Systemic Inflammatory Index in Polycythemia Vera and Its Prognostic Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection and Study Design
2.2. Statistics
3. Results
3.1. Patient Characteristics and Associations with the SII
3.2. Assocations of the SII with Thrombotic Risk and Survival
3.3. Comparison of the SII with Other Complete Blood Cell Count Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krecak, I.; Lucijanic, M.; Verstovsek, S. Advances in Risk Stratification and Treatment of Polycythemia Vera and Essential Thrombocythemia. Curr. Hematol. Malig. Rep. 2022, 17, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Verstovsek, S.; Yu, J.; Scherber, R.M.; Verma, S.; Dieyi, C.; Chen, C.C.; Parasuraman, S. Changes in the incidence and overall survival of patients with myeloproliferative neoplasms between 2002 and 2016 in the United States. Leuk. Lymphoma 2022, 63, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Abu-Zeinah, G.; Silver, R.T.; Abu-Zeinah, K.; Scandura, J.M. Normal life expectancy for polycythemia vera (PV) patients is possible. Leukemia 2022, 36, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Marchioli, R.; Finazzi, G.; Specchia, G.; Cacciola, R.; Cavazzina, R.; Cilloni, D.; De Stefano, V.; Elli, E.; Iurlo, A.; Latagliata, R.; et al. Cardiovascular events and intensity of treatment in polycythemia vera. N. Engl. J. Med. 2013, 368, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Landolfi, R.; Marchioli, R.; Kutti, J.; Gisslinger, H.; Tognoni, G.; Patrono, C.; Barbui, T.; European Collaboration on Low-Dose Aspirin in Polycythemia Vera Investigators. Efficacy and safety of low-dose aspirin in polycythemia vera. N. Engl. J. Med. 2004, 350, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Barbui, T.; Tefferi, A.; Vannucchi, A.M.; Passamonti, F.; Silver, R.T.; Hoffman, R.; Verstovsek, S.; Mesa, R.; Kiladjian, J.J.; Hehlmann, R.; et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: Revised management recommendations from European LeukemiaNet. Leukemia 2018, 32, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Barbui, T.; Carobbio, A.; Rumi, E.; Finazzi, G.; Gisslinger, H.; Rodeghiero, F.; Randi, M.L.; Rambaldi, A.; Gisslinger, B.; Pieri, L.; et al. In contemporary patients with polycythemia vera, rates of thrombosis and risk factors delineate a new clinical epidemiology. Blood 2014, 124, 3021–3023. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Guglielmelli, P.; Lasho, T.L.; Coltro, G.; Finke, C.M.; Loscocco, G.G.; Sordi, B.; Szuber, N.; Rotunno, G.; Pacilli, A.; et al. Mutation-enhanced international prognostic systems for essential thrombocythaemia and polycythaemia vera. Br. J. Haematol. 2020, 189, 291–302. [Google Scholar] [CrossRef]
- Lucijanic, M.; Krecak, I. The Complete Blood Count: Increasing Its Precision and Impact. Ann. Intern. Med. 2023, 176, eL230164. [Google Scholar] [CrossRef]
