Controversies and Clarifications Regarding the Role of Aspirin in Preeclampsia Prevention: A Focused Review
Abstract
:1. Introduction
2. History of Aspirin
3. Aspirin in the Prevention of Preeclampsia
3.1. Who Should Be Treated with LDA in Order to Prevent Preeclampsia?
3.2. What Is the Optimal Dose of LDA in the Prevention of Preeclampsia?
3.3. What Is the Optimal Timing of LDA Administration during the Day?
3.4. What Is the Optimal Gestational Age for LDA Initiation and Cessation?
3.5. Effects of Aspirin on Other Adverse Outcomes
3.6. What Is the Role of Aspirin in the Prevention of Preeclampsia in Patients with Sickle Cell Disease, Thalassemia, and Myeloproliferative Neoplasms?
3.7. What Is the Optimal Treatment Strategy for Patients Who Experienced Preeclampsia Despite Aspirin Prophylaxis?
4. Conclusions
Questions | Summary of Scientific Evidence |
---|---|
Who should be treated with aspirin in order to prevent preeclampsia? |
|
What is the optimal dose of aspirin for the prevention of preeclampsia? |
|
What is the optimal timing of aspirin administration during the day? |
|
What is the optimal gestational age for aspirin initiation and cessation? | Aspirin initiation:
|
What is the effect of aspirin on other adverse outcomes |
|
What is the role of aspirin in the prevention of preeclampsia in patients with sickle cell disease, thalassemia, and myeloproliferative neoplasms? |
|
What is the optimal treatment strategy for patients who experienced preeclampsia despite aspirin prophylaxis? |
|
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Maternal Mortality Collaborators GBD. Global, regional, and national levels of maternal mortality, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1775–1812. [Google Scholar] [CrossRef] [PubMed]
- Child Mortality Collaborators GBD. Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1725–1774. [Google Scholar] [CrossRef] [PubMed]
- Moster, D.; Lie, R.T.; Markestad, T. Long-term medical and social consequences of preterm birth. N. Engl. J. Med. 2008, 359, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Irving, R.J.; Belton, N.R.; Elton, R.A.; Walker, B.R. Adult cardiovascular risk factors in premature babies. Lancet 2000, 355, 2135–2136. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Haththotuwa, R.; Kwok, C.S.; Babu, A.; Kotronias, R.A.; Rushton, C.; Zaman, A.; Fryer, A.A.; Kadam, U.; Chew-Graham, C.A.; et al. Preeclampsia and future cardiovascular health: A systematic review and metaanalysis. Circ. Cardiovasc. Qual. Outcomes 2017, 10, e003497. [Google Scholar] [CrossRef] [PubMed]
- Breetveld, N.M.; Ghossein-Doha, C.; Van Neer, J.; Sengers, M.J.; Geerts, L.; Van Kuijk, S.M.; Van Dijk, A.P.; Van Der Vlugt, M.J.; Heidema, W.M.; Brunner-La Rocca, H.P.; et al. Decreased endothelial function and increased subclinical heart failure in women several years after pre-eclampsia. Ultrasound Obstet. Gynecol. 2018, 52, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Lykke, J.A.; Langhoff-Roos, J.; Sibai, B.M.; Funai, E.F.; Triche, E.W.; Paidas, M.J. Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and type 2 diabetes mellitus in the mother. Hypertension 2009, 53, 944–951. [Google Scholar] [CrossRef]
- Desborough, M.J.R.; Keeling, D.M. The aspirin story—From willow to wonder drug. Br. J. Haematol. 2017, 177, 674–683. [Google Scholar] [CrossRef]
- Cunha, F. The Ebers papyrus. Am. J. Surg. 1949, 77, 134–136. [Google Scholar] [CrossRef]
- Miner, J.; Hoffhines, A. The discovery of aspirin’s antithrombotic effects. Tex. Heart Inst. J. 2007, 34, 179–186. [Google Scholar]
- Montinari, M.R.; Minelli, S.; De Caterina, R. The first 3500 years of aspirin history from its roots—A concise summary. Vasc. Pharmacol. 2019, 113, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Vane, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol. 1971, 231, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Vane, J.R.; Botting, R.M. The mechanism of action of aspirin. Thromb. Res. 2003, 110, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Panagodage, S.; Yong, H.E.; Costa, F.D.; Borg, A.J.; Kalionis, B.; Brennecke, S.P.; Murthi, P. Low-dose acetylsalicylic acid treatment modulates the production of cytokines and improves trophoblast function in an in vitro model of early-onset preeclampsia. Am. J. Pathol. 2016, 186, 3217–3224. [Google Scholar] [CrossRef] [PubMed]
