Effects of Angiotensin-Converting Enzyme Inhibition on the Recurrence and Internal Structure of Chronic Subdural Hematomas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Treatment Algorithm
2.3. Radiological Evaluation
2.4. Prior Treatment with ACE Inhibitors and Outcomes
2.5. Statistical Analysis
3. Results
Pooled Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | Angiotensin-converting enzyme |
CI | Confidence interval |
cSDH | Chronic subdural hematoma |
CT | Computed tomography |
GOS | Glasgow outcome scale |
mm | Millimeter |
mL | Milliliter |
n/a | Not available |
NOAC | New oral anticoagulants |
OR | Odds ratio |
Q1 to Q3 | First quartile to third quartile |
SD | Standard deviation |
VEGF | Vascular endothelial growth factor |
References
- El Rahal, A.; Beck, J.; Ahlborn, P.; Bernasconi, C.; Marbacher, S.; Wanderer, S.; Burkhardt, J.K.; Daniel, R.T.; Ferrari, A.; Hausmann, O.; et al. Incidence, therapy, and outcome in the management of chronic subdural hematoma in Switzerland: A population-based multicenter cohort study. Front. Neurol. 2023, 14, 1206996. [Google Scholar] [CrossRef] [PubMed]
- Hamou, H.A.; Clusmann, H.; Schulz, J.B.; Wiesmann, M.; Altiok, E.; Höllig, A. Chronic Subdural Hematoma. Dtsch. Arztebl. Int. 2022, 119, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Nouri, A.; Gondar, R.; Schaller, K.; Meling, T. Chronic Subdural Hematoma (cSDH): A review of the current state of the art. Brain Spine 2021, 1, 100300. [Google Scholar] [CrossRef] [PubMed]
- Adhiyaman, V.; Chattopadhyay, I.; Irshad, F.; Curran, D.; Abraham, S. Increasing incidence of chronic subdural haematoma in the elderly. QJM 2017, 110, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Edlmann, E.; Giorgi-Coll, S.; Whitfield, P.C.; Carpenter, K.L.H.; Hutchinson, P.J. Pathophysiology of chronic subdural haematoma: Inflammation, angiogenesis and implications for pharmacotherapy. J. Neuroinflamm. 2017, 14, 108. [Google Scholar] [CrossRef] [PubMed]
- Holl, D.C.; Volovici, V.; Dirven, C.M.F.; Peul, W.C.; van Kooten, F.; Jellema, K.; van der Gaag, N.A.; Miah, I.P.; Kho, K.H.; den Hertog, H.M.; et al. Pathophysiology and Nonsurgical Treatment of Chronic Subdural Hematoma: From Past to Present to Future. World Neurosurg. 2018, 116, 402–411.e402. [Google Scholar] [CrossRef] [PubMed]
- Santarius, T.; Kirkpatrick, P.J.; Ganesan, D.; Chia, H.L.; Jalloh, I.; Smielewski, P.; Richards, H.K.; Marcus, H.; Parker, R.A.; Price, S.J.; et al. Use of drains versus no drains after burr-hole evacuation of chronic subdural haematoma: A randomised controlled trial. Lancet 2009, 374, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Weigel, R.; Hohenstein, A.; Schlickum, L.; Weiss, C.; Schilling, L. Angiotensin converting enzyme inhibition for arterial hypertension reduces the risk of recurrence in patients with chronic subdural hematoma possibly by an antiangiogenic mechanism. Neurosurgery 2007, 61, 788–792; discussion 792–783. [Google Scholar] [CrossRef] [PubMed]
