From Biomechanical Properties to Morphological Variations: Exploring the Interplay between Aortic Valve Cuspidity and Ascending Aortic Aneurysm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject Grouping Principles, Imaging Technologies, and Aortic Measurements
2.2. Biomechanical Tests
2.3. Histopathological Examination
2.4. Scanning Electron Microscopic Examination
2.5. Statistical Data Analysis
3. Results
3.1. Patients’ Characteristics, Diagnostic Imaging Results, and Laboratory Indices Results for Bicuspid and Tricuspid Valve Ascending Aortic Aneurysms
3.2. Biomechanical Analysis of Aortic Wall
3.3. Structural Analysis of the Aortic Wall Layers
3.3.1. Analysis of Collagenous Content in the Wall of Ascending Aorta
3.3.2. Analysis of Elastic Membranes in the Medial Layer of Ascending Aorta
3.4. Ultrastructural Analysis of the Aortic Wall Using Scanning Electron Microscopy
3.5. A Comprehensive Analysis of Morphological, Biomechanical, and Clinical Variations Shedding Light on the Unique Characteristics of TAV and BAV Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, X.; Wang, Z.; Shen, Z.; Lei, F.; Liu, Y.-M.; Chen, Z.; Qin, J.-J.; Liu, H.; Ji, Y.-X.; Zhang, P.; et al. Projection of Global Burden and Risk Factors for Aortic Aneurysm—Timely Warning for Greater Emphasis on Managing Blood Pressure. Ann. Med. 2022, 54, 553–564. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef]
- Guo, M.H.; Appoo, J.J.; Saczkowski, R.; Smith, H.N.; Ouzounian, M.; Gregory, A.J.; Herget, E.J.; Boodhwani, M. Association of Mortality and Acute Aortic Events with Ascending Aortic Aneurysm: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2018, 1, e181281. [Google Scholar] [CrossRef]
- Clift, P.F.; Cervi, E. A Review of Thoracic Aortic Aneurysm Disease. Echo Res. Pract. 2020, 7, R1–R10. [Google Scholar] [CrossRef]
- Mathur, A.; Mohan, V.; Ameta, D.; Gaurav, B.; Haranahalli, P. Aortic Aneurysm. J. Transl. Intern. Med. 2016, 4, 35–41. [Google Scholar] [CrossRef]
- Wang, Z.; You, Y.; Yin, Z.; Bao, Q.; Lei, S.; Yu, J.; Xie, C.; Ye, F.; Xie, X. Burden of Aortic Aneurysm and Its Attributable Risk Factors from 1990 to 2019: An Analysis of the Global Burden of Disease Study 2019. Front. Cardiovasc. Med. 2022, 9, 901225. [Google Scholar] [CrossRef]
- Saliba, E.; Sia, Y.; Dore, A.; El Hamamsy, I. The Ascending Aortic Aneurysm: When to Intervene? IJC Heart Vasc. 2015, 6, 91–100. [Google Scholar] [CrossRef]
- Zhou, Z.; Cecchi, A.C.; Prakash, S.K.; Milewicz, D.M. Risk Factors for Thoracic Aortic Dissection. Genes 2022, 13, 1814. [Google Scholar] [CrossRef]
- Komutrattananont, P.; Mahakkanukrauh, P.; Das, S. Morphology of the Human Aorta and Age-Related Changes: Anatomical Facts. Anat. Cell Biol. 2019, 52, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Ruddy, J.M.; Jones, J.A.; Spinale, F.G.; Ikonomidis, J.S. Regional Heterogeneity within the Aorta: Relevance to Aneurysm Disease. J. Thorac. Cardiovasc. Surg. 2008, 136, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Jana, S.; Hu, M.; Shen, M.; Kassiri, Z. Extracellular Matrix, Regional Heterogeneity of the Aorta, and Aortic Aneurysm. Exp. Mol. Med. 2019, 51, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Giudici, A.; Wilkinson, I.B.; Khir, A.W. Review of the Techniques Used for Investigating the Role Elastin and Collagen Play in Arterial Wall Mechanics. IEEE Rev. Biomed. Eng. 2021, 14, 256–269. [Google Scholar] [CrossRef] [PubMed]
