Periodontitis and Depressive Disorders: The Effects of Antidepressant Drugs on the Periodontium in Clinical and Preclinical Models: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hypothesis
2.2. Eligibility Criteria
2.3. Search Strategy
2.4. Screening and Selection of Articles
2.5. Risk of Bias and Results
3. Results
Risk of Bias of Studies Included
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, M.X.; Zhong, Y.J.; Dong, Q.Q.; Wong, H.M.; Wen, Y.F. Global, regional, and national burden of severe periodontitis, 1990–2019: An analysis of the Global Burden of Disease Study 2019. J. Clin. Periodontol. 2021, 48, 1165–1188. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.A. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int. J. Health Sci. 2017, 11, 72–80. [Google Scholar]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Primers 2017, 3, 17038. [Google Scholar] [CrossRef] [PubMed]
- Papapanou, P.N.; Sanz, M.; Buduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F.; et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89, S173–S182. [Google Scholar] [CrossRef] [PubMed]
- Lindhe, J.; Lang, N.P. Clinical Periodontology and Oral Implantology, 6th ed.; Wiley-Blackwell: Oxford, UK, 2016. [Google Scholar]
- Sabatini, S.; Maiorani, C.; Bassignani, J.; Cotellessa, S.; Di Trani, G.; Fulgenzi, E.; Iacono, R.; Mercogliano, I.; Butera, A. Effectiveness of Ultrasonic and Manual Instrumentation in Nonsurgical Periodontal Therapy: Are Additional Therapies More Effective? A Systematic Review. Appl. Sci. 2024, 14, 1950. [Google Scholar] [CrossRef]
- Pardo, A.; Butera, A.; Giordano, A.; Gallo, S.; Pascadopoli, M.; Scribante, A.; Albanese, M. Photodynamic Therapy in Non-Surgical Treatment of Periodontitis: A Systematic Review and Meta-Analysis. Appl. Sci. 2023, 13, 1086. [Google Scholar] [CrossRef]
- Preda, C.; Butera, A.; Pelle, S.; Pautasso, E.; Chiesa, A.; Esposito, F.; Oldoini, G.; Scribante, A.; Genovesi, A.M.; Cosola, S. The Efficacy of Powered Oscillating Heads vs. Powered Sonic Action Heads Toothbrushes to Maintain Periodontal and Peri-Implant Health: A Narrative Review. Int. J. Environ. Res. Public. Health 2021, 18, 1468. [Google Scholar] [CrossRef]
- Wang, C.W. Emerging opportunity to implement host modulation therapy in non-surgical periodontal therapy-The role of probiotics and future perspectives. J. Dent. Sci. 2024, 19, 1305–1306. [Google Scholar] [CrossRef]
- Michopoulos, V.; Powers, A.; Gillespie, C.F.; Ressler, K.J.; Jovanovic, T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology 2017, 42, 254–270. [Google Scholar] [CrossRef]
- Miller, A.H.; Raison, C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016, 16, 22–34. [Google Scholar] [CrossRef]
- Flux, M.C.; Lowry, C.A. Finding intestinal fortitude: Integrating the microbiome into a holistic view of depression mechanisms, treatment, and resilience. Neurobiol. Dis. 2020, 135, 104578. [Google Scholar] [CrossRef] [PubMed]
- Raison, C.L.; Miller, A.H. The evolutionary significance of depression in pathogen host defense (PATHOS-D). Mol. Psychiatry 2013, 18, 15–37. [Google Scholar] [CrossRef] [PubMed]
- Dominy, S.S.; Lynch, C.; Ermini, F.; Benedyk, M.; Marczyk, A.; Konradi, A.; Nguyen, M.; Haditsch, U.; Raha, D.; Griffin, C.; et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 2019, 5, eaau3333. [Google Scholar] [CrossRef] [PubMed]
- Parahitiyawa, N.B.; Jin, L.J.; Leung, W.K.; Yam, W.C.; Samaranayake, L.P. Microbiology of odontogenic bacteremia: Beyond endocarditis. Clin. Microbiol. Rev. 2009, 22, 46–64. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, P.B.; Brennan, M.T.; Sasser, H.C.; Fox, P.C.; Paster, B.J.; Bahrani-Mougeot, F.K. Bacteremia associated with toothbrushing and dental extraction. Circulation 2008, 117, 3118–3125. [Google Scholar] [CrossRef] [PubMed]
- Frister, A.; Schmidt, C.; Schneble, N.; Brodhun, M.; Gonnert, F.A.; Bauer, M.; Hirsch, E.; Müller, J.P.; Wetzker, R.; Bauer, R. Phosphoinositide 3-kinase γ affects LPS-induced disturbance of blood-brain barrier via lipid kinase-independent control of cAMP in microglial cells. Neuromolecular Med. 2014, 16, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Kisely, S.; Sawyer, E.; Siskind, D.; Lalloo, R. The oral health of people with anxiety and depressive disorders—A systematic review and meta-analysis. J. Affect. Disord. 2016, 200, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Cunha, F.A.; Cota, L.O.M.; Cortelli, S.C.; Miranda, T.B.; Neves, F.S.; Cortelli, J.R.; Costa, F.O. Periodontal condition and levels of bacteria associated with periodontitis in individuals with bipolar affective disorders: A case-control study. J. Periodontal Res. 2019, 54, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Coelho, J.M.F.; Miranda, S.S.; da Cruz, S.S.; Dos Santos, D.N.; Trindade, S.C.; Cerqueira, E.M.M.; Passos-Soares, J.d.S.; Costa, M.d.C.N.; Figueiredo, A.C.M.G.; Hintz, A.M.; et al. Common mental disorder is associated with periodontitis. J. Periodontal Res. 2020, 55, 221–228. [Google Scholar] [CrossRef]