- Carobbio, A.; Finazzi, G.; Guerini, V.; Spinelli, O.; Delaini, F.; Marchioli, R.; Borrelli, G.; Rambaldi, A.; Barbui, T. Leukocytosis is a risk factor for thrombosis in essential thrombocythemia: Interaction with treatment, standard risk factors, and Jak2 mutation status. Blood 2007, 109, 2310–2313. [Google Scholar] [CrossRef]
- De Stefano, V.; Za, T.; Rossi, E.; Vannucchi, A.M.; Ruggeri, M.; Elli, E.; Micò, C.; Tieghi, A.; Cacciola, R.R.; Santoro, C.; et al. Leukocytosis is a risk factor for recurrent arterial thrombosis in young patients with polycythemia vera and essential thrombocythemia. Am. J. Hematol. 2010, 85, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Landolfi, R.; Di Gennaro, L.; Barbui, T.; De Stefano, V.; Finazzi, G.; Marfisi, R.; Tognoni, G.; Marchioli, R. Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood 2007, 109, 2446–2452. [Google Scholar] [CrossRef]
- Carobbio, A.; Ferrari, A.; Masciulli, A.; Ghirardi, A.; Barosi, G.; Barbui, T. Leukocytosis and thrombosis in essential thrombocythemia and polycythemia vera: A systematic review and meta-analysis. Blood Adv. 2019, 3, 1729–1737. [Google Scholar] [CrossRef] [PubMed]
- Farrukh, F.; Guglielmelli, P.; Loscocco, G.G.; Pardanani, A.; Hanson, C.A.; De Stefano, V.; Barbui, T.; Gangat, N.; Vannucchi, A.M.; Tefferi, A. Deciphering the individual contribution of absolute neutrophil and monocyte counts to thrombosis risk in polycythemia vera and essential thrombocythemia. Am. J. Hematol. 2022, 97, E35–E37. [Google Scholar] [CrossRef] [PubMed]
- Krečak, I.; Holik, H.; Morić Perić, M.; Zekanović, I.; Coha, B.; Valovičić Krečak, M.; Gverić-Krečak, V.; Lucijanić, M. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios as prognostic biomarkers in polycythemia vera. Int. J. Lab. Hematol. 2022, 44, e145–e148. [Google Scholar] [CrossRef] [PubMed]
- Carobbio, A.; Vannucchi, A.M.; De Stefano, V.; Masciulli, A.; Guglielmelli, P.; Loscocco, G.G.; Ramundo, F.; Rossi, E.; Kanthi, Y.; Tefferi, A.; et al. Neutrophil-to-lymphocyte ratio is a novel predictor of venous thrombosis in polycythemia vera. Blood Cancer J. 2022, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.K.; Skov, V.; Kjær, L.; Eickhardt-Dalbøge, C.S.; Knudsen, T.A.; Kristiansen, M.H.; Sørensen, A.L.; Wienecke, T.; Andersen, M.; Ottesen, J.T.; et al. Neutrophil-to-lymphocyte ratio and all-cause mortality with and without myeloproliferative neoplasms-a Danish longitudinal study. Blood Cancer J. 2024, 14, 28. [Google Scholar] [CrossRef]
- Verstovsek, S.; Krečak, I.; Heidel, F.H.; De Stefano, V.; Bryan, K.; Zuurman, M.W.; Zaiac, M.; Morelli, M.; Smyth, A.; Redondo, S.; et al. Identifying Patients with Polycythemia Vera at Risk of Thrombosis after Hydroxyurea Initiation: The Polycythemia Vera-Advanced Integrated Models (PV-AIM) Project. Biomedicines 2023, 11, 1925. [Google Scholar] [CrossRef] [PubMed]