- Neidert, M.C.; Schmidt, T.; Mitova, T.; Fierstra, J.; Bellut, D.; Regli, L.; Burkhardt, J.K.; Bozinov, O. Preoperative angiotensin converting enzyme inhibitor usage in patients with chronic subdural hematoma: Associations with initial presentation and clinical outcome. J. Clin. Neurosci. 2016, 28, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Bartek, J., Jr.; Sjåvik, K.; Schaible, S.; Gulati, S.; Solheim, O.; Förander, P.; Jakola, A.S. The Role of Angiotensin-Converting Enzyme Inhibitors in Patients with Chronic Subdural Hematoma: A Scandinavian Population-Based Multicenter Study. World Neurosurg. 2018, 113, e555–e560. [Google Scholar] [CrossRef]
- Hamou, H.; Alzaiyani, M.; Pjontek, R.; Kremer, B.; Albanna, W.; Ridwan, H.; Clusmann, H.; Hoellig, A.; Veldeman, M. Risk factors of recurrence in chronic subdural hematoma and a proposed extended classification of internal architecture as a predictor of recurrence. Neurosurg. Rev. 2022, 45, 2777–2786. [Google Scholar] [CrossRef] [PubMed]
- Hamou, H.; Alzaiyani, M.; Rossmann, T.; Pjontek, R.; Kremer, B.; Zaytoun, H.; Ridwan, H.; Clusmann, H.; Hoellig, A.; Veldeman, M. Seizure after surgical treatment of chronic subdural hematoma-Associated factors and effect on outcome. Front. Neurol. 2022, 13, 977329. [Google Scholar] [CrossRef] [PubMed]
- Bursac, Z.; Gauss, C.H.; Williams, D.K.; Hosmer, D.W. Purposeful selection of variables in logistic regression. Source Code Biol. Med. 2008, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, F.R.; Munthe, S.; Søe, M.; Halle, B. Perindopril and residual chronic subdural hematoma volumes six weeks after burr hole surgery: A randomized trial. Clin. Neurol. Neurosurg. 2014, 123, 4–8. [Google Scholar] [CrossRef]
- Zhu, F.; Wang, H.; Li, W.; Han, S.; Yuan, J.; Zhang, C.; Li, Z.; Fan, G.; Liu, X.; Nie, M.; et al. Factors correlated with the postoperative recurrence of chronic subdural hematoma: An umbrella study of systematic reviews and meta-analyses. EClinicalMedicine 2022, 43, 101234. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, P.J.; Edlmann, E.; Bulters, D.; Zolnourian, A.; Holton, P.; Suttner, N.; Agyemang, K.; Thomson, S.; Anderson, I.A.; Al-Tamimi, Y.Z.; et al. Trial of Dexamethasone for Chronic Subdural Hematoma. N. Engl. J. Med. 2020, 383, 2616–2627. [Google Scholar] [CrossRef]
- Takahashi, H.; Shibuya, M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin. Sci. 2005, 109, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, S.; Anand, V.; Roy, S. Vascular endothelial growth factor signaling in hypoxia and inflammation. J. Neuroimmune Pharmacol. 2014, 9, 142–160. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cox, S.R.; Morita, T.; Kourembanas, S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ. Res. 1995, 77, 638–643. [Google Scholar] [CrossRef]
- Bates, D.O. Vascular endothelial growth factors and vascular permeability. Cardiovasc. Res. 2010, 87, 262–271. [Google Scholar] [CrossRef]
- Shahidatul-Adha, M.; Zunaina, E.; Aini-Amalina, M.N. Evaluation of vascular endothelial growth factor (VEGF) level in the tears and serum of age-related macular degeneration patients. Sci. Rep. 2022, 12, 4423. [Google Scholar] [CrossRef] [PubMed]
