholar] [CrossRef]
- Barrientos, S.; Stojadinovic, O.; Golinko, M.S.; Brem, H.; Tomic-Canic, M. Perspective Article: Growth Factors and Cytokines in Wound Healing. Wound Repair Regen. 2008, 16, 585–601. [Google Scholar] [CrossRef]
- Ortega-Loayza, A.G.; Nugent, W.H.; Lucero, O.M.; Washington, S.L.; Nunley, J.R.; Walsh, S.W. Dysregulation of inflammatory gene expression in lesional and nonlesional skin of patients with pyoderma gangrenosum. Br. J. Dermatol. 2018, 178, e35–e36. [Google Scholar] [CrossRef]
- Ortega-Loayza, A.G.; Friedman, M.A.; Reese, A.M.; Liu, Y.; Greiling, T.M.; Cassidy, P.B.; Marzano, A.V.; Gao, L.; Fei, S.S.; Rosenbaum, J.T. Molecular and Cellular Characterization of Pyoderma Gangrenosum: Implications for the Use of Gene Expression. J. Investig. Dermatol. 2022, 142, 1217–1220.e14. [Google Scholar] [CrossRef]
- Ishida, Y.; Kondo, T.; Kimura, A.; Matsushima, K.; Mukaida, N. Absence of IL-1 receptor antagonist impaired wound healing along with aberrant NF-kappaB activation and a reciprocal suppression of TGF-beta signal pathway. J. Immunol. 2006, 176, 5598–5606. [Google Scholar] [CrossRef] [PubMed]
- Thomay, A.A.; Daley, J.M.; Sabo, E.; Worth, P.J.; Shelton, L.J.; Harty, M.W.; Reichner, J.S.; Albina, J.E. Disruption of interleukin-1 signaling improves the quality of wound healing. Am. J. Pathol. 2009, 174, 2129–2136. [Google Scholar] [CrossRef] [PubMed]
- Mirza, R.E.; Fang, M.M.; Ennis, W.J.; Koh, T.J. Blocking interleukin-1beta induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes 2013, 62, 2579–2587. [Google Scholar] [CrossRef] [PubMed]
- Nunan, R.; Harding, K.G.; Martin, P. Clinical challenges of chronic wounds: Searching for an optimal animal model to recapitulate their complexity. Dis. Models Mech. 2014, 7, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Perrault, D.P.; Bramos, A.; Xu, X.; Shi, S.; Wong, A.K. Local Administration of Interleukin-1 Receptor Antagonist Improves Diabetic Wound Healing. Ann. Plast. Surg. 2018, 80 (Suppl. S5), S317–S321. [Google Scholar] [CrossRef] [PubMed]
- Komi, D.E.A.; Khomtchouk, K.; Santa Maria, P.L. A Review of the Contribution of Mast Cells in Wound Healing: Involved Molecular and Cellular Mechanisms. Clin. Rev. Allergy Immunol. 2020, 58, 298–312. [Google Scholar] [CrossRef] [PubMed]
- Del Giudice, M.; Gangestad, S.W. Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav. Immun. 2018, 70, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.C.; Wu, Y.F.; Lin, Y.C.; Lin, S.W.; Cheng, C.M. Paper-Based Interleukin-6 Test Strip for Early Detection of Wound Infection. Biomedicines 2022, 10, 1585. [Google Scholar] [CrossRef]
- Pastar, I.; Stojadinovic, O.; Yin, N.C.; Ramirez, H.; Nusbaum, A.G.; Sawaya, A.; Patel, S.B.; Khalid, L.; Isseroff, R.R.; Tomic-Canic, M. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care 2014, 3, 445–464. [Google Scholar] [CrossRef]
- Gallucci, R.M.; Sloan, D.K.; Heck, J.M.; Murray, A.R.; O’Dell, S.J. Interleukin 6 indirectly induces keratinocyte migration. J. Investig. Dermatol. 2004, 122, 764. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.R.; Berman, B. Stimulation of collagen and glycosaminoglycan production in cultured human adult dermal fibroblasts by recombinant human interleukin 6. J. Investig. Dermatol. 1991, 97, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Kozono, K.; Nakahara, T.; Kikuchi, S.; Itoh, E.; Kido-Nakahara, M.; Furue, M. Pyoderma gangrenosum with increased levels of serum cytokines. J. Dermatol. 2015, 42, 1186–1188. [Google Scholar] [CrossRef] [PubMed]