- Krečak, I.; Krečak, F.; Gverić-Krečak, V. High red blood cell distribution width might predict thrombosis in essential thrombocythemia and polycythemia vera. Blood Cells Mol. Dis. 2020, 80, 102368. [Google Scholar] [CrossRef]
- Liu, D.; Li, B.; Xu, Z.; Zhang, P.; Qin, T.; Qu, S.; Pan, L.; Sun, X.; Shi, Z.; Huang, H.; et al. RBC distribution width predicts thrombosis risk in polycythemia vera. Leukemia 2022, 36, 566–568. [Google Scholar] [CrossRef]
- Gerds, A.T.; Mesa, R.; Burke, J.M.; Grunwald, M.R.; Stein, B.L.; Squier, P.; Yu, J.; Hamer-Maansson, J.E.; Oh, S.T. Association between elevated white blood cell counts and thrombotic events in polycythemia vera: Analysis from REVEAL. Blood 2024, 143, 1646–1655. [Google Scholar] [CrossRef]
- Lucijanic, M.; Krecak, I.; Soric, E.; Sabljic, A.; Galusic, D.; Holik, H.; Perisa, V.; Moric Peric, M.; Zekanovic, I.; Budimir, J.; et al. Evaluation of Absolute Neutrophil, Lymphocyte and Platelet Count and Their Ratios as Predictors of Thrombotic Risk in Patients with Prefibrotic and Overt Myelofibrosis. Life 2024, 14, 523. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.Z.; Raza, N.; Irfan, M. Frequency Of Raised Serum Lactate Dehydrogenase In Patients With Jak2 Positive Polycythaemia Vera. J. Ayub. Med. Coll. Abbottabad. 2021, 33, 447–450. [Google Scholar]
- Tefferi, A.; Barraco, D.; Cerquozzi, S.; Lasho, T.L.; Hanson, C.A.; Ketterling, R.P.; Pardanani, A.; Gangat, N. Identification of Serum Lactate Dehydrogenase (LDH) As an Independent Prognostic Biomarker in Polycythemia Vera. Blood 2016, 128, 3111. [Google Scholar] [CrossRef]
- Lucijanic, M.; Cicic, D.; Stoos-Veic, T.; Pejsa, V.; Lucijanic, J.; Fazlic Dzankic, A.; Vlasac Glasnovic, J.; Soric, E.; Skelin, M.; Kusec, R. Elevated Neutrophil-to-Lymphocyte-ratio and Platelet-to-Lymphocyte Ratio in Myelofibrosis: Inflammatory Biomarkers or Representatives of Myeloproliferation Itself? Anticancer Res. 2018, 38, 3157–3163. [Google Scholar] [CrossRef] [PubMed]
- Nasillo, V.; Riva, G.; Paolini, A.; Forghieri, F.; Roncati, L.; Lusenti, B.; Maccaferri, M.; Messerotti, A.; Pioli, V.; Gilioli, A.; et al. Inflammatory Microenvironment and Specific T Cells in Myeloproliferative Neoplasms: Immunopathogenesis and Novel Immunotherapies. Int. J. Mol. Sci. 2021, 22, 1906. [Google Scholar] [CrossRef]
- Strickland, M.; Quek, L.; Psaila, B. The immune landscape in BCR-ABL negative myeloproliferative neoplasms: Inflammation, infections and opportunities for immunotherapy. Br. J. Haematol. 2022, 196, 1149–1158. [Google Scholar] [CrossRef]
- Barosi, G. An immune dysregulation in MPN. Curr. Hematol. Malig. Rep. 2014, 9, 331–339. [Google Scholar] [CrossRef]
- Barraco, D.; Cerquozzi, S.; Gangat, N.; Patnaik, M.M.; Lasho, T.; Finke, C.; Hanson, C.A.; Ketterling, R.P.; Pardanani, A.; Tefferi, A. Monocytosis in polycythemia vera: Clinical and molecular correlates. Am. J. Hematol. 2017, 92, 640–645. [Google Scholar] [CrossRef]
