The Hurdle of Access to Emerging Therapies and Potential Solutions in the Management of Dyslipidemias
Abstract
:1. Introduction
2. Novel Lipid-Lowering Therapies
- Lerodalcibep, a recombinant fusion protein of a PCSK9-binding domain (adnectin) with human albumin, reduced LDL-C by over 50% with monthly subcutaneous injections when administered to heterozygous FH patients over a 24-week study period [38].
- The cholesterol ester transfer protein (CETP) inhibitors as high-density lipoprotein cholesterol (HDL-C)-raising therapies did not reduce atherosclerosis or cardiovascular events [41,42,43]. However, obicetrapib, a novel CETP inhibitor, in addition to raising HDL-C, has demonstrated a 45% reduction in median LDL-C in a randomized phase 2 study and a 63% reduction in combination with ezetimibe [44,45].
- Solbinsiran, a GalNAC-conjugated siRNA against ANGPTL3, produced a dose-dependent reduction in TG, non-HDL-C, and apolipoprotein B in individuals with mixed hyperlipidemia [47].
- CRISPR/Cas9-based gene editing therapies directed against the PCSK9 and ANGPTL3 genes are entering human trials given the safety shown in preclinical models [48,49,50]. These are considered good targets given the lifelong absence of any health-related consequences in individuals with naturally occurring loss-of-function PCSK9 and ANGPTL3 mutations.
3. Barriers to Accessing Medicines
3.1. Economic Barriers: The Availability and Affordability of Medicines
3.2. Geographical Barriers: Disparities in Accessibility Based on Location and Healthcare Infrastructure
3.3. Knowledge Barriers: Limited Awareness and Acceptability among Healthcare Providers and Patients about New Treatment Options
3.4. Regulatory Barriers: Delays in Approval Processes, Access Restrictions, and Quality Assurance
3.5. Systemic Racism as a Barrier to Access
4. Barriers and Their Budget Impact on CV Outcomes
5. Potential Solutions for Improving Access
5.1. Healthcare Policy Reforms
5.1.1. Pricing Regulations
5.1.2. Reimbursement Policies
5.1.3. Public Funding and Subsidies
5.1.4. Innovative Funding Models
5.2. Streamlining Regulatory Processes
5.3. Public Health Interventions
5.3.1. Telemedicine
5.3.2. Education and Advocacy
5.3.3. Multidisciplinary Teams
6. Future Directions and Recommendations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Naghavi, M.; Ong, K.L.; Aali, A.; Ababneh, H.S.; Abate, Y.H.; Abbafati, C.; Abbasgholizadeh, R.; Abbasian, M.; Abbasi-Kangevari, M.; Abbastabar, H.; et al. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2100–2132. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Gibbs, B.B.; Beaton, A.Z.; Boehme, A.K.; et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024, 149, e347–e913. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Ference, B.A.; Séverin, T.; Blom, D.; Nicholls, S.J.; Shiba, M.H.; Almahmeed, W.; Alonso, R.; Daccord, M.; Ezhov, M.; et al. World Heart Federation Cholesterol Roadmap 2022. Glob. Heart 2022, 17, 75. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Spencer, G.; Husain, M.J.; Nugent, R.; Auzenne, D.; Kostova, D.; Richter, P. Barriers to accessibility of medicines for hyperlipidemia in low- and middle-income countries. PLoS Glob Public Health 2024, 4, e0002905. [Google Scholar] [CrossRef] [PubMed]
- Maddox, K.E.J.; Elkind, M.S.V.; Aparicio, H.J.; Commodore-Mensah, Y.; de Ferranti, S.D.; Dowd, W.N.; Hernandez, A.F.; Khavjou, O.; Michos, E.D.; Palaniappan, L.; et al. Forecasting the Economic Burden of Cardiovascular Disease and Stroke in the United States Through 2050: A Presidential Advisory from the American Heart Association. Circulation 2024, 149. [Google Scholar] [CrossRef]
- Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 2020, 395, 795–808. [Google Scholar] [CrossRef]
- WHO Model List of Essential Medicines—23rd List. 2023. Available online: https://www.who.int/publications-detail-redirect/WHO-MHP-HPS-EML-2023.02 (accessed on 19 May 2024).
- MDG Gap Task Force (Ed.) Delivering on the Global Partnership for Achieving the Millennium Development Goals: Millennium Development Goal 8: MDG Gap Task Force Report 2008; United Nations: New York, NY, USA, 2008. [Google Scholar]
- MDG Gap Task Force Report. UNDP. Available online: https://www.undp.org/publications/mdg-gap-task-force-report (accessed on 19 May 2024).