- Goodlin, R.C.; Haesslein, H.O.; Fleming, J. Aspirin for the treatment of recurrent toxaemia. Lancet 1978, 2, 51. [Google Scholar] [CrossRef] [PubMed]
- Beaufils, M.; Uzan, S.; Donsimoni, R.; Colau, J.C. Prevention of pre-eclampsia by early antiplatelet therapy. Lancet 1985, 1, 840–842. [Google Scholar] [CrossRef] [PubMed]
- Askie, L.M.; Duley, L.; Henderson-Smart, D.J.; Stewart, L.A.; Group, P.C. Antiplatelet agents for prevention of pre-eclampsia: A meta-analysis of individual patient data. Lancet 2007, 369, 1791–1798. [Google Scholar] [CrossRef]
- Bujold, E.; Roberge, S.; Lacasse, Y.; Bureau, M.; Audibert, F.; Marcoux, S.; Forest, J.C.; Giguere, Y. Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: A meta-analysis. Obstet. Gynecol. 2010, 116, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Roberge, S.; Villa, P.; Nicolaides, K.; Giguère, Y.; Vainio, M.; Bakthi, A.; Ebrashy, A.; Bujold, E. Early administration of low-dose aspirin for the prevention of preterm and term preeclampsia: A systematic review and meta-analysis. Fetal Diagn. Ther. 2012, 31, 141–146. [Google Scholar] [CrossRef]
- Roberge, S.; Nicolaides, K.; Demers, S.; Hyett, J.; Chaillet, N.; Bujold, E. The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: Systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2017, 216, 110–120.e6. [Google Scholar] [CrossRef]
- Roberge, S.; Bujold, E.; Nicolaides, K.H. Meta-analysis on the effect of aspirin use for prevention of preeclampsia on placental abruption and antepartum hemorrhage. Am. J. Obstet. Gynecol. 2018, 218, 483–489. [Google Scholar] [CrossRef]
- Gestational Hypertension and Preeclampsia. ACOG Practice Bulletin, Number 222. Obstet. Gynecol. 2020, 135, e237–e260. [CrossRef]
- Low-dose aspirin use during pregnancy. ACOG Committee Opinion No. 743. American College of Obstetricians and Gynecologists. Obstet. Gynecol. 2018, 132, e44–e52.
- Force, U.P.S.T.; Davidson, K.; Barry, M.; Mangione, C.; Cabana, M.; Caughey, A.; Davis, E.; Donahue, K.; Doubeni, C.; Kubik, M.; et al. Aspirin use to prevent preeclampsia and related morbidity and mortality: US Preventive Services Task Force Recommendation Statement. US Preventive Services Task Force. JAMA 2021, 326, 1186–1191. [Google Scholar]
- Tan, M.Y.; Wright, D.; Syngelaki, A.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; Greco, E.; Wright, A.; Maclagan, K.; et al. Comparison of diagnostic accuracy of early screening for pre-eclampsia by NICE guidelines and a method combining maternal factors and biomarkers: Results of SPREE. Ultrasound Obstet. Gynecol. 2018, 51, 743–750. [Google Scholar] [CrossRef]
- Finnegan, C.; Dicker, P.; Asandei, D.; Higgins, M.; O’Gorman, N.; O’Riordan, M.; Dunne, F.; Gaffney, G.; Newman, C.; McAuliffe, F.; et al. The IRELAnD study-investigating the role of early low-dose aspirin in diabetes mellitus: A double-blinded, placebo-controlled, randomized trial. Am. J. Obstet. Gynecol. MFM 2024, 6, 101297. [Google Scholar] [CrossRef] [PubMed]
- Do, N.C.; Vestgaard, M.; Ásbjörnsdóttir, B.; Nørgaard, S.K.; Andersen, L.L.; Jensen, D.M.; Ringholm, L.; Damm, P.; Mathiesen, E.R. Unchanged Prevalence of Preeclampsia After Implementation of Prophylactic Aspirin for All Pregnant Women With Preexisting Diabetes: A Prospective Cohort Study. Diabetes Care 2021, 44, 2252–2259. [Google Scholar] [CrossRef]
- Richards, E.M.F.; Giorgione, V.; Stevens, O.; Thilaganathan, B. Low-dose aspirin for the prevention of superimposed preeclampsia in women with chronic hypertension: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2023, 228, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Martinez-Portilla, R.J.; Rolnik, D.L.; Poon, L.C. ASPRE trial: Risk factors for development of preterm pre-eclampsia despite aspirin prophylaxis. Ultrasound Obstet. Gynecol. 2021, 58, 546–552. [Google Scholar] [CrossRef]
- Available online: https://fetalmedicine.org/research/assess/preeclampsia/first-trimester (accessed on 22 May 2024).
