Musculoskeletal Dimension and Brightness Reference Values in Lumbar Magnetic Resonance Imaging—A Radio-Anatomic Investigation in 80 Healthy Adult Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formal Study Prerequisites
2.2. Participant Recruitment
2.3. Technical Approach of Measurements and Underlying Theoretical Considerations
2.4. Creation of Physiological Baseline Ranges and Normalization of Signal Intensity Values
2.5. Statistics
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Almansour, H.; Innmann, M.; Akbar, M.; Springer, F.; Rehnitz, C. Preoperative imaging of spinopelvic pathologies: State of the art. Orthopade 2020, 49, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Kuah, T.; Vellayappan, B.A.; Makmur, A.; Nair, S.; Song, J.; Tan, J.H.; Kumar, N.; Quek, S.T.; Hallinan, J.T.P.D. State-of-the-Art Imaging Techniques in Metastatic Spinal Cord Compression. Cancers 2022, 14, 3289. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iijima, Y.; Matsuki, K.; Hoshika, S.; Ueda, Y.; Hamada, H.; Tokai, M.; Takahashi, N.; Sugaya, H.; Watanabe, A. Relationship between postoperative retear and preoperative fatty degeneration in large and massive rotator cuff tears: Quantitative analysis using T2 mapping. J. Shoulder Elb. Surg. 2019, 28, 1562–1567. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, P.E.; Aylanç, N. Which is the most affected muscle in lumbar back pain—Multifidus or erector spinae? Pol. J. Radiol. 2020, 85, e278–e286. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Codari, M.; Zanardo, M.; di Sabato, M.E.; Nocerino, E.; Messina, C.; Sconfienza, L.M.; Sardanelli, F. MRI-Derived Biomarkers Related to Sarcopenia: A Systematic Review. J. Magn. Reson. Imaging 2020, 51, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- Siparsky, P.N.; Kirkendall, D.T.; Garrett, W.E., Jr. Muscle changes in aging: Understanding sarcopenia. Sports Health 2014, 6, 36–40. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Denison, H.J.; Cooper, C.; Sayer, A.A.; Robinson, S.M. Prevention and optimal management of sarcopenia: A review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin. Interv. Aging 2015, 10, 859–869. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faur, C.; Patrascu, J.M.; Haragus, H.; Anglitoiu, B. Correlation between multifidus fatty atrophy and lumbar disc degeneration in low back pain. BMC Musculoskelet. Disord. 2019, 20, 414. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cooley, J.R.; Hebert, J.J.; de Zoete, A.; Jensen, T.S.; Algra, P.R.; Kjaer, P.; Walker, B.F. Assessing lumbar paraspinal muscle cross-sectional area and fat composition with T1 versus T2-weighted magnetic resonance imaging: Reliability and concurrent validity. PLoS ONE 2021, 16, e0244633. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shahidi, B.; Parra, C.L.; Berry, D.B.; Hubbard, J.C.; Gombatto, S.; Zlomislic, V.; Allen, R.T.; Hughes-Austin, J.; Garfin, S.; Ward, S.R. Contribution of Lumbar Spine Pathology and Age to Paraspinal Muscle Size and Fatty Infiltration. Spine 2017, 42, 616–623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kalichman, L.; Carmeli, E.; Been, E. The Association between Imaging Parameters of the Paraspinal Muscles, Spinal Degeneration, and Low Back Pain. BioMed Res. Int. 2017, 2017, 2562957. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Keller, A.; Gunderson, R.; Reikerås, O.; Brox, J.I. Reliability of computed tomography measurements of paraspinal muscle cross-sectional area and density in patients with chronic low back pain. Spine 2003, 28, 1455–1460. [Google Scholar] [CrossRef] [PubMed]
- Kalichman, L.; Hodges, P.; Li, L.; Guermazi, A.; Hunter, D.J. Changes in paraspinal muscles and their association with low back pain and spinal degeneration: CT study. Eur. Spine J. 2010, 19, 1136–1144. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dahlquist, G.; Björck, A. Chapter 5: Numerical integration. In Numerical Methods in Scientific Computing, Volume I; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2008. [Google Scholar]