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Molemans, B.; Schoonen, W.M.; Giovas, P.; Bray, S.; Kiru, G.; Murphy, J.; Banach, M.; De Servi, S.; Gaita, D.; et al. EU-Wide Cross-Sectional Observational Study of Lipid-Modifying Therapy Use in Secondary and Primary Care: The DA VINCI study. Eur. J. Prev. Cardiol. 2021, 28, 1279–1289. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Haq, I.; Bilitou, A.; Manu, M.C.; Burden, A.; Aguiar, C.; Arca, M.; Connolly, D.L.; Eriksson, M.; Ferrieres, J.; et al. Treatment gaps in the implementation of LDL cholesterol control among high- and very high-risk patients in Europe between 2020 and 2021: The multinational observational SANTORINI study. Lancet Reg. Health Eur. 2023, 29, 100624. [Google Scholar] [CrossRef]
- Newman, C.B.; Preiss, D.; Tobert, J.A.; Jacobson, T.A.; Page II, R.L.; Goldstein, L.B.; Chin, C.; Tannock, L.R.; Miller, M.; Raghuveer, G.; et al. Statin Safety and Associated Adverse Events: A Scientific Statement from the American Heart Association. ATVB 2019, 39, e38–e81. [Google Scholar] [CrossRef]
- Stroes, E.S.; Thompson, P.D.; Corsini, A.; Vladutiu, G.D.; Raal, F.J.; Ray, K.K.; Roden, M.; Stein, E.; Tokgözoğlu, L.; Nordestgaard, B.G.; et al. Statin-associated muscle symptoms: Impact on statin therapy—European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur. Heart J. 2015, 36, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.P.; Wood, F.A.; Finegold, J.A.; Nowbar, A.N.; Thompson, D.M.; Arnold, A.D.; Rajkumar, C.A.; Connolly, S.; Cegla, J.; Stride, C.; et al. Side Effect Patterns in a Crossover Trial of Statin, Placebo, and No Treatment. J. Am. Coll. Cardiol. 2021, 78, 1210–1222. [Google Scholar] [CrossRef]
- Wood, F.A.; Howard, J.P.; Finegold, J.A.; Nowbar, A.N.; Thompson, D.M.; Arnold, A.D.; Rajkumar, C.A.; Connolly, S.; Cegla, J.; Stride, C.; et al. N-of-1 Trial of a Statin, Placebo, or No Treatment to Assess Side Effects. N. Engl. J. Med. 2020, 383, 2182–2184. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.F.; Nordestgaard, B.G. Negative statin-related news stories decrease statin persistence and increase myocardial infarction and cardiovascular mortality: A nationwide prospective cohort study. Eur. Heart J. 2016, 37, 908–916. [Google Scholar] [CrossRef]
- Raal, F.J.; Mohamed, F. Statins: Are they appropriate for all patients? Lancet Glob. Health 2022, 10, e305–e306. [Google Scholar] [CrossRef]
- Goal 3: Good Health and Well-Being. United Nations Development Programme. Available online: https://www.undp.org/sustainable-development-goals/good-health (accessed on 18 May 2024).
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardio vascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Morris, P.B.; Ballantyne, C.M.; Birtcher, K.K.; Covington, A.M.; DePalma, S.M.; Minissian, M.B.; Orringer, C.E.; Smith, S.C., Jr.; Waring, A.A.; et al. 2022 ACC Expert Consensus Decision Pathway on the Role of Nonstatin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk. J. Am. Coll. Cardiol. 2022, 80, 1366–1418. [Google Scholar] [CrossRef] [PubMed]
- Blais, J.E.; Wei, Y.; Knapp, M.; Wong, I.C.K.; Wei, L.; Chan, E.W. Trends in PCSK9 inhibitor utilization in the United States, Europe, and other countries: An analysis of international sales data. Am. Heart J. 2022, 248, 13–20. [Google Scholar] [CrossRef]
- Keam, S.J. Tafolecimab: First Approval. Drugs 2023, 83, 1545–1549. [Google Scholar] [CrossRef]
- Chai, M.; He, Y.; Zhao, W.; Han, X.; Zhao, G.; Ma, X.; Qiao, P.; Shi, D.; Liu, Y.; Han, W.; et al. Efficacy and safety of tafolecimab in Chinese patients with heterozygous familial hypercholesterolemia: A randomized, double-blind, placebo-controlled phase 3 trial (CREDIT-2). BMC Med. 2023, 21, 77. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Chen, B.; Lian, Q.; Wang, S.; Liu, L.; Lu, D.; Qu, Y.; Zheng, G.; Li, L.; Ji, Y.; et al. Tafolecimab in Chinese patients with non-familial hypercholesterolemia (CREDIT-1): A 48-week randomized, double-blind, placebo-controlled phase 3 trial. Lancet Reg. Health West. Pac. 2023, 41, 100907. [Google Scholar] [CrossRef] [PubMed]
- Raal, F.J.; Kallend, D.; Ray, K.K.; Turner, T.; Koenig, W.; Wright, R.S.; Wijngaard, P.L.J.; Curcio, D.; Jaros, M.J.; Leiter, L.A.; et al. Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. N. Engl. J. Med. 2020, 382, 1520–1530. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Wright, R.S.; Kallend, D.; Koenig, W.; Leiter, L.A.; Raal, F.J.; Bisch, J.A.; Richardson, T.; Jaros, M.; Wijngaard, P.L.J.; et al. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N. Engl. J. Med. 2020, 382, 1507–1519. [Google Scholar] [CrossRef] [PubMed]