- Hicklin, D.J.; Ellis, L.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 2005, 23, 1011–1027. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.; Bailey, S. CADTH Health Technology Review. In Anti–Vascular Endothelial Growth Factor Drugs for Age-Related Macular Degeneration: CADTH Health Technology Review; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2023. [Google Scholar]
- Hogeboom van Buggenum, I.M.; Polak, B.C.; Reichert-Thoen, J.W.; de Vries-Knoppert, W.A.; van Hinsbergh, V.W.; Tangelder, G.J. Angiotensin converting enzyme inhibiting therapy is associated with lower vitreous vascular endothelial growth factor concentrations in patients with proliferative diabetic retinopathy. Diabetologia 2002, 45, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Weigel, R.; Hohenstein, A.; Schilling, L. Vascular endothelial growth factor concentration in chronic subdural hematoma fluid is related to computed tomography appearance and exudation rate. J. Neurotrauma 2014, 31, 670–673. [Google Scholar] [CrossRef] [PubMed]
- Hohenstein, A.; Erber, R.; Schilling, L.; Weigel, R. Increased mRNA expression of VEGF within the hematoma and imbalance of angiopoietin-1 and -2 mRNA within the neomembranes of chronic subdural hematoma. J. Neurotrauma 2005, 22, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Takei, J.; Tanaka, T.; Yamamoto, Y.; Hatano, K.; Ichinose, D.; Maruyama, F.; Tochigi, S.; Hasegawa, Y.; Murayama, Y. Significantly high concentrations of vascular endothelial growth factor in chronic subdural hematoma with trabecular formation. Clin. Neurol. Neurosurg. 2021, 202, 106458. [Google Scholar] [CrossRef]
- Ebrahimian, T.G.; Tamarat, R.; Clergue, M.; Duriez, M.; Levy, B.I.; Silvestre, J.-S. Dual Effect of Angiotensin-Converting Enzyme Inhibition on Angiogenesis in Type 1 Diabetic Mice. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 65–70. [Google Scholar] [CrossRef]
Demographics—Patient Characteristics | All (n = 398) | No ACE Inhibitor (n = 256) | ACE Inhibitor (n = 142) | p-Value |
---|---|---|---|---|
Age—mean ± SD | 74.9 ± 77.9 | 73.8 ± 12.6 | 77.1 ± 11.2 | 0.008 |
Sex—female (%)/male (%) | 139 (34.9)/259 (65.1) | 101 (39.5)/155 (60.5) | 38 (26.8)/104 (73.2) | 0.011 |
Initial presentation | ||||
Initial GCS—median [Q1 to Q3] | 15 [14 to 15] | 15 [15 to 15] | 15 [14 to 15] | 0.409 |
Markwalder grading—median [Q1 to Q3] | 2 [1 to 2] | 2 [1 to 2] | 2 [1 to 2] | 0.297 |
Documented trauma—no. (%) | 274 (68.8) | 177 (69.1) | 97 (68.3) | 0.864 |
Preoperative deficit—no. (%) | 366 (92.6) | 233 (92.5) | 133 (93.7) | 0.656 |
Phatic disorder | 91 (22.9) | 56 (21.9) | 35 (24.6) | 0.583 |
Paresis | 205 (51.5) | 125 (48.8) | 80 (56.3) | 0.199 |
Gait disturbance | 163 (41.0) | 102 (39.8) | 61 (43.0) | 0.654 |
Personality changes/confusion | 20 (5.0) | 16 (6.3) | 4 (2.8) | 0.125 |
Comorbidity—no. (%) | ||||
Hypertension | 214 (53.8) | 72 (28.1) | 142 (100) | <0.001 |
Atrial fibrillation | 99 (24.9) | 60 (23.4) | 39 (27.5) | 0.373 |