- Tefferi, A.; Loscocco, G.G.; Farrukh, F.; Szuber, N.; Mannelli, F.; Pardanani, A.; Hanson, C.A.; Ketterling, R.P.; De Stefano, V.; Carobbio, A.; et al. A globally applicable “triple A” risk model for essential thrombocythemia based on Age, Absolute neutrophil count, and Absolute lymphocyte count. Am. J. Hematol. 2023, 98, 1829–1837. [Google Scholar] [CrossRef] [PubMed]
- Abu-Zeinah, G.; Erdos, K.; Lee, N.; Lebbe, A.; Bouhali, I.; Khalid, M.; Silver, R.T.; Scandura, J.M. Are thrombosis, progression, and survival in ET predictable? Blood Cancer J. 2024, 14, 103. [Google Scholar] [CrossRef]
- Krecak, I.; Lekovic, D.; Arsenovic, I.; Holik, H.; Zekanovic, I.; Moric Peric, M.; Lucijanic, M. The triple A model (age, absolute neutrophil count, absolute lymphocyte count-AAA) predicts survival and thrombosis in polycythemia vera. Am. J. Hematol. 2024, 99, 989–992. [Google Scholar] [CrossRef] [PubMed]
- Lucijanic, M.; Krecak, I.; Galusic, D.; Holik, H.; Perisa, V.; Moric Peric, M.; Zekanovic, I.; Budimir, J.; Lekovic, D.; Kusec, R. Triple A score (AAA: Age, absolute neutrophil count and absolute lymphocyte count) and its prognostic utility in patients with overt fibrotic and prefibrotic myelofibrosis. Ann. Hematol. 2024, 103, 2157–2159. [Google Scholar] [CrossRef]
- Wang, H.; Nie, H.; Bu, G.; Tong, X.; Bai, X. Systemic immune-inflammation index (SII) and the risk of all-cause, cardiovascular, and cardio-cerebrovascular mortality in the general population. Eur. J. Med. Res. 2023, 28, 575. [Google Scholar] [CrossRef]
- Ye, Z.; Hu, T.; Wang, J.; Xiao, R.; Liao, X.; Liu, M.; Sun, Z. Systemic immune-inflammation index as a potential biomarker of cardiovascular diseases: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2022, 9, 933913. [Google Scholar] [CrossRef]
- Gulturk, E.; Kapucu, K. The Systemic Inflammation Index: A New Candidate Minor Criterion in the Diagnosis of Polycythemia Vera. J. Pers. Med. 2024, 14, 471. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Di Nisio, M.; Barbui, T.; Di Gennaro, L.; Borrelli, G.; Finazzi, G.; Landolfi, R.; Leone, G.; Marfisi, R.; Porreca, E.; Ruggeri, M.; et al. The haematocrit and platelet target in polycythemia vera. Br. J. Haematol. 2007, 136, 249–259. [Google Scholar] [CrossRef]
- Kroll, M.H.; Michaelis, L.C.; Verstovsek, S. Mechanisms of thrombogenesis in polycythemia vera. Blood Rev. 2015, 29, 215–221. [Google Scholar] [CrossRef]
- Barbui, T.; De Stefano, V.; Ghirardi, A.; Masciulli, A.; Finazzi, G.; Vannucchi, A.M. Different effect of hydroxyurea and phlebotomy on prevention of arterial and venous thrombosis in Polycythemia Vera. Blood Cancer J. 2018, 8, 124. [Google Scholar] [CrossRef] [PubMed]
- De Stefano, V.; Rossi, E.; Carobbio, A.; Ghirardi, A.; Betti, S.; Finazzi, G.; Vannucchi, A.M.; Barbui, T. Hydroxyurea prevents arterial and late venous thrombotic recurrences in patients with myeloproliferative neoplasms but fails in the splanchnic venous district. Pooled analysis of 1500 cases. Blood Cancer J. 2018, 8, 112. [Google Scholar] [CrossRef]