- Connelly, D.; Cohen, D.; McCartney, M. Fewer than 5,000 people prescribed anticholesterol drug inclisiran in primary care as of July 2023. Pharm. J. 2023. [Google Scholar] [CrossRef]
- Iacobucci, G. GP leaders advise practices not to prescribe cholesterol lowering drug inclisiran. BMJ 2023, 382, 1757. [Google Scholar] [CrossRef] [PubMed]
- Pinkosky, S.L.; Newton, R.S.; Day, E.A.; Ford, R.J.; Lhotak, S.; Austin, R.C.; Birch, C.M.; Smith, B.K.; Filippov, S.; Groot, P.H.E.; et al. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nature Communications. 2016, 7, 13457. [Google Scholar] [CrossRef] [PubMed]
- Ballantyne, C.M.; Banach, M.; Mancini, G.B.J.; Lepor, N.E.; Hanselman, J.C.; Zhao, X.; Leiter, L.A. Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypercholesterolemia: A randomized, placebo-controlled study. Atherosclerosis 2018, 277, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Bays, H.E.; Catapano, A.L.; Lalwani, N.D.; Bloedon, L.T.; Sterling, L.R.; Robinson, P.L.; Ballantyne, C.M. Safety and Efficacy of Bempedoic Acid to Reduce LDL Cholesterol. N. Engl. J. Med. 2019, 380, 1022–1032. [Google Scholar] [CrossRef]
- Goldberg, A.C.; Leiter, L.A.; Stroes, E.S.G.; Baum, S.J.; Hanselman, J.C.; Bloedon, L.T.; Lalwani, N.D.; Patel, P.M.; Zhao, X.; Duell, P.B. Effect of Bempedoic Acid vs Placebo Added to Maximally Tolerated Statins on Low-Density Lipoprotein Cholesterol in Patients at High Risk for Cardiovascular Disease: The CLEAR Wisdom Randomized Clinical Trial. JAMA 2019, 322, 1780–1788. [Google Scholar] [CrossRef]
- Nissen, S.E.; Lincoff, A.M.; Brennan, D.; Ray, K.K.; Mason, D.; Kastelein, J.J.P.; Thompson, P.D.; Libby, P.; Cho, L.; Plutzky, J.; et al. Bempedoic Acid and Cardiovascular Outcomes in Statin- Intolerant Patients. N. Engl. J. Med. 2023, 388, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, F.; Mansfield, B.; Raal, F. Targeting PCSK9 and Beyond for the Management of Low-Density Lipoprotein Cholesterol. J. Clin. Med. 2023, 12, 5082. [Google Scholar] [CrossRef] [PubMed]
- Canadian Agency for Drugs and Technologies in Health. Evinacumab (Evkeeza): CADTH Reimbursement Recommendation; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK602392/ (accessed on 29 May 2024).
- Raal, F.; Fourie, N.; Scott, R.; Blom, D.; De Vries Basson, M.; Kayikcioglu, M.; Caldwell, K.; Kallend, D.; Stein, E. Long-term efficacy and safety of lerodalcibep in heterozygous familial hypercholesterolaemia: The LIBerate-HeFH trial. Eur. Heart J. 2023, 44, 4272–4280. [Google Scholar] [CrossRef] [PubMed]
- Koren, M.J.; Descamps, O.; Hata, Y.; Hengeveld, E.M.; Hovingh, G.K.; Ikonomidis, I.; Juul Jensen, M.D.R.; Langbakke, I.H.; Martens, F.M.A.C.; Søndergaard, A.L.; et al. PCSK9 inhibition with orally administered NNC0385-0434 in hypercholesterolaemia: A randomised, double-blind, placebo-controlled and active-controlled phase 2 trial. Lancet Diabetes Endocrinol. 2024, 12, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Ballantyne, C.M.; Banka, P.; Mendez, G.; Garcia, R.; Rosenstock, J.; Rodgers, A.; Mendizabal, G.; Mitchel, Y.; Catapano, A.L. Phase 2b Randomized Trial of the Oral PCSK9 Inhibitor MK-0616. J. Am. Coll. Cardiol. 2023, 81, 1553–1564. [Google Scholar] [CrossRef] [PubMed]
- Kastelein, J.J.P.; Van Leuven, S.I.; Burgess, L.; Evans, G.W.; Kuivenhoven, J.A.; Barter, P.J.; Revkin, J.H.; Grobbee, D.E.; Riley, W.A.; Shear, C.L.; et al. Effect of Torcetrapib on Carotid Atherosclerosis in Familial Hypercholesterolemia. N. Engl. J. Med. 2007, 356, 1620–1630. [Google Scholar] [CrossRef] [PubMed]
- Bowman, L.; Hopewell, J.C.; Wiviott, S.D.; Sammons, E.; Chen, F.; Wallendszus, K.; Stevens, W.; Cannon, C.P.; Braunwald, E.; Collins, R.; et al. Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease. N. Engl. J. Med. 2017, 377, 1217–1227. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Olsson, A.G.; Abt, M.; Ballantyne, C.M.; Barter, P.J.; Brumm, J.; Chaitman, B.R.; Holme, I.M.; Kallend, D.; Leiter, L.A.; et al. Effects of Dalcetrapib in Patients with a Recent Acute Coronary Syndrome. N. Engl. J. Med. 2012, 367, 2089–2099. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Ditmarsch, M.; Kastelein, J.J.; Rigby, S.P.; Kling, D.; Curcio, D.L.; Alp, N.J.; Davidson, M.H. Lipid lowering effects of the CETP inhibitor obicetrapib in combination with high-intensity statins: A randomized phase 2 trial. Nat. Med. 2022, 28, 1672–1678. [Google Scholar] [CrossRef]