- Shima, Y.; Kuwahara, Y.; Murota, H.; Kitaba, S.; Kawai, M.; Hirano, T.; Arimitsu, J.; Narazaki, M.; Hagihara, K.; Ogata, A.; et al. The skin of patients with systemic sclerosis softened during the treatment with anti-IL-6 receptor antibody tocilizumab. Rheumatology 2010, 49, 2408–2412. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T.; Ohguro, N.; Hohki, S.; Hagihara, K.; Shima, Y.; Narazaki, M.; Ogata, A.; Yoshizaki, K.; Kumanogoh, A.; Kishimoto, T.; et al. A case of Behçet’s disease treated with a humanized anti-interleukin-6 receptor antibody, tocilizumab. Mod. Rheumatol. 2012, 22, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Sumida, K.; Ubara, Y.; Takemoto, F.; Takaichi, K. Successful treatment with humanized anti-interleukin 6 receptor antibody for multidrug-refractory and anti-tumour necrosis factor-resistant systemic rheumatoid vasculitis. Clin. Exp. Rheumatol. 2011, 29 (Suppl. 64), S133. [Google Scholar] [PubMed]
- Ballul, T.; Belfeki, N.; de Masson, A.; Meignin, V.; Woerther, P.L.; Martin, A.; Poullot, E.; Wargnier, A.; Fadlallah, J.; Garzaro, M.; et al. Leg-type form of idiopathic multicentric Castleman disease associated with severe lower extremity chronic venous/lymphatic disease. EJHaem 2021, 3, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Choi, Y.J.; Yoo, W.H. Use of tocilizumab in a patient with pyoderma gangrenosum and rheumatoid arthritis. J. Eur. Acad. Dermatol. Venereol. 2017, 31, e75–e77. [Google Scholar] [CrossRef] [PubMed]
- Choong, D.J.; Ng, J.L.; Vinciullo, C. Pyoderma gangrenosum associated with Takayasu’s arteritis in a young Caucasian woman and response to biologic therapy with tocilizumab. JAAD Case Rep. 2021, 9, 4–6. [Google Scholar] [CrossRef]
- Taylor, K.R.; Mills, R.E.; Costanzo AE Jameson, J.M. Gammadelta T cells are reduced and rendered unresponsive by hyperglycemia and chronic TNFalpha in mouse models of obesity and metabolic disease. PLoS ONE 2010, 5, e11422. [Google Scholar] [CrossRef]
- MacLeod, A.S.; Hemmers, S.; Garijo, O.; Chabod, M.; Mowen, K.; Witherden, D.A.; Havran, W.L. Dendritic epidermal T cells regulate skin antimicrobial barrier function. J. Clin. Investig. 2013, 123, 4364–4374. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.S.; Zhang, X.R.; Yu, M.J.; Hu, X.H.; Yang, J.C.; Huang, Y.; Luo, G.X.; He, W.F. Study on mechanisms of interleukin-17A regulating the expressions of interleukin-1β and interleukin-23 in mouse keratinocytes. Zhonghua Shao Shang Za Zhi 2020, 36, 923–929. [Google Scholar]
- Lee, S.Y.; Kim, E.K.; Seo, H.B.; Choi, J.W.; Yoo, J.H.; Jung, K.A.; Kim, D.S.; Yang, S.C.; Moon, S.J.; Lee, J.H.; et al. IL-17 Induced Stromal Cell-Derived Factor-1 and Profibrotic Factor in Keloid-Derived Skin Fibroblasts via the STAT3 Pathway. Inflammation 2020, 43, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.K.; Dao, H., Jr. Off-label dermatologic uses of IL-17 inhibitors. J. Dermatol. Treat. 2020; ahead of print. [Google Scholar]
- Kao, A.S.; King, A.D.; Bardhi, R.; Daveluy, S. Targeted therapy with ixekizumab in pyoderma gangrenosum: A case series and a literature overview. JAAD Case Rep. 2023, 37, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Lauffer, F.; Seiringer, P.; Böhmer, D.; Oesterlin, C.; Eyerich, K. 044 Safety and efficacy of anti-IL-17 (secukinumab) for the treatment of pyoderma gangrenosum. J. Investig. Dermatol. 2021, 141, S156. [Google Scholar] [CrossRef]