- Martínez, M.; Postolache, T.T.; García-Bueno, B.; Leza, J.C.; Figuero, E.; Lowry, C.A.; Malan-Müller, S. The Role of the Oral Microbiota Related to Periodontal Diseases in Anxiety, Mood and Trauma- and Stress-Related Disorders. Front. Psychiatry 2022, 12, 814177. [Google Scholar] [CrossRef]
- Sekhon, S.; Gupta, V. Mood Disorder. [Updated 2023 May 8]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Rakofsky, J.; Rapaport, M. Mood Disorders. Behav. Neurol. Psychiatry 2018, 24, 804–827. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Suryadevara, U.; Cheong, J. Mood Disorders. Behav. Neurol. Psychiatry 2021, 27, 1712–1737. [Google Scholar] [CrossRef]
- Mitchell, P.B. Bipolar disorder: Defining symptoms and comorbidities. Lancet 2016, 388, 868–869. [Google Scholar] [CrossRef] [PubMed]
- National Collaborating Centre for Mental Health (UK). Bipolar Disorder: The NICE Guideline on the Assessment and Management of Bipolar Disorder in Adults, Children and Young People in Primary and Secondary Care. In NICE Clinical Guidelines; The British Psychological Society and The Royal College of Psychiatrists: London, UK, 2014. [Google Scholar]
- Liu, Q.; He, H.; Yang, J.; Feng, X.; Zhao, F.; Lyu, J. Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study. J. Psychiatr. Res. 2020, 126, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhao, Y.; Wang, Y.; Liu, L.; Zhang, X.; Li, B.; Cui, R. The Effects of Psychological Stress on Depression. Curr. Neuropharmacol. 2015, 13, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Jorge, R.E. Mood disorders. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 128, pp. 613–631. [Google Scholar]
- Genco, R.J.; Borgnakke, W.S. Risk factors for periodontal disease. Periodontology 2000 2013, 62, 59–94. [Google Scholar] [CrossRef] [PubMed]
- Klimkiewicz, A.; Klimkiewicz, J.; Jakubczyk, A.; Kieres-Salomonski, I.; Wojnar, M. Comorbidity of alcohol dependence with other psychiatric disorders. Part I. Epidemiology of dual diagnosis. Psychiatr. Pol. 2015, 49, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Ball, J.; Darby, I. Mental health and periodontal and peri-implant diseases. Periodontology 2000 2022, 90, 106–124. [Google Scholar] [CrossRef] [PubMed]
- Anttila, S.; Knuuttila, M.; Ylostalo, P.; Joukamaa, M. Symptoms of depression and anxiety in relation to dental health behavior and self-perceived dental treatment need. Eur. J. Oral Sci. 2016, 114, 109–114. [Google Scholar] [CrossRef]
- Martinez, M.; Martin-Hernandez, D.; Virto, L.; MacDowell, K.S.; Montero, E.; Gonzalez-Bris, A.; Marin, M.J.; Ambrosio, N.; Herrera, D.; Leza, J.C.; et al. Periodontal diseases and depression: A pre-clinical in vivo study. J. Clin. Periodontol. 2021, 48, 503–527. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.C.; Hsu, Y.C.; Chen, H.J.; Lin, C.C.; Chang, K.H.; Lee, C.Y.; Chong, L.W.; Kao, C.H. Association of Periodontitis and Subsequent Depression: A Nationwide Population-Based Study. Medicine 2015, 94, e2347. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.R.; Nam, S.H. Comparison of Diagnosed Depression and Self-Reported Depression Symptom as a Risk Factor of Periodontitis: Analysis of 2016–2018 Korean National Health and Nutrition Examination Survey Data. Int. J. Environ. Res. Public Health 2021, 18, 871. [Google Scholar] [CrossRef]
- Zheng, D.X.; Kang, X.N.; Wang, Y.X.; Huang, Y.N.; Pang, C.F.; Chen, Y.X.; Kuang, Z.L.; Peng, Y. Periodontal disease and emotional disorders: A meta-analysis. J. Clin. Periodontol. 2021, 48, 180–204. [Google Scholar] [CrossRef] [PubMed]
- Okoro, C.A.; Strine, T.W.; Eke, P.I.; Dhingra, S.S.; Balluz, L.S. The association between depression and anxiety and use of oral health services and tooth loss. Community Dent. Oral Epidemiol. 2012, 40, 134–144. [Google Scholar] [CrossRef]
- Kassebaum, N.J.; Bernabe, E.; Dahiya, M.; Bhandari, B.; Murray, C.J.; Marcenes, W. Global burden of severe periodontitis in 1990–2010: A systematic review and meta-regression. J. Dent. Res. 2014, 93, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Al-Harthi, L.S.; Cullinan, M.P.; Leichter, J.W.; Thomson, W.M. The impact of periodontitis on oral health-related quality of life: A review of the evidence from observational studies. Aust. Dent. J. 2013, 58, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Gerritsen, A.E.; Allen, P.F.; Witter, D.J.; Bronkhorst, E.M.; Creugers, N.H. Tooth loss and oral health-related quality of life: A systematic review and meta-analysis. Health Qual. Life Outcomes 2012, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Saintrain, M.V.; de Souza, E.H. Impact of tooth loss on the quality of life. Gerodontology 2012, 29, e632–e636. [Google Scholar] [CrossRef]