- Ballantyne, C.M.; Ditmarsch, M.; Kastelein, J.J.; Nelson, A.J.; Kling, D.; Hsieh, A.; Curcio, D.L.; Maki, K.C.; Davidson, M.H.; Nicholls, S.J. Obicetrapib plus ezetimibe as an adjunct to high-intensity statin therapy: A randomized phase 2 trial. J. Clin. Lipidol. 2023, 17, 491–503. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Gaudet, D.; Hegele, R.A.; Ballantyne, C.M.; Nicholls, S.J.; Lucas, K.J.; San Martin, J.; Zhou, R.; Muhsin, M.; Chang, T.; et al. Zodasiran, an RNAi Therapeutic Targeting ANGPTL3, for Mixed Hyperlipidemia. N. Engl. J. Med. 2024. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Ruotolo, G.; Michael, L.; Shen, X.; Ma, X.; Lim, S.; Nicholls, S.J.; Linnebjerg, H. Solbinsiran, a GalNAC-Conjugated siRNA Targeting ANGPTL3, Reduces Atherogenic Lipoproteins in Individuals with Mixed Dyslipidaemia in a Durable and Dose Dependent Manner. J. Am. Coll. Cardiol. 2024, 83, 1673. [Google Scholar] [CrossRef]
- Musunuru, K.; Chadwick, A.C.; Mizoguchi, T.; Garcia, S.P.; DeNizio, J.E.; Reiss, C.W.; Wang, K.; Iyer, S.; Dutta, C.; Clendaniel, V.; et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 2021, 593, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Rothgangl, T.; Dennis, M.K.; Lin, P.J.C.; Oka, R.; Witzigmann, D.; Villiger, L.; Qi, W.; Hruzova, M.; Kissling, L.; Lenggenhager, D.; et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 2021, 39, 949–957. [Google Scholar] [CrossRef]
- Lee, R.G.; Mazzola, A.M.; Braun, M.C.; Platt, C.; Vafai, S.B.; Kathiresan, S.; Rohde, E.; Bellinger, A.M.; Khera, A.V. Efficacy and Safety of an Investigational Single-Course CRISPR Base-Editing Therapy Targeting PCSK9 in Nonhuman Primate and Mouse Models. Circulation 2023, 147, 242–253. [Google Scholar] [CrossRef]
- Zeitlinger, M.; Bauer, M.; Reindl-Schwaighofer, R.; Stoekenbroek, R.M.; Lambert, G.; Berger-Sieczkowski, E.; Lagler, H.; Oesterreicher, Z.; Wulkersdorfer, B.; Lührs, P.; et al. A phase I study assessing the safety, tolerability, immunogenicity, and low-density lipoprotein cholesterol-lowering activity of immunotherapeutics targeting PCSK9. Eur. J. Clin. Pharmacol. 2021, 77, 1473–1484. [Google Scholar] [CrossRef]
- Fukami, H.; Morinaga, J.; Nakagami, H.; Hayashi, H.; Okadome, Y.; Matsunaga, E.; Kadomatsu, T.; Horiguchi, H.; Sato, M.; Sugizaki, T.; et al. Efficacy and safety in mice of repeated, lifelong administration of an ANGPTL3 vaccine. npj Vaccines 2023, 8, 168. [Google Scholar] [CrossRef]
- Vroom, M.M.; Lu, H.; Lewis, M.; Thibodeaux, B.A.; Brooks, J.K.; Longo, M.S.; Ramos, M.M.; Sahni, J.; Wiggins, J.; Boyd, J.D.; et al. VXX-401, a novel anti-PCSK9 vaccine, reduces LDL-C in cynomolgus monkeys. J. Lipid Res. 2024, 65, 100497. [Google Scholar] [CrossRef]
- Fowler, A.; Van Rompay, K.K.A.; Sampson, M.; Leo, J.; Watanabe, J.K.; Usachenko, J.L.; Immareddy, R.; Lovato, D.M.; Schiller, J.T.; Remaley, A.T.; et al. A virus-like particle-based bivalent PCSK9 vaccine lowers LDL-cholesterol levels in non-human primates. npj Vaccines 2023, 8, 142. [Google Scholar] [CrossRef]
- Chow, C.K.; Nguyen, T.N.; Marschner, S.; Diaz, R.; Rahman, O.; Avezum, A.; Lear, S.A.; Teo, K.; Yeates, K.E.; Lanas, F.; et al. Availability and affordability of medicines and cardiovascular outcomes in 21 high-income, middle-income and low-income countries. BMJ Glob. Health 2020, 5, e002640. [Google Scholar] [CrossRef]
- Penchansky, R.; Thomas, J.W. The concept of access: Definition and relationship to consumer satisfaction. Med. Care 1981, 19, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, V.J.; Kaplan, W.A.; Kwan, G.F.; Laing, R.O. Access to Medications for Cardiovascular Diseases in Low- and Middle-Income Countries. Circulation 2016, 133, 2076–2085. [Google Scholar] [CrossRef]
- Access to Medicines—TAC. Available online: https://www.tac.org.za/campaign/access-to-medicines/ (accessed on 5 June 2024).
- Harrison, M.A.; Marfo, A.F.A.; Annan, A.; Ankrah, D.N.A. Access to cardiovascular medicines in low- and middle-income countries: A mini review. Glob. Health Res. Policy 2023, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- WHO Definition of Availability. Available online: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/2302 (accessed on 9 June 2024).