- Ersal, T.; Özkocaman, V.; Pınar, İ.E.; Yalçın, C.; Orhan, B.; Candar, Ö.; Çubukçu, S.; Koca, T.G.; Hunutlu, F.; Yavuz, Ş.; et al. Systemic inflammatory indices for predicting prognosis of myelofibrosis. Sci. Rep. 2023, 13, 12539. [Google Scholar] [CrossRef] [PubMed]
- Krecak, I.; Skelin, M.; Verstovsek, S. Evaluating ropeginterferon alfa-2b for the treatment of adults with polycythemia vera. Expert Rev. Hematol. 2023, 16, 305–316. [Google Scholar] [CrossRef]
- Vannucchi, A.M.; Kiladjian, J.J.; Griesshammer, M.; Masszi, T.; Durrant, S.; Passamonti, F.; Harrison, C.N.; Pane, F.; Zachee, P.; Mesa, R.; et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N. Engl. J. Med. 2015, 372, 426–435. [Google Scholar] [CrossRef]
- Harrison, C.N.; Nangalia, J.; Boucher, R.; Jackson, A.; Yap, C.; O’Sullivan, J.; Fox, S.; Ailts, I.; Dueck, A.C.; Geyer, H.L.; et al. Ruxolitinib Versus Best Available Therapy for Polycythemia Vera Intolerant or Resistant to Hydroxycarbamide in a Randomized Trial. J. Clin. Oncol. 2023, 41, 3534–3544. [Google Scholar] [CrossRef]
- Rocca, B.; Tosetto, A.; Petrucci, G.; Rossi, E.; Betti, S.; Soldati, D.; Iurlo, A.; Cattaneo, D.; Bucelli, C.; Dragani, A.; et al. Long-term pharmacodynamic and clinical effects of twice- versus once-daily low-dose aspirin in essential thrombocythemia: The ARES trial. Am. J. Hematol. 2024, 99, 1462–1474. [Google Scholar] [CrossRef]
- Krecak, I.; Verstovsek, S.; Lucijanic, M. Optimization of cardiovascular risk factor management in patients with BCR::ABL1 negative chronic myeloproliferative neoplasms, current knowledge, and perspectives. Ann. Hematol. 2023, 103, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Krecak, I.; Verstovsek, S.; Lucijanic, M. Reappraisal of cardiovascular risk factors in patients with chronic myeloproliferative neoplasms. Clin. Adv. Hematol. Oncol. 2023, 21, 541–548. [Google Scholar]
- Krecak, I.; Klobucar, S.; Budimir, J.; Skelin, M.; Lucijanic, M. Diabetes mellitus, metformin, and the risk of MPN. Blood Adv. 2024. [Google Scholar] [CrossRef]
Variable | Overall (n = 279) | Low SII (n = 142, 50.9%) | High SII (n = 137, 49.1%) | p |
---|---|---|---|---|
Age (years) | 66 (20–92) | 63.5 (20–92) | 68 (31–85) | 0.006 * |
Sex (female) | 131 (47%) | 67 (47.2%) | 64 (46.7%) | 0.937 |
Prior thrombosis | 66 (23.7%) | 32 (22.5%) | 34 (24.8%) | 0.654 |
Splenomegaly | 41 (14.7%) | 19 (13.4%) | 22 (16.1%) | 0.528 |
Constitutional symptoms (n = 175) | 49 (28%) | 22 (25%) | 27 (31%) | 0.375 |
ELN high risk | 201 (72%) | 96 (67.6%) | 105 (76.6%) | 0.093 |
AAA | <0.001 * | |||
Low | 27 (9.7%) | 16 (59.3%) | 11 (40.7%) | |
Intermediate-1 | 141 (50.5%) | 92 (65.2%) | 49 (34.8%) | |
Intermediate-2 | 43 (15.4%) | 15 (34.9%) | 28 (65.1%) | |
High | 68 (24.4%) | 19 (27.9%) | 49 (72.1%) | |
CCI | 3 (0–8) | 3 (0–8) | 3 (0–7) | 0.762 |
Arterial hypertension | 208 (74.6%) | 109 (76.8%) | 99 (72.3%) | 0.389 |