- Tee, M.W.; Avarbock, A.B.; Ungar, J.; Frew, J.W. Rapid resolution of pyoderma gangrenosum with brodalumab therapy. JAAD Case Rep. 2020, 6, 1167–1169. [Google Scholar] [CrossRef] [PubMed]
- Rodero, M.P.; Hodgson, S.S.; Hollier, B.; Combadiere, C.; Khosrotehrani, K. Reduced Il17a expression distinguishes a Ly6c(lo)MHCII(hi) macrophage population promoting wound healing. J. Investig. Dermatol. 2013, 133, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Oppmann, B.; Lesley, R.; Blom, B.; Timans, J.C.; Xu, Y.; Hunte, B.; Vega, F.; Yu, N.; Wang, J.; Singh, K.; et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000, 13, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Rodero, M.P.; Patel, J.; Moi, D.; Mazzieri, R.; Khosrotehrani, K. Interleukin-23 regulates interleukin-17 expression in wounds, and its inhibition accelerates diabetic wound healing through the alteration of macrophage polarization. FASEB J. 2018, 32, 2086–2094. [Google Scholar] [CrossRef]
- Langowski, J.L.; Zhang, X.; Wu, L.; Mattson, J.D.; Chen, T.; Smith, K.; Basham, B.; McClanahan, T.; Kastelein, R.A.; Oft, M. IL-23 promotes tumour incidence and growth. Nature 2006, 442, 461–465. [Google Scholar] [CrossRef]
- Matias, M.A.; Saunus, J.M.; Ivanovski, S.; Walsh, L.J.; Farah, C.S. Accelerated wound healing phenotype in Interleukin 12/23 deficient mice. J. Inflamm. 2011, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Guenova, E.; Teske, A.; Fehrenbacher, B.; Hoerber, S.; Adamczyk, A.; Schaller, M.; Hoetzenecker, W.; Biedermann, T. Interleukin 23 expression in pyoderma gangrenosum and targeted therapy with ustekinumab. Arch. Dermatol. 2011, 147, 1203–1205. [Google Scholar] [CrossRef] [PubMed]
- Baier, C.; Barak, O. Guselkumab as a treatment option for recalcitrant pyoderma gangrenosum. JAAD Case Rep. 2020, 8, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Burgdorf, B.; Schlott, S.; Ivanov, I.H.; Dissemond, J. Successful treatment of a refractory pyoderma gangrenosum with risankizumab. Int. Wound J. 2020, 17, 1086–1088. [Google Scholar] [CrossRef] [PubMed]
- John, J.M.; Sinclair, R.D. Tildrakizumab for treatment of refractory pyoderma gangrenosum of the penis and polymyalgia rheumatica: Killing two birds with one stone. Australas. J. Dermatol. 2020, 61, 170–171. [Google Scholar] [CrossRef] [PubMed]
- Michelucci, A.; Manzo Margiotta, F.; Granieri, G.; Salvia, G.; Fidanzi, C.; Bevilacqua, M.; Panduri, S.; Romanelli, M.; Dini, V. Risankizumab as a Therapeutic Approach for Recalcitrant Pyoderma Gangrenosum. Adv. Ski. Wound Care 2024, 37, 276–279. [Google Scholar] [CrossRef]
- Sinno, H.; Malholtra, M.; Lutfy, J.; Jardin, B.; Winocour, S.; Brimo, F.; Beckman, L.; Watters, K.; Philip, A.; Williams, B.; et al. Topical application of complement C3 in collagen formulation increases early wound healing. J. Dermatol. Treat. 2013, 24, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Sinno, H.; Malhotra, M.; Lutfy, J.; Jardin, B.; Winocour, S.; Brimo, F.; Beckman, L.; Watters, K.; Philip, A.; Williams, B.; et al. Accelerated wound healing with topical application of complement C5. Plast Reconstr Surg. 2012, 130, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Pasch, M.C.; Van Den Bosch, N.H.; Daha, M.R.; Bos, J.D.; Asghar, S.S. Synthesis of complement components C3 and factor B in human keratinocytes is differentially regulated by cytokines. J. Investig. Dermatol. 2000, 114, 78–82. [Google Scholar] [CrossRef]