- Hohls, J.K.; Konig, H.H.; Quirke, E.; Hajek, A. Anxiety, Depression and Quality of Life-A Systematic Review of Evidence from Longitudinal Observational Studies. Int. J. Environ. Res. Public Health 2021, 18, 12022. [Google Scholar] [CrossRef]
- Shin, H.S.; Ahn, Y.S.; Lim, D.S. Association Between Chewing Difficulty and Symptoms of Depression in Adults: Results from the Korea National Health and Nutrition Examination Survey. J. Am. Geriatr. Soc. 2016, 64, e270–e278. [Google Scholar] [CrossRef]
- Sowislo, J.F.; Orth, U. Does low self-esteem predict depression and anxiety? A meta-analysis of longitudinal studies. Psychol. Bull. 2013, 139, 213–240. [Google Scholar] [CrossRef] [PubMed]
- Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctot, K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry 2010, 67, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Kohler, C.A.; Freitas, T.H.; Maes, M.; de Andrade, N.Q.; Liu, C.S.; Fernandes, B.S.; Stubbs, B.; Solmi, M.; Veronese, N.; Herrmann, N.; et al. Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatr. Scand. 2017, 135, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Mac Giollabhui, N.; Ng, T.H.; Ellman, L.M.; Alloy, L.B. The longitudinal associations of inflammatory biomarkers and depression revisited: Systematic review, meta-analysis, and meta-regression. Mol. Psychiatry 2021, 26, 3302–3314. [Google Scholar] [CrossRef] [PubMed]
- Butera, A.; Maiorani, C.; Gallo, S.; Pascadopoli, M.; Venugopal, A.; Marya, A.; Scribante, A. Evaluation of Adjuvant Systems in Non-Surgical Peri-Implant Treatment: A Literature Review. Healthcare 2022, 10, 886. [Google Scholar] [CrossRef]
- Dumitrescu, A.L. Depression and Inflammatory Periodontal Disease Considerations-An Interdisciplinary Approach. Front. Psychol. 2016, 7, 347. [Google Scholar] [CrossRef]
- Butera, A.; Pascadopoli, M.; Nardi, M.G.; Ogliari, C.; Chiesa, A.; Preda, C.; Perego, G.; Scribante, A. Clinical Use of Paraprobiotics for Pregnant Women with Periodontitis: Randomized Clinical Trial. Dent. J. 2024, 12, 116. [Google Scholar] [CrossRef] [PubMed]
- Neupane, S.P.; Virtej, A.; Myhren, L.E.; Bull, V.H. Biomarkers common for inflammatory periodontal disease and depression: A systematic review. Brain Behav. Immun. Health 2022, 21, 100450. [Google Scholar] [CrossRef]
- Wang, X.; Tong, Y.; Zhang, J.; Khan, N.; Zhang, K.; Bai, H.; Zhang, Q.; Chen, Y. Neuroinflammation changes with periodontal inflammation status during periodontitis in wild-type mice. Oral Dis. 2021, 27, 1001–1011. [Google Scholar] [CrossRef]
- Castro, M.M.L.; Ferreira, R.O.; Fagundes, N.C.F.; Almeida, A.; Maia, L.C.; Lima, R.R. Association between Psychological Stress and Periodontitis: A Systematic Review. Eur. J. Dent. 2020, 14, 171–179. [Google Scholar] [CrossRef]
- Botelho, J.; Machado, V.; Mascarenhas, P.; Rua, J.; Alves, R.; Cavacas, M.A.; Delgado, A.; Joao Mendes, J. Stress, salivary cortisol and periodontitis: A systematic review and meta-analysis of observational studies. Arch. Oral Biol. 2018, 96, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Biggio, G.; Mostallino, M.C. Stress, cortisol, neuronal plasticity, and depressive disorder. J. Psychopathol. 2013, 19, 77–83. [Google Scholar]
- DeCarolis, N.A.; Eisch, A.J. Hippocampal neurogenesis as a target for the treatment of mental illness: A critical evaluation. Neuropharmacology 2010, 58, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Belvederi Murri, M.; Pariante, C.; Mondelli, V.; Masotti, M.; Atti, A.R.; Mellacqua, Z.; Antonioli, M.; Ghio, L.; Menchetti, M.; Zanetidou, S.; et al. HPA axis and aging in depression: Systematic review and meta-analysis. Psychoneuroendocrinology 2014, 41, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, G.G.; Gastal, M.T.; Leite, F.R.M.; Quevedo, L.A.; Peres, K.G.; Peres, M.A.; Horta, B.L.; Barros, F.C.; Demarco, F.F. Is there an association between depression and periodontitis? A birth cohort study. J. Clin. Periodontol. 2019, 46, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Bansal, T.; Pandey, A.D.D.; Asthana, A.K. C-Reactive Protein (CRP) and its Association with Periodontal Disease: A Brief Review. J. Clin. Diagn. Res. 2014, 8, ZE21–ZE24. [Google Scholar]
- Jiang, H.; Zhang, Y.; Xiong, X.; Harville, E.W.; O, K.; Qian, X. Salivary and serum inflammatory mediators among pre-conception women with periodontal disease. BMC Oral Health 2016, 16, 131. [Google Scholar] [CrossRef]
- Wang, I.C.; Askar, H.; Ghassib, I.; Wang, C.W.; Wang, H.L. Association between periodontitis and systemic medication intake: A case-control study. J. Periodontol. 2020, 91, 1245–1255. [Google Scholar] [CrossRef]