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int. J. Gynaecol. Obstet. 2019, 145 (Suppl. S1), 1–33. [Google Scholar] [CrossRef]
- O’Gorman, N.; Wright, D.; Poon, L.C.; Rolnik, D.L.; Syngelaki, A.; Wright, A.; Akolekar, R.; Cicero, S.; Janga, D.; Jani, J.; et al. Accuracy of competing-risks model in screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet. Gynecol. 2017, 49, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Rolnik, D.L.; Wright, D.; Poon, L.C.; O’Gorman, N.; Syngelaki, A.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N. Engl. J. Med. 2017, 377, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.; Gallo, D.M.; Gil Pugliese, S.; Casanova, C.; Nicolaides, K.H. Contingent screening for preterm pre-eclampsia. Ultrasound Obstet. Gynecol. 2016, 47, 554–559. [Google Scholar] [CrossRef]
- Mone, F.; Mulcahy, C.; McParland, P.; McAuliffe, F.M. Should we recommend universal aspirin for all pregnant women? Am. J. Obstet. Gynecol. 2017, 216, 141.e1–141.e5. [Google Scholar] [CrossRef] [PubMed]
- Mallampati, D.; Grobman, W.; Rouse, D.J.; Werner, E.F. Strategies for prescribing aspirin to prevent preeclampsia: A cost-effectiveness analysis. Obstet. Gynecol. 2019, 134, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Pullins, M.J.; Boggess, K.; Porter, T.F. Aspirin in Pregnancy. Obstet. Gynecol. 2023, 142, 1333–1340. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.; Wright, A.; Tan, M.Y.; Nicolaides, K.H. When to give aspirin to prevent preeclampsia: Application of Bayesian decision theory. Am. J. Obstet. Gynecol. 2022, 226, S1120–S1125. [Google Scholar] [CrossRef] [PubMed]
- Di Girolamo, R.; Alameddine, S.; Khalil, A.; Santilli, F.; Rizzo, G.; Maruotti, G.M.; Liberati, M.; D’Antonio, F. Clinical practice guidelines on the use of aspirin in pregnancy: Systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023, 282, 64–71. [Google Scholar] [CrossRef]
- Ghesquiere, L.; Guerby, P.; Marchant, I.; Kumar, N.; Zare, M.; Foisy, M.-A.; Roberge, S.; Bujold, E. Comparing aspirin 75 to 81 mg vs 150 to 162 mg for prevention of preterm preeclampsia: Systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM 2023, 5, 101000. [Google Scholar] [CrossRef]
- Caron, N.; Rivard, G.; Michon, N.; Morin, F.; Pilon, D.; Moutquin, J.-M.; Rey, É. Low-dose ASA response using the PFA-100 in women with high-risk pregnancy. J. Obstet. Gynaecol. Can. 2009, 31, 1022–1027. [Google Scholar] [CrossRef]
- Shanmugalingam, R.; Wang, X.; Münch, G.; Fulcher, I.; Lee, G.; Chau, K.; Xu, B.; Kumar, R.; Hennessy, A.; Makris, A. A pharmacokinetic assessment of optimal dosing, preparation, and chronotherapy of aspirin in pregnancy. Am. J. Obstet. Gynecol. 2019, 221, 255.e1–255.e9. [Google Scholar] [CrossRef] [PubMed]
- SMFM Patient Safety and Quality Committee; Combs, C.A.; Montgomery, D.M. Society for Maternal-Fetal Medicine special statement: Checklists for preeclampsia risk-factor screening to guide recommendations for prophylactic low-dose aspirin. Am. J. Obstet. Gynecol. 2020, 223, B7–B11. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, P.M.; Cook, N.R.; Gaziano, J.M.; Price, J.F.; Belch, J.F.F.; Roncaglioni, M.C.; Morimoto, T.; Mehta, Z. Effects of aspirin on risks of vascular events and cancer according to bodyweight and dose: Analysis of individual patient data from randomised trials. Lancet 2018, 392, 387–399. [Google Scholar] [CrossRef]