- Schupf, N.; Williams, C.A.; Berkman, A.; Cattell, W.S.; Kerper, L. Binding specificity and presynaptic action of anaphylatoxin C5a in rat brain. Brain Behav. Immun. 1989, 3, 28–38. [Google Scholar] [CrossRef]
- Foreman, K.E.; Vaporciyan, A.A.; Bonish, B.K.; Jones, M.L.; Johnson, K.J.; Glovsky, M.M.; Eddy, S.M.; Ward, P.A. C5a-induced expression of P-selectin in endothelial cells. J. Clin. Investig. 1994, 94, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.F.; Ward, P.A. Role of C5a in inflammatory responses. Annu. Rev. Immunol. 2005, 23, 821–852. [Google Scholar] [CrossRef]
- Rafail, S.; Kourtzelis, I.; Foukas, P.G.; Markiewski, M.M.; DeAngelis, R.A.; Guariento, M.; Ricklin, D.; Grice, E.A.; Lambris, J.D. Complement deficiency promotes cutaneous wound healing in mice. J. Immunol. 2015, 194, 1285–1291. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, G.; Liu, C.; Fan, W.; Zhou, X.; Zeng, L.; Guo, Y.; Kou, Z.; Yu, H.; Li, J.; et al. Treatment with anti-C5a antibody improves the outcome of H7N9 virus infection in African green monkeys. Clin. Infect. Dis. 2015, 60, 586–595. [Google Scholar] [CrossRef]
- Cunnion, K.M.; Krishna, N.K.; Pallera, H.K.; Pineros-Fernandez, A.; Rivera, M.G.; Hair, P.S.; Lassiter, B.P.; Huyck, R.; Clements, M.A.; Hood, A.F.; et al. Complement Activation and STAT4 Expression Are Associated with Early Inflammation in Diabetic Wounds. PLoS ONE 2017, 12, e0170500. [Google Scholar] [CrossRef] [PubMed]
- Tesar, V.; Hruskova, Z. Avacopan in the treatment of ANCA-associated vasculitis. Expert Opin. Investig. Drugs 2018, 27, 491–496. [Google Scholar] [CrossRef]
- Roccatello, D.; Fenoglio, R.; Oddone, V.; Sciascia, S. How the Availability of Anti-C5a Agents Could Change the Management of Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Kidney Blood Press. Res. 2022, 47, 506–513. [Google Scholar] [CrossRef]
- Jayne, D.R.W.; Bruchfeld, A.N.; Harper, L.; Schaier, M.; Venning, M.C.; Hamilton, P.; Burst, V.; Grundmann, F.; Jadoul, M.; Szombati, I.; et al. CLEAR Study Group. Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis. J. Am. Soc. Nephrol. 2017, 28, 2756–2767. [Google Scholar] [CrossRef] [PubMed]
- Guest, J.F.; Fuller, G.W.; Vowden, P. Cohort study evaluating the burden of wounds to the UK’s National Health Service in 2017/2018: Update from 2012/2013. BMJ Open 2020, 10, e045253. [Google Scholar] [CrossRef]
- McCosker, L.; Tulleners, R.; Cheng, Q.; Rohmer, S.; Pacella, T.; Graves, N.; Pacella, R. Chronic wounds in Australia: A systematic review of key epidemiological and clinical parameters. Int. Wound J. 2019, 16, 84–95. [Google Scholar] [CrossRef]
- Gottrup, F.; Holstein, P.; Jørgensen, B.; Lohmann, M.; Karlsmar, T. A new concept of a multidisciplinary wound healing center and a national expert function of wound healing. Arch. Surg. 2001, 136, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Jemec, G.B.; Kerihuel, J.C.; Ousey, K.; Lauemøller, S.L.; Leaper, D.J. Cost-effective use of silver dressings for the treatment of hard-to-heal chronic venous leg ulcers. PLoS ONE 2014, 9, e100582. [Google Scholar] [CrossRef] [PubMed]