- Tsamis, A.; Krawiec, J.T.; Vorp, D.A. Elastin and Collagen Fibre Microstructure of the Human Aorta in Ageing and Disease: A Review. J. R. Soc. Interface 2013, 10, 20121004. [Google Scholar] [CrossRef] [PubMed]
- Cocciolone, A.J.; Hawes, J.Z.; Staiculescu, M.C.; Johnson, E.O.; Murshed, M.; Wagenseil, J.E. Elastin, Arterial Mechanics, and Cardiovascular Disease. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H189–H205. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Cao, H.; Hu, G.; Wu, Y.; Xu, Y.; Cui, H.; Lu, H.S.; Zheng, L. The Mechanism and Therapy of Aortic Aneurysms. Signal Transduct. Target. Ther. 2023, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, M.; Gregory, A.; Sigaeva, T.; Dobson, G.M.; Fedak, P.W.M.; Appoo, J.J.; Di Martino, E.S.; Nightingale, M.; Gregory, A.; Beddoes, R.; et al. Biomechanics in Ascending Aortic Aneurysms Correlate with Tissue Composition and Strength. JTCVS Open 2022, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pejcic, S.; Ali Hassan, S.M.; Rival, D.E.; Bisleri, G. Characterizing the Mechanical Properties of the Aortic Wall. VP 2019, 2019, 32. [Google Scholar] [CrossRef]
- Sherifova, S.; Holzapfel, G.A. Biochemomechanics of the Thoracic Aorta in Health and Disease. Prog. Biomed. Eng. 2020, 2, 032002. [Google Scholar] [CrossRef]
- López-Guimet, J.; Andilla, J.; Loza-Alvarez, P.; Egea, G. High-Resolution Morphological Approach to Analyse Elastic Laminae Injuries of the Ascending Aorta in a Murine Model of Marfan Syndrome. Sci. Rep. 2017, 7, 1505. [Google Scholar] [CrossRef]
- Fritze, O.; Romero, B.; Schleicher, M.; Jacob, M.P.; Oh, D.-Y.; Starcher, B.; Schenke-Layland, K.; Bujan, J.; Stock, U.A. Age-Related Changes in the Elastic Tissue of the Human Aorta. J. Vasc. Res. 2012, 49, 77–86. [Google Scholar] [CrossRef]
- Collins, M.J.; Dev, V.; Strauss, B.H.; Fedak, P.W.M.; Butany, J. Variation in the Histopathological Features of Patients with Ascending Aortic Aneurysms: A Study of 111 Surgically Excised Cases. J. Clin. Pathol. 2008, 61, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Berillis, P. The Role of Collagen in the Aorta’s Structure. TOCVJ 2013, 6, 1–8. [Google Scholar] [CrossRef]
- Sigaeva, T.; Sattari, S.; Polzer, S.; Appoo, J.J.; Di Martino, E.S. Biomechanical Properties of Ascending Aortic Aneurysms: Quantification of Inter- and Intra-Patient Variability. J. Biomech. 2021, 125, 110542. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Deng, W.; Lv, Q.; Li, Y.; Liu, T.; Xie, M. Aortic Dilatation in Patients with Bicuspid Aortic Valve. Front. Physiol. 2021, 12, 615175. [Google Scholar] [CrossRef] [PubMed]
- Tobin, S.W.; Alibhai, F.J.; Lee, M.M.; Yeganeh, A.; Wu, J.; Li, S.-H.; Guo, J.; Tsang, K.; Tumiati, L.; Rocha, R.; et al. Novel Mediators of Aneurysm Progression in Bicuspid Aortic Valve Disease. J. Mol. Cell. Cardiol. 2019, 132, 71–83. [Google Scholar] [CrossRef]
- Kim, M.-S.; Kim, J.H.; Lee, S.H.; Lee, S.; Youn, Y.-N.; Yoo, K.-J.; Joo, H.-C. Long-Term Fate of Dilated Ascending Aorta after Aortic Valve Replacement for Bicuspid Versus Tricuspid Aortic Valve Disease. Am. J. Cardiol. 2020, 129, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Bellaire, C.P.; Tharakan, S.M.; Roy, J.; Puskas, J.D.; Di Luozzo, G. Natural History of Bicuspid Aortic Valves and Ascending Aortic Aneurysms: Aortic Center Experience. J. Card. Surg. 2022, 37, 2326–2335. [Google Scholar] [CrossRef] [PubMed]