Coronary arterial disease | 134 (33.7) | 72 (28.1) | 62 (43.7) | 0.002 |
Diabetes | 76 (19.1) | 43 (16.8) | 33 (23.2) | 0.117 |
Cancerous disease | 62 (15.6) | 44 (17.2) | 18 (12.7) | 0.234 |
Alcohol abuse | 20 (5.0) | 13 (5.1) | 7 (4.9) | 0.948 |
Prior Medication—no. (%) | ||||
Antithrombotics (all) | 199 (50.0) | 109 (42.6) | 90 (63.4) | <0.001 |
Antiplatelet | 112 (28.2) | 62 (24.2) | 50 (35.5) | 0.017 |
Anticoagulants | 54 (13.6) | 26 (10.2) | 28 (20.0) | 0.060 |
Of which NOAC | 20 (5.1) | 12 (4.7) | 8 (5.8) | 0.638 |
Coagulation tests | ||||
Preoperative PTT (s) | 29.5 ± 13.9 | 27.8 ± 17.0 | 29.1 ± 4.4 | 0.621 |
Preoperative INR | 1.4 ± 4.6 | 1.2 ± 0.6 | 1.9 ± 7.6 | 0.138 |
Preoperative platelet count (/nl) | 241.7 ± 87.0 | 242.2 ± 83.4 | 240.0 ± 93.3 | 0.876 |
Hematoma Characteristics and Outcome | All (n = 398) | No ACE Inhibitor (n = 256) | ACE Inhibitor (n = 142) | p-Value |
---|---|---|---|---|
Hematoma imaging characteristics | ||||
Left side—no. (%) | 133 (37.5) | 82 (35.7) | 51 (40.8) | 0.598 |
Bilateral—no. (%) | 97 (24.4) | 61 (23.8) | 36 (25.4) | 0.734 |
Width (mm)—mean ± SD | 21.5 ± 6.1 | 21.3 ± 5.8 | 21.7 ± 6.6 | 0.433 |
Length (mm)—mean ± SD | 121.9 ± 48.2 | 120.9 ± 58.1 | 123.9 ± 20.5 | 0.553 |
Volume (mL)—mean ± SD | 150.1 ± 118.3 | 146.2 ± 137.5 | 157.0 ± 71.7 | 0.386 |
Midline shift—no. (%) | 274 (68.8) | 175 (68.4) | 99 (69.7) | 0.738 |
MLS (n = 274) (mm)—mean ± SD | 9.3 ± 4.2 | 9.1 ± 4.2 | 9.6 ± 4.1 | 0.276 |
Internal architecture—no. (%) | 0.730 | |||
Homogenous hypodense | 81 (20.4) | 51 (19.9) | 30 (21.1) | |
Homogenous isodense | 86 (21.6) | 62 (24.2) | 24 (16.9) | |
Homogenous hyperdense | 22 (5.5) | 16 (6.3) | 6 (4.2) | |
Sedimented | 27 (6.8) | 16 (6.3) | 11 (7.7) | |
Laminar | 51 (12.8) | 32 (12.5) | 19 (13.4) | |
Bridging | 38 (9.5) | 22 (8.6) | 16 (11.3) | |
Trabecular | 67 (16.8) | 41 (16.0) | 26 (18.3) | |
Subacute | 26 (6.5) | 16 (6.3) | 10 (7.0) | |
Membranous hematoma | 152 (38.2) | 93 (36.3) | 59 (41.5) | 0.304 |
Surgical treatment—no. (%) | 0.153 | |||
Burr hole | 270 (67.8) | 169 (66.0) | 101 (71.1) | |
Twist drill | 117 (29.4) | 82 (32.0) | 35 (24.6) | |
Bone flap | 11 (2.8) | 5 (2.0) | 6 (4.2) | |
Postoperative outcome | ||||
GOS—last clinical check-up—no. (%) | 0.075 | |||
Good recovery | 290 (73.6) | 196 (76.9) | 94 (67.6) | |
Moderate disability | 54 (13.7) | 32 (12.5) | 22 (15.8) | |
Severe disability | 29 (7.4) | 13 (5.1) | 16 (11.5) | |
Vegetative state | 3 (0.8) | 1 (0.4) | 2 (1.4) | |
Dead | 18 (4.6) | 13 (5.1) | 5 (3.6) | |
Missing outcome | 4 (1.0) | n/a | n/a | |
Favorable outcome | 345 (87.8) | 227 (89.4) | 118 (84.9) | 0.195 |
Length of follow-up (days)—median [Q1 to Q3] | 82.5 [37 to 161] | 82 [38 to 158] | 86 [33 to 167] | 0.982 |
Recurrence—no. (%) | 120 (30.2) | 71 (27.7) | 49 (34.5) | 0.158 |
Contribution to Recurrence | All (n = 398) | No Recurrence (n = 278) | Recurrence (n = 120) | Univariate p-Value | Adjusted Odds Ratio | 95% Confidence Interval | Multivariate p-Value § |
---|---|---|---|---|---|---|---|
Patient characteristics | |||||||