- Gilligan, A.M.; Waycaster, C.R.; Motley, T.A. Cost-effectiveness of becaplermin gel on wound healing of diabetic foot ulcers. Wound Repair Regen. 2015, 23, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Nurmohamed, M.T.; Dijkmans, B.A. Efficacy, tolerability and cost effectiveness of disease-modifying antirheumatic drugs and biologic agents in rheumatoid arthritis. Drugs 2005, 65, 661–694. [Google Scholar] [CrossRef] [PubMed]
- Yelin, E.; Wanke, L.A. An assessment of the annual and long-term direct costs of rheumatoid arthritis: The impact of poor function and functional decline. Arthritis Rheum. 1999, 42, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Järbrink, K.; Ni, G.; Sönnergren, H.; Schmidtchen, A.; Pang, C.; Bajpai, R.; Car, J. The humanistic and economic burden of chronic wounds: A protocol for a systematic review. Syst. Rev. 2017, 6, 15. [Google Scholar] [CrossRef]
- Huoponen, S.; Blom, M. A Systematic Review of the Cost-Effectiveness of Biologics for the Treatment of Inflammatory Bowel Diseases. PLoS ONE 2015, 10, e0145087. [Google Scholar] [CrossRef] [PubMed]
- Falanga, V.; Isseroff, R.R.; Soulika, A.M.; Romanelli, M.; Margolis, D.; Kapp, S.; Granick, M.; Harding, K. Chronic wounds. Nat. Rev. Dis. Primers. 2022, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Abadía, F.; Echeverri, A.F.; Izquierdo, J.H.; Cañas, F.; Cañas, C.A. Efficacy and safety of rituximab in the treatment of vasculitic leg ulcers associated with hepatitis C virus infection. Case Rep. Rheumatol. 2012, 2012, 923897. [Google Scholar] [CrossRef]
- Garbea, A.; Dippel, E.; Hildenbrand, R.; Bleyl, U.; Schadendorf, D.; Goerdt, S. Cutaneous large B-cell lymphoma of the leg masquerading as a chronic venous ulcer. Br. J. Dermatol. 2002, 146, 144–147. [Google Scholar] [CrossRef]
- Tenedios, F.; Erkan, D.; Lockshin, M.D. Rituximab in the primary antiphospholipid syndrome (PAPS). Arthritis Rheum. 2005, 52, 4078. [Google Scholar]
- Erkan, D.; Vega, J.; Ramón, G.; Kozora, E.; Lockshin, M.D. A pilot open-label phase II trial of rituximab for noncriteria manifestations of antiphospholipid syndrome. Arthritis Rheum. 2013, 65, 464–471. [Google Scholar] [CrossRef] [PubMed]
- De Vita, S.; Quartuccio, L.; Isola, M.; Mazzaro, C.; Scaini, P.; Lenzi, M.; Campanini, M.; Naclerio, C.; Tavoni, A.; Pietrogrande, M.; et al. A randomized controlled trial of rituximab for the treatment of severe cryoglobulinemic vasculitis. Arthritis Rheum. 2012, 64, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Fenoglio, R.; Sciascia, S.; Rossi, D.; Naretto, C.; Alpa, M.; Roccatello, D. Non HCV-Related Mixed Cryoglobulinemic Vasculitis With Biopsy-Proven Renal Involvement: The Effects of Rituximab. Front. Med. 2022, 9, 819320. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.; Freitas, S.; Costa, A.; Alves, G.; Cotter, J. Eosinophilic Granulomatosis With Polyangiitis With Extensive Cutaneous Involvement. Cureus 2021, 13, e18581. [Google Scholar] [CrossRef] [PubMed]
- Sen, M.; Dogra, S.; Rathi, M.; Sharma, A. Successful treatment of large refractory pyoderma gangrenosum-like presentation of granulomatosis with polyangiitis by rituximab. Int. J. Rheum. Dis. 2017, 20, 2200–2202. [Google Scholar] [CrossRef] [PubMed]
- Genovese, G.; Tavecchio, S.; Berti, E.; Rongioletti, F.; Marzano, A.V. Pyoderma gangrenosum-like ulcerations in granulomatosis with polyangiitis: Two cases and literature review. Rheumatol. Int. 2018, 38, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Donmez, S.; Pamuk, O.N.; Gedik, M.; Recep, A.K.; Bulut, G. A case of granulomatosis with polyangiitis and pyoderma gangrenosum successfully treated with infliximab and rituximab. Int. J. Rheum. Dis. 2014, 17, 471–475. [Google Scholar] [CrossRef]