- Wågsäter, D.; Paloschi, V.; Hanemaaijer, R.; Hultenby, K.; Bank, R.A.; Franco-Cereceda, A.; Lindeman, J.H.N.; Eriksson, P. Impaired Collagen Biosynthesis and Cross-linking in Aorta of Patients with Bicuspid Aortic Valve. JAHA 2013, 2, e000034. [Google Scholar] [CrossRef] [PubMed]
- Davies, R.R.; Gallo, A.; Coady, M.A.; Tellides, G.; Botta, D.M.; Burke, B.; Coe, M.P.; Kopf, G.S.; Elefteriades, J.A. Novel Measurement of Relative Aortic Size Predicts Rupture of Thoracic Aortic Aneurysms. Ann. Thorac. Surg. 2006, 81, 169–177. [Google Scholar] [CrossRef]
- Wu, J.; Zafar, M.A.; Li, Y.; Saeyeldin, A.; Huang, Y.; Zhao, R.; Qiu, J.; Tanweer, M.; Abdelbaky, M.; Gryaznov, A.; et al. Ascending Aortic Length and Risk of Aortic Adverse Events. J. Am. Coll. Cardiol. 2019, 74, 1883–1894. [Google Scholar] [CrossRef]
- Stemper, B.D.; Yoganandan, N.; Stineman, M.R.; Gennarelli, T.A.; Baisden, J.L.; Pintar, F.A. Mechanics of Fresh, Refrigerated, and Frozen Arterial Tissue. J. Surg. Res. 2007, 139, 236–242. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, S.A.; Doyle, B.J.; McGloughlin, T.M. The Impact of Long Term Freezing on the Mechanical Properties of Porcine Aortic Tissue. J. Mech. Behav. Biomed. Mater. 2014, 37, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Chow, M.-J.; Zhang, Y. Changes in the Mechanical and Biochemical Properties of Aortic Tissue Due to Cold Storage. J. Surg. Res. 2011, 171, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Barber, J.E.; Kasper, F.K.; Ratliff, N.B.; Cosgrove, D.M.; Griffin, B.P.; Vesely, I. Mechanical Properties of Myxomatous Mitral Valves. J. Thorac. Cardiovasc. Surg. 2001, 122, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Lawton, R.W. The Thermoelastic Behavior of Isolated Aortic Strips of the Dog. Circ. Res. 1954, 2, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Carew, T.E.; Vaishnav, R.N.; Patel, D.J. Compressibility of the Arterial Wall. Circ. Res. 1968, 23, 61–68. [Google Scholar] [CrossRef]
- Rittié, L. Method for Picrosirius Red-Polarization Detection of Collagen Fibers in Tissue Sections. In Fibrosis; Rittié, L., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; Volume 1627, pp. 395–407. [Google Scholar] [CrossRef]
- Sokolis, D.P.; Kritharis, E.P.; Iliopoulos, D.C. Effect of Layer Heterogeneity on the Biomechanical Properties of Ascending Thoracic Aortic Aneurysms. Med. Biol. Eng. Comput. 2012, 50, 1227–1237. [Google Scholar] [CrossRef]
- Forsell, C.; Björck, H.M.; Eriksson, P.; Franco-Cereceda, A.; Gasser, T.C. Biomechanical Properties of the Thoracic Aneurysmal Wall: Differences Between Bicuspid Aortic Valve and Tricuspid Aortic Valve Patients. Ann. Thorac. Surg. 2014, 98, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Pichamuthu, J.E.; Phillippi, J.A.; Cleary, D.A.; Chew, D.W.; Hempel, J.; Vorp, D.A.; Gleason, T.G. Differential Tensile Strength and Collagen Composition in Ascending Aortic Aneurysms by Aortic Valve Phenotype. The Ann. Thorac. Surg. 2013, 96, 2147–2154. [Google Scholar] [CrossRef]