- Tenni, B.; Moir, H.V.J.; Townsend, B.; Kilic, B.; Farrell, A.-M.; Keegel, T.; Gleeson, D. What is the impact of intellectual property rules on access to medicines? A systematic review. Glob. Health 2022, 18, 40. [Google Scholar] [CrossRef]
- Oğuz, A.; Telci Çaklılı, Ö.; Tümerdem Çalık, B.; Pure Investigators. The Prospective Urban Rural Epidemiology (PURE) study: PURE Turkey. Turk. Kardiyol. Dern. Ars. 2018, 46, 613–623. [Google Scholar] [CrossRef]
- Danzon, P.M.; Furukawa, M.F. International Prices and Availability of Pharmaceuticals in 2005. Health Aff. 2008, 27, 221–233. [Google Scholar] [CrossRef]
- Kishore, S.P.; Kolappa, K.; Jarvis, J.D.; Park, P.H.; Belt, R.; Balasubramaniam, T.; Kiddell-Monroe, R. Overcoming Obstacles to Enable Access to Medicines for Noncommunicable Diseases in Poor Countries. Health Aff. 2015, 34, 1569–1577. [Google Scholar] [CrossRef] [PubMed]
- Brandts, J.; Ray, K.K. Low Density Lipoprotein Cholesterol–Lowering Strategies and Population Health. Circulation 2020, 141, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Baum, S.J.; Toth, P.P.; Underberg, J.A.; Jellinger, P.; Ross, J.; Wilemon, K. PCSK9 inhibitor access barriers-issues and recommendations: Improving the access process for patients, clinicians and payers. Clin. Cardiol. 2017, 40, 243–254. [Google Scholar] [CrossRef]
- Knowles, J.W.; Howard, W.H.; Karayan, L.; Baum, S.J.; Wilemon, K.A.; Ballantyne, C.M.; Myers, K.D. Access to Nonstatin Lipid-Lowering Therapies in Patients at High Risk of Atherosclerotic Cardiovascular Disease. Circulation 2017, 135, 2204–2206. [Google Scholar] [CrossRef]
- Blumenthal, D.M.; Goldman, D.P.; Jena, A.B. Outcomes-Based Pricing as a Tool to Ensure Access to Novel but Expensive Biopharmaceuticals. Ann. Intern. Med. 2017, 166, 219. [Google Scholar] [CrossRef]
- Williams, D.R.; Lawrence, J.A.; Davis, B.A. Racism and Health: Evidence and Needed Research. Annu. Rev. Public Health 2019, 40, 105–125. [Google Scholar] [CrossRef]
- Parrinello, C.M.; Rastegar, I.; Godino, J.G.; Miedema, M.D.; Matsushita, K.; Selvin, E. Prevalence of and Racial Disparities in Risk Factor Control in Older Adults with Diabetes: The Atherosclerosis Risk in Communities Study. Diabetes Care 2015, 38, 1290–1298. [Google Scholar] [CrossRef]
- Kalra, D.K. Bridging the Racial Disparity Gap in Lipid-Lowering Therapy. JAHA 2021, 10, e019533. [Google Scholar] [CrossRef] [PubMed]
- Daviglus, M.L.; Ferdinand, K.C.; López, J.A.G.; Wu, Y.; Monsalvo, M.L.; Rodriguez, C.J. Effects of Evolocumab on Low-Density Lipoprotein Cholesterol, Non–High Density Lipoprotein Cholesterol, Apolipoprotein B, and Lipoprotein(a) by Race and Ethnicity: A Meta-Analysis of Individual Participant Data from Double-Blind and Open-Label Extension Studies. JAHA 2021, 10, e016839. [Google Scholar] [CrossRef] [PubMed]
- Kohli-Lynch, C.N.; Bellows, B.K.; Zhang, Y.; Spring, B.; Kazi, D.S.; Pletcher, M.J.; Vittinghoff, E.; Allen, N.B.; Moran, A.E. Cost-Effectiveness of Lipid-Lowering Treatments in Young Adults. J. Am. Coll. Cardiol. 2021, 78, 1954–1964. [Google Scholar] [CrossRef]
- Weinstein, M.C.; Stason, W.B. Foundations of cost-effectiveness analysis for health and medical practices. N. Engl. J. Med. 1977, 296, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, D.M.; Larson, M.G.; Beiser, A.; Levy, D. Lifetime risk of developing coronary heart disease. Lancet 1999, 353, 89–92. [Google Scholar] [CrossRef]
- Morton, J.I.; Marquina, C.; Lloyd, M.; Watts, G.F.; Zoungas, F.; Liew, D.; Ademi, Z. Lipid-Lowering Strategies for Primary Prevention of Coronary Heart Disease in the UK: A Cost-Effectiveness Analysis. PharmacoEconomics 2024, 42, 91–107. [Google Scholar] [CrossRef]
- Mallya, U.G.; Boklage, S.H.; Koren, A.; Delea, T.E.; Mullins, C.D. Budget Impact Analysis of PCSK9 Inhibitors for the Management of Adult Patients with Heterozygous Familial Hypercholesterolemia or Clinical Atherosclerotic Cardiovascular Disease. PharmacoEconomics 2018, 36, 115–126. [Google Scholar] [CrossRef]
- Brunetti, N.D.; De Gennaro, L.; Tricarico, L.; Caldarola, P. Budget impact analysis of PCSK9 inhibitors costs from a community payers’ perspective in Apulia, Italy. Open Heart 2019, 6, e001018. [Google Scholar] [CrossRef]