- Hashioka, S.; McGeer, P.L.; Monji, A.; Kanba, S. Anti-inflammatory effects of antidepressants: Possibilities for preventives against Alzheimer’s disease. Cent. Nerv. Syst. Agents Med. Chem. 2009, 9, 12–19. [Google Scholar] [CrossRef]
- Martino, M.; Rocchi, G.; Escelsior, A.; Fornaro, M. Immunomodulation Mechanism of Antidepressants: Interactions between Serotonin/Norepinephrine Balance and Th1/Th2 Balance. Curr. Neuropharmacol. 2012, 10, 97–123. [Google Scholar] [CrossRef]
- Tynan, R.J.; Weidenhofer, J.; Hinwood, M.; Cairns, M.J.; Day, T.A.; Walker, F.R. A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Behav. Immun. 2012, 26, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Hakam, A.E.; Duarte, P.M.; Mbadu, M.P.; Aukhil, I.; da Silva, H.D.P.; Chang, J. Association of different antidepressant classes with clinical attachment level and alveolar bone loss in patients with periodontitis: A retrospective study. J. Periodontal Res. 2022, 57, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Bey, A.; Ahmad, S.S.; Azmi, S.A.; Ahmed, S. Effect of antidepressants on various periodontal parameters: A case-control study. J. Indian Soc. Periodontol. 2020, 24, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Majeed, R.; Sathi, K.V.; Patil, R.S.; Singh, N.; Duseja, S.; Kondreddy, K. Association of the Antidepressants and the Periodontal Status: An Original Research. J. Pharm. Bioallied Sci. 2024, 16, S215–S218. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Hasan, F.; Ikram, R.; Simjee, S.U.; Iftakhar, K.; Asadullah, K. Effects of 1% amitriptyline gel and mouthwash in patients with periodontal diseases via local drug delivery system: A randomized control clinical trial. Pak. J. Pharm. Sci. 2019, 32, 1855–1860. [Google Scholar] [PubMed]
- Hassan, R.; Ahmed, N.F.; Hussein, S.I. Histological, immunohistochemical and radiographic evaluation of Amitriptyline administration on the periodontium of albino rats (An experimental study). Saudi Dent. J. 2022, 34, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Branco-de-Almeida, L.S.; Franco, G.C.; Castro, M.L.; Vieira, M.S.; Galvão-Moreira, L.V.; Cortelli, S.C.; Anbinder, A.L.; Kawai, T.; Rosalen, P.L. Protective effects of desipramine on alveolar bone in experimental periodontitis. J. Periodontol. 2020, 91, 1694–1703. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Z.; Zhang, L.; Kirkwood, C.L.; Kirkwood, K.L.; Lopes-Virella, M.F.; Huang, Y. Inhibition of acid sphingomyelinase by imipramine abolishes the synergy between metabolic syndrome and periodontitis on alveolar bone loss. J. Periodontal Res. 2022, 57, 173–185. [Google Scholar] [CrossRef]
- Yamawaki, Y.; So, H.; Oue, K.; Asano, S.; Furusho, H.; Miyauchi, M.; Tanimoto, K.; Kanematsu, T. Imipramine prevents Porphyromonas gingivalis lipopolysaccharide-induced microglial neurotoxicity. Biochem. Biophys. Res. Commun. 2022, 634, 92–99. [Google Scholar] [CrossRef]
- Bhatia, A.; Sharma, R.K.; Tewari, S.; Narula, S.C.; Khurana, H. Periodontal status in chronic periodontitis depressed patients on desvenlafaxine: An observational study. J. Indian Soc. Periodontol. 2018, 22, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, R.S.; de Souza, C.M.; Neves, J.C.; Holanda-Pinto, S.A.; Pinto, L.M.; Brito, G.A.; de Andrade, G.M. Effect of venlafaxine on bone loss associated with ligature-induced periodontitis in Wistar rats. J. Negat. Results Biomed. 2010, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, J.C.A.; Gomes, E.P.P.; Fonseca-Silva, T.; Velloso, N.A.; Vieira, L.T.; Fernandes, M.F.; Santos, S.H.S.; Neto, J.F.R.; De-Paula, A.M.B.; Guimarães, A.L.S. Fluoxetine reduces periodontal disease progression in a conditioned fear stress model in rats. J. Periodontal Res. 2013, 48, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, A.; Sharma, R.K.; Tewari, S.; Khurana, H.; Narula, S.C. Effect of Fluoxetine on Periodontal Status in Patients With Depression: A Cross-Sectional Observational Study. J. Periodontol. 2015, 86, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Branco-De-Almeida, L.S.; Franco, G.C.; Castro, M.L.; dos Santos, J.G.; Anbinder, A.L.; Cortelli, S.C.; Kajiya, M.; Kawai, T.; Rosalen, P.L. Fluoxetine inhibits inflammatory response and bone loss in a rat model of ligature-induced periodontitis. J. Periodontol. 2012, 83, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Regueira, L.S.; Marcelos, P.G.; Santiago-Jaegger, I.M.; Perez, D.E.; Evêncio, J.; Neto Baratella-Evêncio, L. Fluoxetine effects on periodontogenesis: Histomorphometrical and immunohistochemical analyses in rats. J. Appl. Oral Sci. 2017, 25, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Breivik, T.; Gundersen, Y.; Myhrer, T.; Fonnum, F.; Osmundsen, H.; Murison, R.; Gjermo, P.; Von Hörsten, S.; Opstad, P.K. Enhanced susceptibility to periodontitis in an animal model of depression: Reversed by chronic treatment with the anti-depressant tianeptine. J. Clin. Periodontol. 2006, 33, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Breivik, T.; Gundersen, Y.; Osmundsen, H.; Fonnum, F.; Opstad, P.K. Neonatal dexamethasone and chronic tianeptine treatment inhibit ligature-induced periodontitis in adult rats. J. Periodontal Res. 2006, 41, 23–32. [Google Scholar] [CrossRef]