Hyperlipidemia | 44 (15.8%) | 26 (18.3%) | 18 (13.1%) | 0.236 |
Diabetes mellitus | 42 (15.1%) | 26 (18.3%) | 16(11.7%) | 0.122 |
Active smoking | 70 (25.1%) | 30 (21.1%) | 40 (29.2%) | 0.120 |
Chronic kidney disease (n = 261) | 57 (21.8%) | 26 (19.4%) | 31 (24.4%) | 0.328 |
Cytoreductive treatment | 196 (70.2%) | 83 (58.5%) | 113 (82.5%) | <0.001 * |
Aspirin | 232 (83.2%) | 112 (78.9%) | 120 (87.6%) | 0.052 |
WBC, ×109/L (median, range) | 11.5 (4.2–52.8) | 10 (4.2–52.8) | 13.5 (5.3–45.8%) | <0.001 * |
ANC, ×109/L (median, range) | 7.78 (0.53–33.89) | 6.42 (0.53–29.56) | 10.1 (0.74–33.89) | <0.001 * |
ALC, ×109/L (median, range) | 2.1 (0.15–5.42) | 2.3 (0.17–5.47) | 1.9 (0.15–5.2) | <0.001 * |
Erythrocytes, ×1012/L (median, range) | 6.4 (4.37–9.5) | 6.4 (4.37–8.8) | 6.4 (4.5–9.5%) | 0.289 |
Hematocrit, % (median, range) | 53 (43–72) | 52 (43–67) | 52 (44–72) | 0.747 |
Hemoglobin, g/L (median, range) | 173 (136–230) | 171 (141–223) | 175 (136–230) | 0.967 |
Platelets, ×109/L (median, range) | 557 (134–2644) | 409 (144–1032) | 688 (134–2644) | <0.001 * |
LDH, IU/L (median, range) | 465 (238–1307) | 438 (238–1307) | 490 (246–926) | 0.019 * |
Thrombosis during follow-up | 48 (17.3%) | 17 (12%) | 31 (22.6%) | 0.018 * |
- arterial | 33 (11.8%) | 9 (6.3%) | 24 (17.5%) | 0.003 * |
- venous | 15 (5.4%) | 8 (5.6%) | 7 (5.1%) | 0.846 |
Death during follow-up | 121 (43.5%) | 50 (35.2%) | 71 (51.8%) | 0.005 * |
Time to Thrombosis | |||||||
Variable | HR | 95% CI | p | Variable | HR | 95% CI | p |
SII > 1764 | 7.54 | 1.31–5.16 | 0.006 * | SII > 1764 | 3.98 | 1.01–4.14 | 0.046 * |
ELN high-risk | 2.42 | 0.87–3.23 | 0.117 | AAA | 8.88 | 1.12–1.73 | 0.003 * |
CVRFs | 1.03 | 0.60–4.85 | 0.376 | CVRFs | 1.20 | 0.66–3.63 | 0.272 |
Sex | 0.10 | 0.62–1.93 | 0.751 | Sex | 0.1 | 0.63–5.0 | 0.779 |
Cytoreduction | 0.45 | 0.38–1.59 | 0.498 | Cytoreduction | 0.58 | 0.37–1.53 | 0.445 |
Prior thrombosis | 0.1 | 0.51–2.01 | 0.954 | ||||
Overall Survival | |||||||
Variable | HR | 95% CI | p | Variable | HR | 95% CI | p |
SII > 2250 | 7.80 | 1.93–2.73 | 0.005 * | SII > 2250 | 1.93 | 0.87–2.12 | 0.163 |
ELN high risk | 7.59 | 1.30–4.74 | 0.005 * | AAA | 15.76 | 1.19–1.67 | <0.001 * |
CCI | 15.72 | 1.33–2.36 | <0.001 * | CCI | 16.77 | 1.14–1.47 | <0.001 * |
Sex | 2.61 | 0.47–1.07 | 0.105 | Sex | 1.85 | 0.49–1.13 | 0.173 |
Cytoreduction | 0.22 | 0.48–1.55 | 0.637 | Cytoreduction | 0.04 | 0.59–1.89 | 0.835 |
Variable | Time to Composite Thrombosis | Time to Arterial Thrombosis | Time to Venous Thrombosis | Overall Survival |
---|---|---|---|---|
WBC (×109/L) | ||||
ROC defined cut-off | >12.7 | >11.9 | ≤9.2 | >12.7 |
Proportion of patients | 107 (38.4%) | 133 (47.7%) | 71 (25.4%) | 107 (38.4%) |
Associated risk | HR 1.96, p = 0.028 * | HR 2.31, p = 0.020 * | HR 1.18, p = 0.763 | HR 2.07, p = 0.002 * |
Harrell’s C index | 0.582 | 0.614 | 0.500 | 0.569 |
ANC (×109/L) | ||||
ROC defined cut-off | >5.8 | >9.4 | >5.8 | >10.8 |