- Ko, D.T.; Khan, A.M.; Kotrri, G.; Austin, P.C.; Wijeysundera, H.C.; Koh, M.; Chu, A.; Jackevicius, C.A.; Lawler, P.R.; Tu, J.V. Eligibility, Clinical Outcomes, and Budget Impact of PCSK9 Inhibitor Adoption: The CANHEART PCSK9 Study. J. Am. Heart Assoc. 2018, 7, e010007. [Google Scholar] [CrossRef] [PubMed]
- Raal, F.J.; Rosenson, R.S.; Reeskamp, L.F.; Hovingh, G.K.; Kastelein, J.J.P.; Rubba, P.; Ali, S.; Banerjee, P.; Chan, K.-C.; Gipe, D.A.; et al. Evinacumab for Homozygous Familial Hypercholesterolemia. N. Engl. J. Med. 2020, 383, 711–720. [Google Scholar] [CrossRef]
- Myers, K.D.; Farboodi, N.; Mwamburi, M.; Howard, W.; Staszak, D.; Gidding, S.; Baum, S.J.; Wilemon, K.; Rader, D.J. Effect of Access to Prescribed PCSK9 Inhibitors on Cardiovascular Outcomes. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005404. [Google Scholar] [CrossRef] [PubMed]
- WHO Guideline on Country Pharmaceutical Pricing Policies. Available online: https://www.who.int/publications-detail-redirect/9789240011878 (accessed on 5 June 2024).
- Garner, S.; Rintoul, A.; Hill, S.R. Value-Based Pricing: L’Enfant Terrible? PharmacoEconomics 2018, 36, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Morgan, S.G.; Daw, J.R.; Thomson, P.A. International best practices for negotiating ‘reimbursement contracts’ with price rebates from pharmaceutical companies. Health Aff. 2013, 32, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Vogler, S.; Zimmermann, N.; Ferrario, A.; Wirtz, V.J.; Babar, Z. Challenges and opportunities for pharmaceutical pricing and reimbursement policies. J. Pharm. Policy Pract. 2015, 8, 2052–3211. [Google Scholar] [CrossRef] [PubMed]
- Kanavos, P.; Fontrier, A.M.; Gill, J.; Efthymiadou, O. Does external reference pricing deliver what it promises? Evidence on its impact at national level. Eur. J. Health Econ. 2020, 21, 129–151. [Google Scholar] [CrossRef] [PubMed]
- Fontrier, A.M.; Gill, J.; Kanavos, P. International impact of external reference pricing: Should national policy- makers care? Eur. J. Health Econ. 2019, 20, 1147–1164. [Google Scholar] [CrossRef]
- WHO. WHO Guideline on Country Pharmaceutical Pricing Policies; Evidence and Recommendations; World Health Organization: Geneva, Switzerland, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK570143/ (accessed on 27 June 2024).
- Voehler, D.; Koethe, B.C.; Synnott, P.G.; Ollendorf, D.A. The impact of external reference pricing on pharmaceutical costs and market dynamics. Health Policy OPEN 2023, 4, 100093. [Google Scholar] [CrossRef]
- Leopold, C.; Vogler, S.; Mantel-Teeuwisse, A.K.; de Joncheere, K.; Leufkens, H.G.; Laing, R. Differences in external price referencing in Europe: A descriptive overview. Health Policy 2012, 104, 50–60. [Google Scholar] [CrossRef]
- Vitry, A.; Roughead, E. Managed entry agreements for pharmaceuticals in Australia. Health Policy 2013, 112, 277–283. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Yao, H.; Ding, B.; Gao, X.; Li, X. Impact of national drug price negotiation policy on the accessibility and utilization of PCSK9 inhibitors in China. Int. J. Equity Health 2024, 23, 116. [Google Scholar] [CrossRef]
- Vogler, S.; Paris, V.; Ferrario, A.; Wirtz, V.J.; de Joncheere, K.; Schneider, P.; Pedersen, H.B.; Dedet, G.; Babar, Z. How Can Pricing and Reimbursement Policies Improve Affordable Access to Medicines? Lessons Learned from European Countries. Appl. Health Econ. Health Policy 2017, 15, 307–321. [Google Scholar] [CrossRef]
- Novel Pricing and Payment Models (EFPIA Report) 2021. Available online: https://www.efpia.eu/ (accessed on 5 June 2024).
- Pan American Health Organization Strategic Fund. Available online: https://www.paho.org/en/paho-strategic-fund (accessed on 28 June 2024).
- Organization of Eastern Caribbean States. Available online: https://oecs.int/en/our-work/knowledge/library/pps (accessed on 28 June 2024).
- The Joint Procurement Agreement. Available online: https://health.ec.europa.eu/health-security-and-infectious-diseases/preparedness-and-response-planning/signing-ceremonies-joint-procurement-agreement_en (accessed on 28 June 2024).