- Muniz, F.W.M.G.; Melo, I.M.; Rösing, C.K.; Andrade, G.M.; Martins, R.S.; Moreira, M.M.S.M.; Carvalho, R.D.S. Use of antidepressive agents as a possibility in the management of periodontal diseases: A systematic review of experimental studies. J. Investig. Clin. Dent. 2018, 9, e12291. [Google Scholar] [CrossRef]
- Palomer, T.; Ramírez, V.; Ortuño, D. Correction: Relationship between oral health and depression: Data from the National Health Survey 2016–2017. BMC Oral Health 2024, 24, 399. [Google Scholar] [CrossRef]
- Cecoro, G.; Annunziata, M.; Iuorio, M.T.; Nastri, L.; Guida, L. Periodontitis, Low-Grade Inflammation and Systemic Health: A Scoping Review. Medicina 2020, 56, 272. [Google Scholar] [CrossRef]
- de Molon, R.S.; Park, C.H.; Jin, Q.; Sugai, J.; Cirelli, J.A. Characterization of ligature-induced experimental periodontitis. Microsc. Res. Tech. 2018, 81, 1412–1421. [Google Scholar] [CrossRef] [PubMed]
- Plemmenos, G.; Evangeliou, E.; Polizogopoulos, N.; Chalazias, A.; Deligianni, M.; Piperi, C. Central Regulatory Role of Cytokines in Periodontitis and Targeting Options. Curr. Med. Chem. 2021, 28, 3032–3058. [Google Scholar] [CrossRef]
- Hienz, S.A.; Paliwal, S.; Ivanovski, S. Mechanisms of Bone Resorption in Periodontitis. J. Immunol. Res. 2015, 615486. [Google Scholar] [CrossRef] [PubMed]
- Tsurukai, T.; Udagawa, N.; Matsuzaki, K.; Takahashi, N.; Suda, T. Roles of macrophage-colony stimulating factor and osteoclast differentiation factor in osteoclastogenesis. J. Bone Miner. Metab. 2020, 18, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Garlet, G.P. Destructive and protective roles of cytokines in periodontitis: A re-appraisal from host defense and tissue destruction viewpoints. J. Dent. Res. 2010, 89, 1349–1363. [Google Scholar] [CrossRef]
- Pan, W.; Wang, Q.; Chen, Q. The cytokine network involved in the host immune response to periodontitis. Int. J. Oral Sci. 2019, 11, 30. [Google Scholar] [CrossRef]
- Harsanyi, S.; Kupcova, I.; Danisovic, L.; Klein, M. Selected Biomarkers of Depression: What Are the Effects of Cytokines and Inflammation? Int. J. Mol. Sci. 2022, 24, 578. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Kang, X.N.; Cao, Y.; Zheng, D.X.; Lu, Y.M.; Pang, C.F.; Wang, Z.; Cheng, B.; Peng, Y. Porphyromonas gingivalis induces depression via downregulating p75NTR-mediated BDNF maturation in astrocytes. Brain Behav. Immun. 2019, 81, 523–534. [Google Scholar] [CrossRef]
- Jentsch, H.F.; Marz, D.; Kruger, M. The effects of stress hormones on growth of selected periodontitis related bacteria. Anaerobe 2013, 24, 49–54. [Google Scholar] [CrossRef]
- Roberts, A.; Matthews, J.B.; Socransky, S.S.; Freestone, P.P.; Williams, P.H.; Chapple, I.L. Stress and the periodontal diseases: Effects of catecholamines on the growth of periodontal bacteria in vitro. Oral Microbiol. Immunol. 2002, 17, 296–303. [Google Scholar] [CrossRef] [PubMed]
Study | Study Design and Population | Presence of Periodontitis/Depression at t0 | Comparison Groups and Pharmacological Administration | Tested Parameters/Analyses Conducted | Outcome |
---|---|---|---|---|---|
Hakam et al., 2022 [66] | Retrospective study conducted on humans | Presence of periodontitis; no diagnosis of depression (users and non-users of antidepressants) | Group 1 (user group): subjects who use antidepressants; Group 2 (non-user group): subjects who do not use antidepressants. | Variables obtained: type of antidepressant, age, sex, smoking, mild systemic diseases, CAL, BL | Antidepressant use was associated with significantly better BL and CAL in patients with periodontitis. Analysing pharmacological classes separately, SSRI (selective serotonin reuptake inhibitor) users and users of multiple pharmacological classes had lower BL and CAL than non-users. |
Bey et al., 2020 [67] | Case–control study on humans | Absence of periodontitis/presence of depression at t0 | Group 1: control group diagnosed as depressed at the first visit; Group 2: depressed patients taking fluoxetine 20 mg/day; Group 3: patients taking venlafaxine 75 mg/day. | DI, CI, PPD, CAL | Fluoxetine and venlafaxine are associated with a worsening of periodontal parameters, when compared with the group not taking antidepressant drugs. |