- Finneran, M.M.; Gonzalez-Brown, V.M.; Smith, D.D.; Landon, M.B.; Rood, K.M. Obesity and laboratory aspirin resistance in high-risk pregnant women treated with low-dose aspirin. Am. J. Obstet. Gynecol. 2019, 220, 385.e1–385.e6. [Google Scholar] [CrossRef] [PubMed]
- Boelig, R.C.; Kaushal, G.; Rochani, A.; McKenzie, S.E.; Kraft, W.K. Aspirin pharmacokinetics and pharmacodynamics through gestation. Am. J. Obstet. Gynecol. 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens 2018, 13, 291–310. [Google Scholar] [PubMed]
- van Diemen, J.J.; Fuijkschot, W.W.; Wessels, T.J.; Veen, G.; Smulders, Y.M.; Thijs, A. Evening intake of aspirin is associated with a more stable 24-h platelet inhibition compared to morning intake: A study in chronic aspirin users. Platelets 2016, 27, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Bonten, T.N.; Saris, A.; van Oostrom, M.J.; Snoep, J.D.; Rosendaal, F.R.; Zwaginga, J.J.; Eikenboom, J.; van der Meer, P.F.; van der Bom, J.G. Effect of aspirin intake at bedtime versus on awakening on circadian rhythm of platelet reactivity. A randomised cross-over trial. Thromb. Haemost. 2014, 112, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Snoep, J.D.; Hovens, M.M.; Pasha, S.M.; Frölich, M.; Pijl, H.; Tamsma, J.T.; Huisman, M.V. Time-dependent effects of low-dose aspirin on plasma renin activity, aldosterone, cortisol, and catecholamines. Hypertension 2009, 54, 1136–1142. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Fernández, J.R.; Mojón, A.; Alonso, I.; Silva, I.; Ucieda, R.; Codesido, J.; Iglesías, M. Administration time-dependent effects of aspirin in women at differing risk for preeclampsia. Hypertension 1999, 34, 1016–1023. [Google Scholar] [CrossRef]
- Ayala, D.E.; Ucieda, R.; Hermida, R.C. Chronotherapy with low-dose aspirin for prevention of complications in pregnancy. Chronobiol. Int. 2013, 30, 260–279. [Google Scholar] [CrossRef]
- Meher, S.; Duley, L.; Hunter, K.; Askie, L. Antiplatelet therapy before or after 16 weeks’ gestation for preventing preeclampsia: An individual participant data meta-analysis. Am. J. Obstet. Gynecol. 2017, 216, 121–128.e2. [Google Scholar] [CrossRef]
- Theilen, L.H.; Campbell, H.D.; Mumford, S.L.; Purdue-Smithe, A.C.; Sjaarda, L.A.; Perkins, N.J.; Radoc, J.G.; Silver, R.M.; Schisterman, E.F. Platelet activation and placenta-mediated adverse pregnancy outcomes: An ancillary study to the Effects of Aspirin in Gestation and Reproduction trial. Am. J. Obstet. Gynecol. 2020, 223, 741.e1–741.e12. [Google Scholar] [CrossRef]
- Chaemsaithong, P.; Cuenca-Gomez, D.; Plana, M.N.; Gil, M.M.; Poon, L.C. Does low-dose aspirin initiated before 11 weeks’ gestation reduce the rate of preeclampsia? Am. J. Obstet. Gynecol. 2020, 222, 437–450. [Google Scholar] [CrossRef]
- Webster, K.; Fishburn, S.; Maresh, M.; Findlay, S.C.; Chappell, L.C.; Guideline Committee. Diagnosis and management of hypertension in pregnancy: Summary of updated NICE guidance. BMJ 2019, 366, 15119. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, M.; Bonacina, E.; Garcia-Manau, P.; López, M.; Caamiña, S.; Vives, À.; Lopez-Quesada, E.; Ricart, M.; Maroto, A.; de Mingo, L.; et al. Aspirin discontinuation at 24 to 28 weeks’ gestation in pregnancies at high risk of preterm preeclampsia: A randomized clinical trial. JAMA 2023, 329, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Bonacina, E.; Garcia-Manau, P.; López, M.; Caamiña, S.; Vives, À.; Lopez-Quesada, E.; Ricart, M.; Maroto, A.; de Mingo, L.; Pintado, E.; et al. Mid-trimester uterine artery Doppler for aspirin discontinuation in pregnancies at high risk for preterm pre-eclampsia: Post-hoc analysis of StopPRE trial. BJOG 2023, 131, 334–342. [Google Scholar] [CrossRef]