- Parmaksiz, K.; Pisani, E.; Bal, R.; Kok, M.O. A systematic review of pooled procurement of medicines and vaccines—Identifying elements of success. Glob. Health 2022, 18, 59. [Google Scholar] [CrossRef]
- Canada Patented Medicine Prices Review Board. Available online: https://www.canada.ca/en/patented-medicine-prices-review.html (accessed on 2 June 2024).
- International Health Policy Center, The Commonwealth Fund. Available online: https://www.commonwealthfund.org/international-health-policy-center/system-profiles (accessed on 29 June 2024).
- Barnighausen, T.; Sauerborn, R. One Hundred and Eighteen Years of the German Health Insurance System: Are There Any Lessons for Middle- and Low-Income Countries? Soc. Sci. Med. 2002, 54, 1559–1587. [Google Scholar] [CrossRef]
- Wouters, O.J.; Kanavos, P.; McKee, M. Comparing Generic Drug Markets in Europe and the United States: Prices, Policies, and Potential Savings. Health Aff. 2017, 36, 2101–2109. [Google Scholar]
- Sarnak, D.O.; Squires, D.; Bishop, S. Paying for Prescription Drugs around the World: Why Is the U.S. an Outlier? The Commonwealth Fund. 2017. Available online: https://www.commonwealthfund.org/publications/issue-briefs/2017/oct/paying-prescription-drugs-around-world-why-us-outlier (accessed on 28 June 2024).
- Choudhry, N.K.; Avorn, J.; Glynn, R.J.; Antman, E.M.; Schneeweiss, S.; Toscano, M.; Reisman, L.; Fernandes, J.; Spettell, C.; Lee, J.L.; et al. Full Coverage for Preventive Medications after Myocardial Infarction. N. Engl. J. Med. 2011, 365, 2088–2097. [Google Scholar] [CrossRef]
- Widdus, R. Public-private partnerships for health: Their main targets, their diversity, and their future directions. Bull. World Health Organ. 2005, 79, 713–720. [Google Scholar]
- Kesselheim, A.S.; Avorn, J. The role of government in regulating drug prices and availability: Lessons from the United States. N. Engl. J. Med. 2013, 367, 1877–1879. [Google Scholar]
- World Intellectual Property Organization (WIPO). Licensing of Intellectual Property Rights and Competition Law; WIPO: Geneva, Switzerland, 2020. [Google Scholar]
- O’Neil, A.; Calderbank, S.; Brown, J.; Vandigo, J.; Yin, P.; Bratti, K.; Howell, S. Quantification of Utilization Management Barriers for Patients Initiating Therapy to Lower Lipid Levels. JAMA Netw. Open 2022, 5, e2240513. [Google Scholar] [CrossRef] [PubMed]
- ICH Official Web Site. Available online: https://www.ich.org/ (accessed on 5 June 2024).
- FDA. Available online: https://www.federalregister.gov/documents/2024/01/09/2024-00217/agency-information-collection-activities-proposed-collection-comment-request-expedited-programs-for (accessed on 5 June 2024).
- Pharmacovigilance: Overview. European Medicines Agency. Available online: https://www.ema.europa.eu/en/human-regulatory-overview/pharmacovigilance-overview (accessed on 5 June 2024).
- Barbosa, W.; Zhou, K.; Waddell, E.; Myers, T.; Dorsey, E.R. Improving Access to Care: Telemedicine Across Medical Domains. Annu. Rev. Public Health 2021, 42, 463–481. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Aboushi, H.; Campos, C.M.; Botelho, R.V.; Fernandez, F.; Rodriguez, D.; Torres, M.A.; Vieria, D.; Frauenfelder, A.; Pinto, G.; et al. Impact of a telemedicine-guided, population-based, STEMI network on reperfusion strategy, efficiency, and outcomes. Asia Interv. 2021, 7, 18–26. [Google Scholar] [CrossRef]
- Levine, S.R.; Gorman, M. “Telestroke”: The Application of Telemedicine for Stroke. Stroke 1999, 30, 464–469. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhu, W.; Cai, Y.; Sun, D.; Zhao, J. Clinical- and Cost-effectiveness of Telemedicine in Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. Medicine 2014, 93, e312. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Yuan, W.; Huang, T.; Zhang, H.; Mai, J.; Wang, J. Clinical Effectiveness of Telemedicine for Chronic Heart Failure: A Systematic Review and Meta-Analysis. J. Investig. Med. 2017, 65, 899–911. [Google Scholar] [CrossRef]
- Kruzich, J.M.; Jivanjee, P.; Robinson, A.; Friesen, B.J. Family Caregivers’ Perceptions of Barriers to and Supports of Participation in Their Children’s Out-of-Home Treatment. Psychiatr. Serv. 2003, 54, 1513–1518. [Google Scholar] [CrossRef]
- Saluja, S.; Rudolfson, N.; Massenburg, B.B.; Meara, J.G.; Shrime, M.G. The impact of physician migration on mortality in low and middle-income countries: An economic modelling study. BMJ Glob. Health 2020, 5, e001535. [Google Scholar] [CrossRef] [PubMed]
- Ekeland, A.G.; Bowes, A.; Flottorp, S. Effectiveness of telemedicine: A systematic review of reviews. Int. J. Med. Inform. 2010, 79, 736–771. [Google Scholar] [CrossRef]
- Schubert, T.J.; Clegg, K.; Karalis, D.; Desai, N.R.; Marrs, J.C.; McNeal, C.; Mintz, G.L.; Romagnoli, K.M.; Jones, L.K. Impact of telehealth on the current and future practice of lipidology: A scoping review. J. Clin. Lipidol. 2023, 17, 40–54. [Google Scholar] [CrossRef]
- Kruse, C.S.; Karem, P.; Shifflett, K.; Vegi, L.; Ravi, K.; Brooks, M. Evaluating barriers to adopting telemedicine worldwide: A systematic review. J. Telemed. Telecare 2018, 24, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; He, L.; Beestrum, M. Implications for implementation and adoption of telehealth in developing countries—A systematic review of China’s practices and experiences. npj Digit. Med. 2023, 6, 174. [Google Scholar] [CrossRef] [PubMed]
- PCSK9 Forum. Education and Research Forum. Available online: https://www.pcsk9forum.org/ (accessed on 5 June 2024).