Majeed et al., 2024 [68] | Case–control study conducted on humans | Absence of periodontitis/diagnosis of depression at t0 | Group 1: Subjects identified by a psychiatrist as having a mental illness (control) after presenting to the psychiatry outpatient department (OPD); Group 2: patients who are taking venlafaxine; Group 3: patients who are taking fluoxetine. | CAL, PPD, CI, DI | Antidepressants can be a risk factor for periodontal health, with an increase in periodontal parameters, as these drugs can put periodontal tissues at risk. |
Hasan et al., 2019 [70] | RCT on humans | Periodontitis at t0/no depression | Group 1 (control group): standard periodontal therapy; Group 2: periodontal therapy + amitriptyline gel; Group 3: periodontal therapy + amitriptyline mouthwash. | PD, AL, tooth mobility; PI, GI, BOP; saliva sample collection and estimation of TNF-α, PGE2 and NO | Improvement in periodontal parameters in the amitriptyline + gel/mouthwash group compared to the 1 standard therapy group. |
Hassan et al., 2022 [71] | Experimental study on rats | No periodontitis/no depression at t0 | Control group: distilled water; Test group: 10 mg per day per kg of amitriptyline. | Radiographic analysis (CBCT), histomorphometric analysis, anti-OPN and H&E immunohistochemical staining | Amitriptyline worsened periodontal destruction and increased the expression of anti-OPN in periodontal tissues, reducing bone mineral density. |
Branco-de-Almeida et al., 2020 [72] | Experimental study on rats | Induced periodontitis/no depression at t0 | Group 1 (control group): rats without ligation (saline); Group 2 (ligation group): rats with induced periodontitis treated with saline solution; Group 3 (ligation + desipramine group): rats with ligation-induced periodontitis treated with desipramine (20 mg/kg/day). | RNA isolation and gene expression of IL-1β, iNOS, COX-2, MMP-9 and TIMP-1; zymography to evaluate MMP-9 activity | Desipramine reduced alveolar bone loss by modulating gene expression of inflammatory markers. |
Li et al., 2022 [73] | Experimental study on rats | Induced periodontitis/no depression at t0 | Group 1: control group; Group 2: control group with aSMase (acid sphingomyelinase) inhibition; Group 3: periodontitis group; Group 4: periodontitis group with aSMase (acid sphingomyelinase) inhibition; Group 5: MetS group (metabolic syndrome); Group 6: MetS group (metabolic syndrome) with aSMase (acid sphingomyelinase) inhibition; Group 7: periodontitis and MetS (metabolic syndrome) group; Group 8: periodontitis and MetS (metabolic syndrome) group with aSMase (acid sphingomyelinase) inhibition. | Metabolic measurements, micro-computed tomography and bone volume fraction analysis, acid phosphatase staining, histological tissue processing and pathological evaluation, cell cultures to evaluate alveolar bone loss, osteoclast formation, periodontal inflammation and pro-inflammatory gene expression | Imipramine inhibited the synergy between metabolic syndrome (MetS) and periodontitis on alveolar bone loss, proposing acid sphingomyelinase (aSMase) as a therapeutic target of periodontitis exacerbated by MetS. |
Yamawaki et al., 2022 [74] | Experimental study on rats | Induction of LPS-PG/no depression at t0 | Active group treated with imipramine (20 mg/kg) 1 h before LPS-PG (lipopolysaccharide from porphyromonas gingivalis) injection (5 mg/kg). | Cell culture and cell immunoreactivity assay using electrochemiluminescence (ECL) reagent | Imipramine is associated with a reduction in the expression of TNF (tumour necrosis factor) and Il-1 (interleukin 1) in the hippocampus, 24 h after introduction; furthermore, it attenuated microglial-induced neuronal death by inhibiting signaling of an inflammation factor in microglia (NF-κB). |
Bhatia et al., 2018 [75] | Observational study on humans | Presence of chronic periodontitis/presence of depression at t0 | Group 1 (test): they took a daily dose of 50 mg/day of desvenlafaxine; Group 2 (control group): diagnosed with depression at the first visit who had not started any antidepressant medication. | PI, GI, SBI, BOP, PPD, AL | Patients treated with desvenlafaxine had shallower pocket depth and less bleeding in survey. |
Carvalho et al., 2010 [76] | Experimental study on rats | Experimentally induced periodontitis/absence of depression at t0 | Group 1: sham-operated (SO); Group 2: experimental periodontitis treated with vehicle; Groups 3 and 4: rats without induced periodontitis treated with 10 or 50 mg/kg of venlafaxine; Groups 5 and 6: rats with induced periodontitis treated orally with venlafaxine 10 or 50 mg/kg. | Bone loss analysed morphometrically and histopathological and immunohistochemical analysis for TNF-α and iNOS | High-dose venlafaxine (50 mg/kg) increased bone loss and worsened the inflammation condition of the tested animals. Furthermore, the drug increased the immunoreactivity of inflammatory biomarkers such as TNF (tumour necrosis factor). |