- Chung, J.C.-Y.; Wong, E.; Tang, M.; Eliathamby, D.; Forbes, T.L.; Butany, J.; Simmons, C.A.; Ouzounian, M. Biomechanics of Aortic Dissection: A Comparison of Aortas Associated With Bicuspid and Tricuspid Aortic Valves. JAHA 2020, 9, e016715. [Google Scholar] [CrossRef]
- Bollache, E.; Guzzardi, D.G.; Sattari, S.; Olsen, K.E.; Di Martino, E.S.; Malaisrie, S.C.; van Ooij, P.; Collins, J.; Carr, J.; McCarthy, P.M.; et al. Aortic Valve-Mediated Wall Shear Stress Is Heterogeneous and Predicts Regional Aortic Elastic Fiber Thinning in Bicuspid Aortic Valve-Associated Aortopathy. J. Thorac. Cardiovasc. Surg. 2018, 156, 2112–2120.e2. [Google Scholar] [CrossRef]
- Ganizada, B.H.; Veltrop, R.J.A.; Akbulut, A.C.; Koenen, R.R.; Accord, R.; Lorusso, R.; Maessen, J.G.; Reesink, K.; Bidar, E.; Schurgers, L.J. Unveiling Cellular and Molecular Aspects of Ascending Thoracic Aortic Aneurysms and Dissections. Basic Res. Cardiol. 2024, 119, 371–395. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, M.; Li, Y.; Wang, Q.; Xing, Y.; Bian, C.; Li, J. A Study on the Ultimate Mechanical Properties of Middle-Aged and Elderly Human Aorta Based on Uniaxial Tensile Test. Front. Bioeng. Biotechnol. 2024, 12, 1357056. [Google Scholar] [CrossRef]
- Iliopoulos, D.C.; Kritharis, E.P.; Giagini, A.T.; Papadodima, S.A.; Sokolis, D.P. Ascending Thoracic Aortic Aneurysms Are Associated with Compositional Remodeling and Vessel Stiffening but Not Weakening in Age-Matched Subjects. J. Thorac. Cardiovasc. Surg. 2009, 137, 101–109. [Google Scholar] [CrossRef]
- Miura, K. Tunica Intima Compensation for Reduced Stiffness of the Tunica Media in Aging Renal Arteries as Measured with Scanning Acoustic Microscopy. PLoS ONE 2020, 15, e0234759. [Google Scholar] [CrossRef]
- Pisano, C.; D’Amico, F.; Balistreri, C.R.; Vacirca, S.R.; Nardi, P.; Altieri, C.; Scioli, M.G.; Bertoldo, F.; Santo, L.; Bellisario, D.; et al. Biomechanical Properties and Histomorphometric Features of Aortic Tissue in Patients with or without Bicuspid Aortic Valve. J. Thorac. Dis. 2020, 12, 2304–2316. [Google Scholar] [CrossRef]
- Karalko, M.; Stejskal, V.; Dergel, M.; Gofus, J.; Timbilla, S.; Zaloudkova, L.; Zacek, P.; Pojar, M.; Vojacek, J. Histopathological Changes in Dilated Ascending Aorta Associated with Aortic Valve Cuspidity. Eur. J. Cardio-Thorac. Surg. 2021, 59, 1103–1108. [Google Scholar] [CrossRef]
- Rodella, L.F.; Rezzani, R.; Bonomini, F.; Peroni, M.; Cocchi, M.A.; Hirtler, L.; Bonardelli, S. Abdominal Aortic Aneurysm and Histological, Clinical, Radiological Correlation. Acta Histochem. 2016, 118, 256–262. [Google Scholar] [CrossRef]
- Sequeira Gross, T.M.; Lindner, D.; Ojeda, F.M.; Neumann, J.; Grewal, N.; Kuntze, T.; Blankenberg, S.; Reichenspurner, H.; Westermann, D.; Girdauskas, E. Comparison of Microstructural Alterations in the Proximal Aorta between Aortic Stenosis and Regurgitation. J. Thorac. Cardiovasc. Surg. 2021, 162, 1684–1695. [Google Scholar] [CrossRef] [PubMed]
- Doderer, S.A.; Gäbel, G.; Kokje, V.B.C.; Northoff, B.H.; Holdt, L.M.; Hamming, J.F.; Lindeman, J.H.N. Adventitial Adipogenic Degeneration Is an Unidentified Contributor to Aortic Wall Weakening in the Abdominal Aortic Aneurysm. J. Vasc. Surg. 2018, 67, 1891–1900.e4. [Google Scholar] [CrossRef] [PubMed]
- Takaoka, M.; Nagata, D.; Kihara, S.; Shimomura, I.; Kimura, Y.; Tabata, Y.; Saito, Y.; Nagai, R.; Sata, M. Periadventitial Adipose Tissue Plays a Critical Role in Vascular Remodeling. Circ. Res. 2009, 105, 906–911. [Google Scholar] [CrossRef]