- Keller, A.; Johansen, J.G.; Hellesnes, J.; Brox, J.I. Predictors of isokinetic back muscle strength in patients with low back pain. Spine 1999, 24, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Gasser, T.; Sheehy, A.; Molinari, L.; Largo, R.H. Sex dimorphism in growth. Ann. Hum. Biol. 2000, 27, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Crawford, R.J.; Filli, L.; Elliott, J.M.; Nanz, D.; Fischer, M.A.; Marcon, M.; Ulbrich, E.J. Age- and Level-Dependence of Fatty Infiltration in Lumbar Paravertebral Muscles of Healthy Volunteers. AJNR Am. J. Neuroradiol. 2016, 37, 742–748. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marzetti, E.; Calvani, R.; Cesari, M.; Buford, T.W.; Lorenzi, M.; Behnke, B.J.; Leeuwenburgh, C. Mitochondrial dysfunction and sarcopenia of aging: From signaling pathways to clinical trials. Int. J. Biochem. Cell Biol. 2013, 45, 2288–2301. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Solgaard Sorensen, J.; Kjaer, P.; Jensen, S.T.; Andersen, P. Low-field magnetic resonance imaging of the lumbar spine: Reliability of qualitative evaluation of disc and muscle parameters. Acta Radiol. 2006, 47, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Noonan, A.M.; Brown, S.H.M. Paraspinal muscle pathophysiology associated with low back pain and spine degenerative disorders. JOR Spine 2021, 4, e1171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cooley, J.R.; Jensen, T.S.; Kjaer, P.; Jacques, A.; Theroux, J.; Hebert, J.J. Spinal degeneration is associated with lumbar multifidus morphology in secondary care patients with low back or leg pain. Sci. Rep. 2022, 12, 14676. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Inclusion criteria | healthy individuals aged 20–40 years at the time of evaluated lumbar MRI studies AND MRI performed in supine position of the individual AND availability of lumbar MRI with axial T2 sequence showing inferior lumbar levels, both psoas muscles, and both erector spinae muscles |
Exclusion criteria | individuals with a documented history of body growth disturbance, bone mineral density pathologies, or cachexia OR structural spinal pathology, such as scoliosis, fracture, disc degeneration, spinal stenosis, spondyloarthritis, etc., OR condition after spinal surgery OR evidence of the existence of tumorous lesions of the fifth lumbar vertebra or paraspinal muscles OR MRI performed in prone or lateral position of the individual |
Result | Women (n = 40) | Men (n = 40) | p | Effect Size | ||
---|---|---|---|---|---|---|
Mean (Range) | 95% CI | Mean (Range) | 95% CI | Cohen’s d | ||
LV5 LIC area size, mm2 | 801.4 (534.7–1103.6) | [759.6, 843.1] | 1004.4 (737.2–1279.9) | [967.0, 1041.7] | <0.001 | 1.6 |
PM LIC area size, mm2 | 932.0 (489.6–1358.6) | [874.8, 989.1] | 1420.5 (485.3–1939.6) | [1329.7, 1511.3] | <0.001 | 2.0 |
PPVM LIC area size, mm2 | 1035.9 (511.1–1670.0) | [941.9, 1129.9] | 1444.5 (628.0–2489.1) | [1322.6, 1566.4] | <0.001 | 1.2 |
PM + PPVM LIC area size, mm2 | 1967.8 (1257.9–2926.7) | [1840.9, 2094.7] | 2865.0 (1848.9–4428.4) | [2681.8, 3048.3] | <0.001 | 1.8 |
MVB | 174.5 (77.3–272.9) | [158.2, 190.8] | 160.0 (82.8–240.4) | [147.1, 172.8] | 0.17 | - |
Normalized MVB | 0.43 (0.21–0.79) | [0.37, 0.48] | 0.35 (0.11–0.63) | [0.31, 0.39] | 0.02 | 0.6 |
MPB | 73.7 (20.6–205.6) | [65.0, 82.4] | 66.3 (23.2–110.8) | [61.2, 71.4] | 0.15 | - |
Normalized MPB | 0.18 (0.08–0.51) | [0.15, 0.21] | 0.14 (0.05–0.25) | [0.13, 0.16] | 0.03 | 0.6 |
MPPVB | 141.9 (78.2–222.6) | [128.6, 155.1] | 114.1 (41.5–227.0) | [101.8, 126.4] | <0.001 | 0.7 |
Normalized MPPVB | 0.33 (0.20–0.53) | [0.30, 0.36] | 0.23 (0.06–0.44) | [0.20, 0.25] | <0.001 | 1.2 |
MTMB | 107.8 (20.6–222.6) | [97.0, 118.6] | 90.2 (23.2–227.0) | [81.8, 98.6] | 0.01 | 0.7 |
Normalized MTMB | 0.26 (0.08–0.53) | [0.24, 0.29] | 0.19 (0.05–0.44) | [0.17, 0.20] | <0.001 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balling, H.; Holzapfel, B.M.; Böcker, W.; Simon, D.; Reidler, P.; Arnholdt, J. Musculoskeletal Dimension and Brightness Reference Values in Lumbar Magnetic Resonance Imaging—A Radio-Anatomic Investigation in 80 Healthy Adult Individuals. J. Clin. Med. 2024, 13, 4496. https://doi.org/10.3390/jcm13154496
Balling H, Holzapfel BM, Böcker W, Simon D, Reidler P, Arnholdt J. Musculoskeletal Dimension and Brightness Reference Values in Lumbar Magnetic Resonance Imaging—A Radio-Anatomic Investigation in 80 Healthy Adult Individuals. Journal of Clinical Medicine. 2024; 13(15):4496. https://doi.org/10.3390/jcm13154496
Chicago/Turabian StyleBalling, Horst, Boris Michael Holzapfel, Wolfgang Böcker, Dominic Simon, Paul Reidler, and Joerg Arnholdt. 2024. "Musculoskeletal Dimension and Brightness Reference Values in Lumbar Magnetic Resonance Imaging—A Radio-Anatomic Investigation in 80 Healthy Adult Individuals" Journal of Clinical Medicine 13, no. 15: 4496. https://doi.org/10.3390/jcm13154496
APA StyleBalling, H., Holzapfel, B. M., Böcker, W., Simon, D., Reidler, P., & Arnholdt, J. (2024). Musculoskeletal Dimension and Brightness Reference Values in Lumbar Magnetic Resonance Imaging—A Radio-Anatomic Investigation in 80 Healthy Adult Individuals. Journal of Clinical Medicine, 13(15), 4496. https://doi.org/10.3390/jcm13154496