Age—mean ± SD | 74.9 ± 77.9 | 75.3 ± 12.3 | 74.0 ± 11.1 | 0.311 | |||
Sex—female (%)/male (%) | 139 (34.9)/259 (65.1) | 98 (35.3)/180 (64.7) | 41 (34.2)/79 (65.8) | 0.835 | |||
Documented trauma—no. (%) | 274 (68.8) | 196 (70.5) | 78 (65.0) | 0.277 | |||
Preoperative deficit—no. (%) | 366 (92.9) | 257 (93.5) | 109 (91.6) | 0.511 | |||
Alcohol abuse | 20 (5.0) | 13 (4.7) | 7 (5.8) | 0.628 | |||
Antitrombotics (all) | 199 (50.0) | 150 (54.0) | 49 (40.8) | 0.016 † | 0.571 | 0.348 to 0.938 | 0.027 |
Volume (mL)—mean ± SD | 150.1 ± 118.3 | 146.1 ± 134.3 | 159.2 ± 67.8 | 0.345 | |||
Hematoma characteristics and treatment | |||||||
Internal Architecture—no. (%) * | <0.001 † | ||||||
Homogenous hypodense | 81 (20.4) | 45 (55.6) | 36 (44.4) | 11.739 | 2.570 to 53.612 | 0.001 | |
Homogenous isodense | 86 (21.6) | 52 (60.5) | 34 (39.5) | 12.204 | 2.669 to 55.798 | 0.001 | |
Homogenous hyperdense | 22 (5.5) | 14 (63.6) | 8 (36.4) | 9.472 | 1.718 to 52.217 | 0.010 | |
Sedimented | 27 (6.8) | 13 (48.1) | 14 (51.9) | 17.415 ‡ | 3.353 to 90.459 | <0.001 | |
Laminar | 51 (12.8) | 43 (84.3) | 8 (15.7) | 3.322 | 0.645 to 17.118 | 0.151 | |
Bridging | 38 (9.5) | 36 (94.7) | 2 (5.3) | ‡ | |||
Trabecular | 67 (16.8) | 52 (77.6) | 15 (22.4) | 5.896 | 1.235 to 28.152 | 0.026 | |
Subacute | 26 (6.5) | 23 (88.5) | 3 (11.5) | 2.636 | 0.379 to 18.334 | 0.327 | |
Surgical treatment—no. (%) * | <0.001 † | ||||||
Burr hole | 270 (67.8) | 211 (78.1) | 59 (21.9) | 0.412 | 0.074 to 2.303 | 0.313 | |
Twist drill | 117 (29.4) | 58 (49.6) | 59 (50.4) | 1.233 | 0.227 to 6.695 | 0.808 | |
Bone flap | 11 (2.8) | 9 (81.8) | 2 (18.2) | ‡ | |||
ACE Inhibitor use—no. (%) | 142 (35.7) | 93 (33.5) | 49 (40.8) | 0.159 † | 2.026 | 1.214 to 3.384 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veldeman, M.; Ridwan, H.; Alzaiyani, M.; Pjontek, R.; Kremer, B.; Hoellig, A.; Clusmann, H.; Hamou, H. Effects of Angiotensin-Converting Enzyme Inhibition on the Recurrence and Internal Structure of Chronic Subdural Hematomas. J. Clin. Med. 2024, 13, 4591. https://doi.org/10.3390/jcm13164591
Veldeman M, Ridwan H, Alzaiyani M, Pjontek R, Kremer B, Hoellig A, Clusmann H, Hamou H. Effects of Angiotensin-Converting Enzyme Inhibition on the Recurrence and Internal Structure of Chronic Subdural Hematomas. Journal of Clinical Medicine. 2024; 13(16):4591. https://doi.org/10.3390/jcm13164591
Chicago/Turabian StyleVeldeman, Michael, Hani Ridwan, Mohamed Alzaiyani, Rastislav Pjontek, Benedikt Kremer, Anke Hoellig, Hans Clusmann, and Hussam Hamou. 2024. "Effects of Angiotensin-Converting Enzyme Inhibition on the Recurrence and Internal Structure of Chronic Subdural Hematomas" Journal of Clinical Medicine 13, no. 16: 4591. https://doi.org/10.3390/jcm13164591
APA StyleVeldeman, M., Ridwan, H., Alzaiyani, M., Pjontek, R., Kremer, B., Hoellig, A., Clusmann, H., & Hamou, H. (2024). Effects of Angiotensin-Converting Enzyme Inhibition on the Recurrence and Internal Structure of Chronic Subdural Hematomas. Journal of Clinical Medicine, 13(16), 4591. https://doi.org/10.3390/jcm13164591