Characteristic | Bicuspid Aortic Valve, n = 12 | Tricuspid Aortic Valve, n = 14 | p-Value |
---|---|---|---|
Age, years, median (IQR) | 59.50 (51.25–66.25) | 68.25 (62.25–74.00) | pMW = 0.0101 |
Sex, male, n (%) | 11 (91.7) | 7 (50.0) | pChi2Y = 0.0617 |
Height, meters, mean (SD) | 1.79 (0.10) | 1.71 (0.09) | pSt = 0.0382 |
Weight, kg, median (IQR) | 89.50 (80.50–96.00) | 76.50 (66.75–103.5) | pMW = 0.1632 |
BSA, m2, median (IQR) | 2.06 (1.97–2.16) | 1.89 (1.77–2.13) | pMW = 0.0651 |
BMI, kg/m2, median (IQR) | 27.72 (25.29–29.24) | 26.94 (23.42–30.74) | pMW = 0.7424 |
Hypertension, n (%) | 7 (58.3) | 12 (85.7) | pChi2Y = 0.2603 |
Diabetes mellitus, n (%) | 1 (8.3) | 0 (0) | pChi2Y = 0.9373 |
Significant coronary artery disease, n (%) | 2 (16.7) | 2 (14.3) | pChi2Y = 0.7059 |
Smoking, n (%) | 4 (33.3) | 6 (42.9) | pChi2Y = 0.9257 |
Arrhythmia, n (%) | 3 (25) | 5 (35.7) | pChi2Y = 0.8698 |
Severe aortic valve stenosis, n (%) | 7 (58.3) | 0 (0.0) | pChi2Y = 0.0037 |
Severe aortic valve regurgitation, n (%) | 3 (25) | 8 (57.1) | pChi2Y = 0.2092 |
EF of the left ventricle, %, median (IQR) | 59.0 (55.8–60.0) | 50.0 (48.3–63.3) | pMW = 0.6755 |
Triglycerides, mmol/L, median (IQR) | 1.31 (0.74–1.57) | 1.00 (0.77–1.17) | pMW = 0.1717 |
Total cholesterol, mmol/L, median (IQR) | 4.10 (2.98–5.31) | 4.52 (3.97–5.55) | pMW = 0.2798 |
High density cholesterol, mmol/L, median (IQR) | 1.11 (0.92–1.43) | 1.38 (1.18–1.72) | pMW = 0.0194 |
Low density cholesterol, mmol/L, median (IQR) | 1.99 (1.58–3.80) | 2.43 (2.29–3.51) | pMW = 0.3953 |
AscAo maximum diameter, cm, median (IQR) | 5.45 (5.33–5.70) | 6.15 (5.60–6.75) | pMW = 0.0055 |
AscAo length, cm, mean (SD) | 12.23 (1.23) | 11.71 (1.45) | pSt = 0.2523 |
Dilation of aortic root, n (%) | 3 (25.0) | 7 (50.0) | pChi2Y = 0.3671 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brecs, I.; Skuja, S.; Kasyanov, V.; Groma, V.; Kalejs, M.; Svirskis, S.; Ozolanta, I.; Stradins, P. From Biomechanical Properties to Morphological Variations: Exploring the Interplay between Aortic Valve Cuspidity and Ascending Aortic Aneurysm. J. Clin. Med. 2024, 13, 4225. https://doi.org/10.3390/jcm13144225
Brecs I, Skuja S, Kasyanov V, Groma V, Kalejs M, Svirskis S, Ozolanta I, Stradins P. From Biomechanical Properties to Morphological Variations: Exploring the Interplay between Aortic Valve Cuspidity and Ascending Aortic Aneurysm. Journal of Clinical Medicine. 2024; 13(14):4225. https://doi.org/10.3390/jcm13144225
Chicago/Turabian StyleBrecs, Ivars, Sandra Skuja, Vladimir Kasyanov, Valerija Groma, Martins Kalejs, Simons Svirskis, Iveta Ozolanta, and Peteris Stradins. 2024. "From Biomechanical Properties to Morphological Variations: Exploring the Interplay between Aortic Valve Cuspidity and Ascending Aortic Aneurysm" Journal of Clinical Medicine 13, no. 14: 4225. https://doi.org/10.3390/jcm13144225
APA StyleBrecs, I., Skuja, S., Kasyanov, V., Groma, V., Kalejs, M., Svirskis, S., Ozolanta, I., & Stradins, P. (2024). From Biomechanical Properties to Morphological Variations: Exploring the Interplay between Aortic Valve Cuspidity and Ascending Aortic Aneurysm. Journal of Clinical Medicine, 13(14), 4225. https://doi.org/10.3390/jcm13144225