- Katzmann, J.L.; Sorio-Vilela, F.; Dornstauder, E.; Fraas, U.; Smieszek, T.; Zappacosta, S.; Laufs, U. Non-statin lipid-lowering therapy over time in very-high-risk patients: Effectiveness of fixed-dose statin/ezetimibe compared to separate pill combination on LDL-C. Clin. Res. Cardiol. 2022, 111, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Ballantyne, C.M.; Laufs, U.; Ray, K.K.; Leiter, L.A.; Bays, H.E.; Goldberg, A.C.; Stroes, E.S.G.; MacDougall, D.; Zhao, X.; Catapano, A.L. Bempedoic acid plus ezetimibe fixed-dose combination in patients with hypercholesterolemia and high CVD risk treated with maximally tolerated statin therapy. Eur. J. Prev. Cardiolog. 2020, 27, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Navar, A.M.; Taylor, B.; Mulder, H.; Fievitz, E.; Monda, K.L.; Fievitz, A.; Maya, J.F.; López, J.A.G.; Peterson, E.D. Association of Prior Authorization and Out-of-pocket Costs with Patient Access to PCSK9 Inhibitor Therapy. JAMA Cardiol. 2017, 2, 1217–1225. [Google Scholar] [CrossRef]
- Dixon, D.L.; Saseen, J.J. Pharmacist-administered long-acting injectable PCSK9 service: A solution to improve patient access and adherence. J. Am. Pharm. Assoc. 2021, 61, e83–e85. [Google Scholar] [CrossRef]
Medication | Mechanism of Action | LDL-C Reduction | Phase of Development |
---|---|---|---|
Tafolecimab | Humanized mAb against PCSK9 | ~57–70% | Marketed |
Lerodalcibep | PCSK9-binding domain (adnectin) conjugated with human albumin | ~50% | Phase 3 |
Inclisiran | siRNA inhibition of hepatic PCSK9 synthesis | ~50% | Marketed |
MK-0616 (Enlicitide decanoate) | Oral PCSK9 inhibitor | ~60% | Phase 3 |
CVI-LM001 | Oral PCSK9 inhibitor | ~26% | Phase 2 |
Cepadacursen | Long-acting ASO targeting PCSK9 | Not known | Phase 2 |
Bempedoic acid | Inhibits ATP-citrate lyase | ~24% | Marketed |
Evinacumab | ANGPTL3 inhibitor | ~50% | Marketed (for HoFH) |
Zodasiran | siRNA targeting hepatic ANGPTL3 | ~20% (mixed dyslipidemia) ~48% (HoFH) | Phase 2 |
Solbinsiran | GalNAc-conjugated siRNA targeting hepatic ANGPTL3 | 36% reduction in ApoB | Phase 2b |
Obicetrapib | Inhibits CETP | ~45% | Phase 3 |
VXX-401 | Anti-PCSK9 vaccine | ~65% (NHPs) | Phase 1 |
VERVE-201 | CRISPR/Cas9-based editing of ANGPTL3 | ~46% (NHPs) | Phase 1b |
VERVE-101 | CRISPR/Cas9-based editing of PCSK9 | ~46% | Phase 1 |
CTX310 | CRISPR/Cas9-based editing of ANGPTL3 | Not known | Phase 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansfield, B.S.; Mohamed, F.; Larouche, M.; Raal, F.J. The Hurdle of Access to Emerging Therapies and Potential Solutions in the Management of Dyslipidemias. J. Clin. Med. 2024, 13, 4160. https://doi.org/10.3390/jcm13144160
Mansfield BS, Mohamed F, Larouche M, Raal FJ. The Hurdle of Access to Emerging Therapies and Potential Solutions in the Management of Dyslipidemias. Journal of Clinical Medicine. 2024; 13(14):4160. https://doi.org/10.3390/jcm13144160
Chicago/Turabian StyleMansfield, Brett S., Farzahna Mohamed, Miriam Larouche, and Frederick J. Raal. 2024. "The Hurdle of Access to Emerging Therapies and Potential Solutions in the Management of Dyslipidemias" Journal of Clinical Medicine 13, no. 14: 4160. https://doi.org/10.3390/jcm13144160
APA StyleMansfield, B. S., Mohamed, F., Larouche, M., & Raal, F. J. (2024). The Hurdle of Access to Emerging Therapies and Potential Solutions in the Management of Dyslipidemias. Journal of Clinical Medicine, 13(14), 4160. https://doi.org/10.3390/jcm13144160