- Riera, J.; Musuruana, J.; Costa, C.; Cavallasca, J. Efficacy of Rituximab for Refractory Pyoderma Gangrenosum-Like Ulcers in Granulomatosis With Polyangiitis Associated to Antiphospholipid Antibodies. Arch. Rheumatol. 2020, 35, 449–453. [Google Scholar] [CrossRef]
- Tashtoush, B.; Memarpour, R.; Johnston, Y.; Ramirez, J. Large pyoderma gangrenosum-like ulcers: A rare presentation of granulomatosis with polyangiitis. Case Rep. Rheumatol. 2014, 2014, 850364. [Google Scholar] [CrossRef]
- Kindle, S.; Fanciullo, J. Healing of leg ulcers associated with granulomatosis with polyangiitis (Wegener granulomatosis) after rituximab therapy. Cutis 2017, 99, E12–E15. [Google Scholar]
- Oz, R.S.; Onajin, O.; Harel, L.; Tal, R.; Dallos, T.; Rosenblatt, A.; Plank, L.; Wagner-Weiner, L. Pyoderma gangrenosum-like ulceration as a presenting feature of pediatric granulomatosis with polyangiitis. Pediatr. Rheumatol. Online J. 2021, 19, 81. [Google Scholar] [CrossRef]
- Dini, V.; Romanelli, M.; Bertone, M.; Talarico, S.; Bombardieri, S.; Barachini, P. Improvement of idiopathic pyoderma gangrenosum during treatment with anti-tumor necrosis factor alfa monoclonal antibody. Int. J. Low. Extrem. Wounds 2007, 6, 108–113. [Google Scholar] [CrossRef]
- Petrarca, A.; Rigacci, L.; Caini, P.; Colagrande, S.; Romagnoli, P.; Vizzutti, F.; Arena, U.; Giannini, C.; Monti, M.; Montalto, P.; et al. Safety and efficacy of rituximab in patients with hepatitis C virus-related mixed cryoglobulinemia and severe liver disease. Blood 2010, 116, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Sène, D.; Limal, N.; Cacoub, P. Hepatitis C virus-associated extrahepatic manifestations: A review. Metab. Brain Dis. 2004, 19, 357–381. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Koul, V.; Bhattacharyya, J. Fabrication of In Situ Layered Hydrogel Scaffold for the Co-delivery of PGDF-BB/Chlorhexidine to Regulate Proinflammatory Cytokines, Growth Factors, and MMP-9 in a Diabetic Skin Defect Albino Rat Model. Biomacromolecules 2021, 22, 1885–1900. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Shi, Y.; Zhang, C.; Cai, E.; Ge, X.; Xiang, Y.; Li, Y.; Zeng, B.; Shen, J. A Hybrid Hydrogel with Intrinsic Immunomodulatory Functionality for Treating Multidrug-Resistant Pseudomonas aeruginosa Infected Diabetic Foot Ulcers. ACS Mater. Lett. 2024, 6, 2533–2547. [Google Scholar] [CrossRef]
- Hansel, T.T.; Kropshofer, H.; Singer, T.; Mitchell, J.A.; George, A.J. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov. 2010, 9, 325–338. [Google Scholar] [CrossRef]
Drug | Posology | Target of Action |
---|---|---|
Adalimumab | 80 mg sc W0, then 40 mg W1, then 40 mg every 1 or 2 weeks [54,55,56] | TNF-α |
Anakinra | 0.75 mg in a 3% gelatin–transglutaminase gel vehicle [77] | IL-1 receptor |
100 mg/d sc [58] | ||
Avacopan | 30 mg oral twice daily [120] | C5A receptor |
Brodalumab | 210 mg sc weekly [99] | IL-17 Receptor |
Etanercept | 25 mg weekly intralesional [62] 25–50 mg sc twice weekly [61,65,66] | TNF-α |
Guselkumab | 100 mg sc monthly [106] | IL-23 (p19) |