Proportion of patients | 208 (74.6%) | 103 (36.9%) | 208 (74.6%) | 68 (24.4%) |
Associated risk | HR 2.1, p = 0.025 * | HR 3.12, p = 0.003 * | HR 2.87, p = 0.067 | HR 3.24, p < 0.001 * |
Harrell’s C index | 0.588 | 0.612 | 0.616 | 0.579 |
ALC (×109/L) | ||||
ROC defined cut-off | ≤2 | ≤2.1 | ≤1.8 | >2.3 |
Proportion of patients | 133 (47.7%) | 137 (49.1%) | 96 (34.4%) | 104 (37.3%) |
Associated risk | HR 1.88, p = 0.028 * | HR 1.83, p = 0.092 | HR 1.50, p = 0.463 | HR 1.1, p = 0.604 |
Harrell’s C index | 0.570 | 0.567 | 0.603 | 0.522 |
PLT (×109/L) | ||||
ROC defined cut-off | >415 | >415 | ≤693 | >578 |
Proportion of patients | 196 (70.3%) | 196 (70.3%) | 196 (70.3%) | 129 (46.2%) |
Associated risk | HR 1.41, p = 0.287 | HR 1.80, p = 0.139 | HR 1.82, p = 0.273 | HR 1.44, p = 0.044 * |
Harrell’s C index | 0.539 | 0.511 | 0.527 | 0.548 |
NLR | ||||
ROC defined cut-off | >2.8 | >3.8 | >2.4 | >3.4 |
Proportion of patients | 191 (68.5%) | 138 (48%) | 218 (78.1%) | 156 (55.9%) |
Associated risk | HR 2.17, p = 0.011 * | HR 3.73, p < 0.001 * | HR 2.82, p = 0.075 | HR 1.89, p = 0.004 * |
Harrell’s C index | 0.608 | 0.637 | 0.607 | 0.568 |
PLR | ||||
ROC defined cut-off | >221 | >256 | ≤243 | >580 |
Proportion of patients | 170 (60.9%) | 143 (51.3%) | 125 (44.8%) | 21 (7.5%) |
Associated risk | HR 2.02, p = 0.016 * | HR 2.37, p = 0.016 * | HR 1.23, p = 0.686 | HR 3.33, p = 0.001 * |
Harrell’s C index | 0.613 | 0.638 | 0.468 | 0.531 |
SII | ||||
ROC defined cut-off | >1764 | >1844 | ≤1500 | >2250 |
Proportion of patients | 158 (56.6%) | 152 (54.5%) | 93 (33.3%) | 120 (43%) |
Associated risk | HR 2.28, p = 0.004 * | HR 2.30, p < 0.001 * | HR 1.16, p = 0.778 | HR 2.02, p = 0.002 * |
Harrell’s C index | 0.648 | 0.672 | 0.462 | 0.585 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krecak, I.; Lekovic, D.; Arsenovic, I.; Bogdanovic, A.; Holik, H.; Zekanovic, I.; Moric Peric, M.; Lucijanic, M. Systemic Inflammatory Index in Polycythemia Vera and Its Prognostic Implications. J. Clin. Med. 2024, 13, 4459. https://doi.org/10.3390/jcm13154459
Krecak I, Lekovic D, Arsenovic I, Bogdanovic A, Holik H, Zekanovic I, Moric Peric M, Lucijanic M. Systemic Inflammatory Index in Polycythemia Vera and Its Prognostic Implications. Journal of Clinical Medicine. 2024; 13(15):4459. https://doi.org/10.3390/jcm13154459
Chicago/Turabian StyleKrecak, Ivan, Danijela Lekovic, Isidora Arsenovic, Andrija Bogdanovic, Hrvoje Holik, Ivan Zekanovic, Martina Moric Peric, and Marko Lucijanic. 2024. "Systemic Inflammatory Index in Polycythemia Vera and Its Prognostic Implications" Journal of Clinical Medicine 13, no. 15: 4459. https://doi.org/10.3390/jcm13154459
APA StyleKrecak, I., Lekovic, D., Arsenovic, I., Bogdanovic, A., Holik, H., Zekanovic, I., Moric Peric, M., & Lucijanic, M. (2024). Systemic Inflammatory Index in Polycythemia Vera and Its Prognostic Implications. Journal of Clinical Medicine, 13(15), 4459. https://doi.org/10.3390/jcm13154459