- Roberge, S.; Nicolaides, K.H.; Demers, S.; Villa, P.; Bujold, E. Prevention of perinatal death and adverse perinatal outcome using low-dose aspirin: A meta-analysis. Ultrasound Obstet. Gynecol. 2013, 41, 491–499. [Google Scholar] [CrossRef]
- McCowan, L.M.; Figueras, F.; Anderson, N.H. Evidence-based national guidelines for the management of suspected fetal growth restriction: Comparison, consensus, and controversy. Am. J. Obstet. Gynecol. 2018, 218, S855–S868. [Google Scholar] [CrossRef]
- van Vliet, E.O.G.; Askie, L.A.; Mol, B.W.J.; Oudijk, M.A. Antiplatelet agents and the Prevention of spontaneous Preterm Birth: A systematic review and Meta-analysis. Obstet. Gynecol. 2017, 129, 327–336. [Google Scholar] [CrossRef]
- Andrikopoulou, M.; Purisch, S.E.; Handal-Orefice, R.; Gyamfi-Bannerman, C. Low-dose aspirin is associated with reduced spontaneous preterm birth in nulliparous women. Am. J. Obstet. Gynecol. 2018, 219, 399.e1–399.e6. [Google Scholar] [CrossRef]
- Kupka, E.; Hesselman, S.; Hastie, R.; Lomartire, R.; Wikstrom, A.K.; Bergman, L. Low- dose aspirin use in pregnancy and the risk of preterm birth: A Swedish register-based cohort study. Am. J. Obstet. Gynecol. 2023, 228, 336.e1–336.e9. [Google Scholar] [CrossRef]
- Thilaganathan, B.; Kalafat, E. Cardiovascular system in preeclampsia and beyond. Hypertension 2019, 73, 522–531. [Google Scholar] [CrossRef]
- Feng, Y.; Lau, S.; Chen, Q.; Oyston, C.; Groom, K.; Barrett, C.J.; Chamley, L.W. Normotensive placental extracellular vesicles provide long-term protection against hypertension and cardiovascular disease. Am. J. Obstet. Gynecol. 2023, in press. [Google Scholar] [CrossRef]
- Kitt, J.; Fox, R.; Frost, A.; Shanyinde, M.; Tucker, K.; Bateman, P.A.; Suriano, K.; Kenworthy, Y.; McCourt, A.; Woodward, W.; et al. Long-term blood pressure control after hypertensive pregnancy following physician-optimized self-management: The POP-HT randomized clinical trial. JAMA 2023, 330, 1991–1999. [Google Scholar] [CrossRef]
- Kitt, J.; Krasner, S.; Barr, L.; Frost, A.; Tucker, K.; Bateman, P.A.; Suriano, K.; Kenworthy, Y.; Lapidaire, W.; Lacharie, M.; et al. Cardiac remodeling after hypertensive pregnancy following physician-optimized blood pressure self-management: The POP-HT randomized clinical trial imaging substudy. Circulation 2024, 149, 529–541. [Google Scholar] [CrossRef]
- Villers, M.S.; Jamison, M.G.; De Castro, L.M.; James, A.H. Morbidity associated with sickle cell disease in pregnancy. Am. J. Obstet. Gynecol. 2008, 199, 125.e1–125.e5. [Google Scholar] [CrossRef]
- Alayed, N.; Kezouh, A.; Oddy, L.; Abenhaim, H.A. Sickle cell disease and pregnancy outcomes: Population-based study on 8.8 million births. J. Perinat. Med. 2014, 42, 487–492. [Google Scholar] [CrossRef]
- Oteng-Ntim, E.; Meeks, D.; Seed, P.T.; Webster, L.; Howard, J.; Doyle, P.; Chappell, L.C. Adverse maternal and perinatal outcomes in pregnant women with sickle cell disease: Systematic review and meta-analysis. Blood 2015, 125, 3316–3325. [Google Scholar] [CrossRef]
- ACOG Practice Advisory. Hemoglobinopathies in Pregnancy. August 2022. Available online: https://www.acog.org/clinical/clinical-guidance/practice-advisory/articles/2022/08/hemoglobinopathies-in-pregnancy (accessed on 23 May 2024).
- RCOG Green-Top Guideline. No. 61. Management of Sickle Cell Disease in Pregnancy. July 2011. Available online: https://www.rcog.org.uk/media/nyinaztx/gtg_61.pdf (accessed on 23 May 2024).