Aguiar et al., 2013 [77] | Experimental study on rats | Experimentally induced periodontitis (before depression)/experimentally induced depression at t0 | Groups 1: non-stressed rats; Group 2: non-stressed rats + daily fluoxetine (20 mg/kg) Group C: stressed rats; Group 3: stressed rats + daily fluoxetine (20 mg/kg). | Histological analyses and immunohistochemical staining for IL-1β and IL-6 | Animal models with depression and periodontitis had greater bone loss than the non-depressed periodontitis group. Furthermore, fluoxetine reduced levels of bone loss in animal models of induced periodontitis and stress-induced depression. |
Bhatia et al., 2015 [78] | Cross- sectional observational study on humans | Periodontitis present/and depression diagnosed at the first visit at t0 | Group 1 (test group): periodontal patients taking 20 mg/day of fluoxetine for at least 2 months; Group 2 (control group): periodontal patients who had yet to start antidepressant treatment. | PI, GI, SBI, BOP, PPD, AL | Except plaque index (PI), all parameters were lower in group taking fluoxetine compared to the control group (depressed patients with periodontitis). |
Branco-de-Almeida et al., 2012 [79] | Experimental study on rats | Experimentally induced periodontitis/depression absent at t0 | Group 1: control rats (without ligation); Group 2: rats with ligation + placebo (saline); Group 3: ligation rats + fluoxetine (20 mg/kg/day). | Bone loss by histometric assessment, expression of IL-1β, COX-2, MMP-9 and iNOS and MMP-9 activity | The periodontitis group and fluoxetine demonstrated less alveolar bone loss at histometric evaluation compared to the group with induced periodontitis alone and placebo. Furthermore, in the fluoxetine group there was a reduced inflammatory expression of IL-1β (interleukin 1-beta) and COX-2 (cyclooxygenase-2). |
Regueira et al., 2017 [80] | Experimental study on rats | Absence of periodontitis/depression at t0 | Group 1: sodium chloride administered throughout the pregnancy; Group 2: sodium chloride administered throughout pregnancy and breastfeeding; Group 3: fluoxetine administered throughout the pregnancy; Group 4: fluoxetine administered throughout pregnancy and breastfeeding. | Histometrical, histochemical and immunohistochemical analysis of the maxillary first molar periodontium region of rat pups made under light microscopy; periodontal ligament collagen qualitatively evaluated under a polarizing light microscope | Decreases in osteoblasts, fibroblasts and mercatoblasts were observed, but only in the group in which fluoxetine was taken until the breastfeeding period. However, it is not possible to determine whether this cellular deficiency actually influenced periodontogenesis, as the morphological descriptive analysis did not highlight any alterations or structural elements evident in the periodontal conformation. |
Breivik et al., 2006 [81] | Experimental study on rats | Experimentally induced periodontitis (before depression)/experimentally induced depression at t0 | Experiment 1: Group 1: mice with periodontitis and induced depression (OB); Group 2: mice with induced periodontitis without depression. Experiment 2: Group 1: OB rats treated with tianeptine; Group 2: OB mice treated with saline; Group 3: control mice. | Radiographic bone loss, analysis of serum corticosterone, tumour necrosis factor TNF-α, IL-10 and TGF-β; RNA isolation in the hippocampus | Depressed mice (OB) had a higher susceptibility to periodontitis than healthy controls without induced depression. Tianeptine treatment of OB rats significantly inhibited periodontal bone loss, normalised behavioural responses, increased TGF-1β levels and abolished the decrease in TNF-α, but did not attenuate the increase in corticosterone response and decreased hippocampal GR expression. |
Breivik et al., 2006 [82] | Experimental study on rats | Induced periodontitis/depression absent at t0 | Experiment 1: Group 1 (active group): dexamethasone; Group 2 (control group): physiological solution. Experiment 2: Group 1 (active group): 10 mg/kg per day of tianeptine; Group 2 (control group): physiological solution. | Radiographic bone loss, analysis of serum corticosterone, tumour necrosis factor TNF-α, IL-10 and TGF-β; RNA isolation in the hippocampus | Tianeptine-treated group showed significantly reduced periodontal bone loss, increased plasma levels of TNF-α and transforming growth factor-1β; no significant difference was found in corticosterone levels. |