Infliximab | 10 mg/mL (2 mL per lesion) intralesional on W0, 1, and 2 then 1-week treatment interruption; three treatment cycles [45] 100 mg in 5 mL saline, admixed to 15 g sterile hydroxyl ethyl cellulose gel [52] Solution (10 mg/mL) or gel formulation (0.45, 1, or 4.5 mg/g) subsequently covered with an adhesive sheet and a hydrofiber dressing for 24 h; application repeated after 3–4 weeks [53] Monthly ev 5 mg/kg [49,51] 5 mg/kg ev at W0, 2, 6, 12 [50], and 21 [47] | TNF-α |
Ixekizumab | 160 mg sc W0, followed by 80 mg every 2 weeks until W12, then 80 mg every 4 weeks [97] | IL-17A |
Rituximab | 1 gr ev W0, W2 [132] 375 mg/m2 ev once weekly [133] | CD20 |
Secukinumab | 300 mg sc once a week for 4 weeks then 300 mg every 2 weeks until W32 [96] | IL-17A |
Tildrakizumab | 100 mg sc W0, W4, and then every 12 weeks [108] | IL-23 (p19) |
Tocilizumab | 8 mg/kg ev once a month for 6 months [86] 680 mg ev once a month [91] 162 mg sc, biweekly [90] | IL-6 receptor |
Ustekinumab | 90 mg sc W0, W4, then every 12 weeks [105] | IL-12/23 (p40) |
Disease | Drug | Reference |
---|---|---|
Antibody-associated vasculitis | Avacopan | [119,120] |
ANCA-associated vasculitis | Avacopan | [120,121] |
Antiphospholipid syndrome | Rituximab | [134,135] |
B-cell lymphoma | Rituximab | [133] |
Behcet’s syndrome | Etanercept Tocilizumab | [67] [87] |
Cryoglobulinemic vasculitis (HCV related) | Rituximab | [132,136,137] |
Cryoglobulinemic vasculitis (non-HCV-related) | Rituximab | [137] |
Complex idiopathic anal fistulas | Infliximab | [44] |
Diabetic wounds | Anakinra | [77] |
EGPA | Rituximab | [138] |
GPA | Rituximab | [139,140,141,142,143,144,145] |
LN | Adalimumab Etanercept Infliximab | [55,56,57] [57,61,62,63,64] [45,47,48,49,50,51] |
PG | Adalimumab Anakinra Brodalumab Etanercept Guselkumab Infliximab Ixekizumab Secukinumab Rituximab Risankizumab Tildrakizumab Tocilizumab | [46,58,59,60] [58] [99] [58,65,66] [106] [46,52,146] [97] [98] [139,140,141,142] [107,109] [108] [90,91] |
Rheumatoid vasculitis | Tocilizumab | [88] |
Systemic sclerosis | Tocilizumab | [86] |
Venous ulcers | Adalimumab Infliximab | [54] [53] |
Vasculitis of the small vessels | Rituximab | [147,148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzo Margiotta, F.; Michelucci, A.; Fidanzi, C.; Granieri, G.; Salvia, G.; Bevilacqua, M.; Janowska, A.; Dini, V.; Romanelli, M. Monoclonal Antibodies in the Management of Inflammation in Wound Healing: An Updated Literature Review. J. Clin. Med. 2024, 13, 4089. https://doi.org/10.3390/jcm13144089
Manzo Margiotta F, Michelucci A, Fidanzi C, Granieri G, Salvia G, Bevilacqua M, Janowska A, Dini V, Romanelli M. Monoclonal Antibodies in the Management of Inflammation in Wound Healing: An Updated Literature Review. Journal of Clinical Medicine. 2024; 13(14):4089. https://doi.org/10.3390/jcm13144089
Chicago/Turabian StyleManzo Margiotta, Flavia, Alessandra Michelucci, Cristian Fidanzi, Giammarco Granieri, Giorgia Salvia, Matteo Bevilacqua, Agata Janowska, Valentina Dini, and Marco Romanelli. 2024. "Monoclonal Antibodies in the Management of Inflammation in Wound Healing: An Updated Literature Review" Journal of Clinical Medicine 13, no. 14: 4089. https://doi.org/10.3390/jcm13144089
APA StyleManzo Margiotta, F., Michelucci, A., Fidanzi, C., Granieri, G., Salvia, G., Bevilacqua, M., Janowska, A., Dini, V., & Romanelli, M. (2024). Monoclonal Antibodies in the Management of Inflammation in Wound Healing: An Updated Literature Review. Journal of Clinical Medicine, 13(14), 4089. https://doi.org/10.3390/jcm13144089