- Oteng-Ntim, E.; Shangaris, P. Evidence-based management of pregnant women with sickle cell disease in high-income countries. Hematology 2022, 2022, 408–413. [Google Scholar] [CrossRef]
- James, A.H.; Strouse, J.J. How I Treat Sickle Cell Disease in Pregnancy. Blood 2024, 143, 769–776. [Google Scholar] [CrossRef]
- Vlachodimitropoulou, E.; Mogharbel, H.; Kuo, K.H.M.; Hwang, M.; Ward, R.; Shehata, N.; Malinowski, A.K. Pregnancy outcomes and iron status in β-thalassemia major and intermedia: A systematic review and meta-analysis. Blood Adv. 2024, 8, 746–757. [Google Scholar] [CrossRef]
- Szuber, N.; Vallapureddy, R.R.; Penna, D.; Lasho, T.L.; Finke, C.; Hanson, C.A.; Ketterling, R.P.; Pardanani, A.; Gangat, N.; Tefferi, A. Myeloproliferative neoplasms in the young: Mayo Clinic experience with 361 patients age 40 years or younger. Am. J. Hematol. 2018, 93, 1474–1484. [Google Scholar] [CrossRef]
- Robinson, S.; Ragheb, M.; Harrison, C. How I treat myeloproliferative neoplasms in pregnancy. Blood 2024, 143, 777–785. [Google Scholar] [CrossRef]
- Lavi, N.; Brenner, B. Myeloproliferative neoplasms in pregnancy: Ways to go. Br. J. Haematol. 2016, 175, 7–9. [Google Scholar] [CrossRef]
- Maze, D.; Kazi, S.; Gupta, V.; Malinowski, A.K.; Fazelzad, R.; Shah, P.S.; Shehata, N. Association of treatments for myeloproliferative neoplasms during pregnancy with birth rates and maternal outcomes: A systematic review and meta-analysis. JAMA Netw. Open. 2019, 2, e1912666. [Google Scholar] [CrossRef]
- How, J.; Leiva, O.; Bogue, T.; Fell, G.G.; Bustoros, M.W.; Connell, N.T.; Connors, J.M.; Ghobrial, I.M.; Kuter, D.J.; Mullally, A.; et al. Pregnancy outcomes, risk factors, and cell count trends in pregnant women with essential thrombocythemia. Leuk. Res. 2020, 98, 106459. [Google Scholar] [CrossRef]
- Griesshammer, M.; Sadjadian, P.; Wille, K. Contemporary management of patients with BCR-ABL1-negative myeloproliferative neoplasms during pregnancy. Expert. Rev. Hematol. 2018, 11, 697–706. [Google Scholar] [CrossRef]
- Gangat, N.; Tefferi, A. Myeloproliferative neoplasms and pregnancy: Overview and practice recommendations. Am. J. Hematol. 2021, 96, 354–366. [Google Scholar] [CrossRef]
- Rottenstreich, A.; Kleinstern, G.; Amsalem, H.; Kalish, Y. The course of acquired von Willebrand syndrome during pregnancy among patients with essential thrombocytosis. J. Thromb. Thrombolysis 2018, 46, 304–309. [Google Scholar] [CrossRef]
- Brenner, B.; Papadakis, E.; Greer, I.A.; Gris, J.C. Assessment-based management of placenta-mediated pregnancy complications: Pragmatism until a precision medicine approach evolves. Br. J. Haematol. 2023, 202, 18–30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rottenstreich, A. Controversies and Clarifications Regarding the Role of Aspirin in Preeclampsia Prevention: A Focused Review. J. Clin. Med. 2024, 13, 4427. https://doi.org/10.3390/jcm13154427
Rottenstreich A. Controversies and Clarifications Regarding the Role of Aspirin in Preeclampsia Prevention: A Focused Review. Journal of Clinical Medicine. 2024; 13(15):4427. https://doi.org/10.3390/jcm13154427
Chicago/Turabian StyleRottenstreich, Amihai. 2024. "Controversies and Clarifications Regarding the Role of Aspirin in Preeclampsia Prevention: A Focused Review" Journal of Clinical Medicine 13, no. 15: 4427. https://doi.org/10.3390/jcm13154427
APA StyleRottenstreich, A. (2024). Controversies and Clarifications Regarding the Role of Aspirin in Preeclampsia Prevention: A Focused Review. Journal of Clinical Medicine, 13(15), 4427. https://doi.org/10.3390/jcm13154427