Muniz et al., 2018 [83] | Systematic review of 5 experimental studies on rats | Studies involved: Breivick et al., 2006 [81]; Breivick et al., 2006 [82]; Carvalho et al., 2010 [76]; Branco-de-Almeida et al., 2012 [79]; Aguiar et al., 2013 [77]; | / | Parameters extracted from each selected study: author, country, number of animals involved, antidepressant used, use of ligature (yes or no), intervention (if any) in the control group, number of days with the ligature placed, number of days the antidepressant was administered, measurement of ABL in each experimental group and additional information. | With the exception of venlafaxine, the antidepressant treatments studied (tianeptine and fluoxetine) can modify the reactivity of the stress response system and modulate susceptibility to periodontitis. |
Article | Antidepressant Used | Effects on Periodontium |
---|---|---|
Hakam et al., 2022 [66] | SSRI (selective serotonin reuptake inhibitors), SNRI (serotonin-norepinephrine reuptake inhibitors), tricyclic, atypical and MAO (monoamine oxidase inhibitors) categories | Antidepressants improve BL and CAL |
Bey et al., 2020 [67] | Fluoxetine and Venlafaxine | Fluoxetine and Venlafaxine worsen periodontal health |
Majeed et al., 2024 [68] | Fluoxetine and Venlafaxine | Fluoxetine and Venlafaxine worsen periodontal indices |
Hasan et al., 2019 [70] | Amitryptiline | Amitryptiline improves periodontal health and periodontal indices |
Hassan et al., 2022 [71] | Amitryptiline | Amitryptiline worsens periodontal health |
Branco-de-Almeida et al., 2020 [72] | Desipramine | Desipramine reduces alveolar bone loss |
Li et al., 2022 [73] | Imipramine | Imipramine improves periodontal health |
Yamawaki et al., 2022 [74] | Imipramine | Imipramine inhibits LPS-PG-induced inflammatory responses in microglia and improves periodontal disease-related neural damage |
Bhatia et al., 2018 [75] | Desvenlafaxine | Desvenlafaxine improves PPD and BOP |
Carvalho et al., 2010 [76] | Venlafaxine | Venlafaxine increases inflammation and bone loss |
Aguiar et al., 2013 [77] | Fluoxetine | Fluoxetine reduces bone loss |
Bhatia et al., 2015 [78] | Fluoxetine | Fluoxetine improves GI, SBI, BOP, CAL (but not plaque index) |
Branco-de-Almeida et al., 2012 [79] | Fluoxetine | Fluoxetine reduces inflammation and bone loss |
Regueira et al., 2017 [80] | Fluoxetine | Periodontal tissue may be sensitive to fluoxetine, and its interference in reducing periodontal cells depends on exposure time during lactation |
Breivik et al., 2006 [81] | Tianeptine | Tianeptine inhibits bone loss |
Breivik et al., 2006 [82] | Tianeptine | Tianeptine inhibits bone loss |
Muniz et al., 2018 [83] | Fluoxetine, Tianeptine and Venlafaxine | Only Venlafaxine study was not to able to find any significant alveolar bone loss reduction, while others showed positive effects |
Adequate Sequence Generated | Allocation Concealment | Blinding | Incomplete Outcome Data | Registration Outcome Data | |
---|---|---|---|---|---|
Hakam et al., 2022 [66] | |||||
Bey et al., 2020 [67] | |||||
Majeed et al., 2024 [68] | |||||
Hasan et al., 2019 [70] | |||||
Hassan et al., 2022 [71] | |||||
Branco-de-Almeida et al., 2020 [72] | |||||
Li et al., 2022 [73] | |||||
Yamawaki et al., 2022 [74] | |||||
Bhatia et al., 2018 [75] | |||||
Carvalho et al., 2010 [76] | |||||
Aguiar et al., 2013 [77] | |||||
Bhatia et al., 2015 [78] | |||||
Branco-de-Almeida et al., 2012 [79] | |||||
Regueira et al., 2017 [80] | |||||
Breivik et al., 2006 [81] | |||||
Breivik et al., 2006 [82] | |||||
Muniz et al., 2018 [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taccardi, D.; Chiesa, A.; Maiorani, C.; Pardo, A.; Lombardo, G.; Scribante, A.; Sabatini, S.; Butera, A. Periodontitis and Depressive Disorders: The Effects of Antidepressant Drugs on the Periodontium in Clinical and Preclinical Models: A Narrative Review. J. Clin. Med. 2024, 13, 4524. https://doi.org/10.3390/jcm13154524
Taccardi D, Chiesa A, Maiorani C, Pardo A, Lombardo G, Scribante A, Sabatini S, Butera A. Periodontitis and Depressive Disorders: The Effects of Antidepressant Drugs on the Periodontium in Clinical and Preclinical Models: A Narrative Review. Journal of Clinical Medicine. 2024; 13(15):4524. https://doi.org/10.3390/jcm13154524
Chicago/Turabian StyleTaccardi, Damiano, Alessandro Chiesa, Carolina Maiorani, Alessia Pardo, Giorgio Lombardo, Andrea Scribante, Silvia Sabatini, and Andrea Butera. 2024. "Periodontitis and Depressive Disorders: The Effects of Antidepressant Drugs on the Periodontium in Clinical and Preclinical Models: A Narrative Review" Journal of Clinical Medicine 13, no. 15: 4524. https://doi.org/10.3390/jcm13154524
APA StyleTaccardi, D., Chiesa, A., Maiorani, C., Pardo, A., Lombardo, G., Scribante, A., Sabatini, S., & Butera, A. (2024). Periodontitis and Depressive Disorders: The Effects of Antidepressant Drugs on the Periodontium in Clinical and Preclinical Models: A Narrative Review. Journal of Clinical Medicine, 13(15), 4524. https://doi.org/10.3390/jcm13154524