Advances in Diagnostic and Interventional Catheterization in Adults with Fontan Circulation
Abstract
:1. Introduction
2. Diagnostic Procedures
2.1. Hemodynamic Assessment at Rest
2.1.1. Invasive Pressure Assessment
2.1.2. Cardiac Output Flow Assessments
2.1.3. Pulmonary Vascular Resistance
2.2. Fluid Challenge, Passive Leg-Lifting and Exercise Test
2.3. Angiography Studies
2.4. Intrapulmonary Shunts
3. Advances in Interventional Catheterization
3.1. Management of Fontan Pathway Obstructions
3.2. Management of Fenestrations
3.3. Management of Collaterals
3.4. Management of Lymphatic Circulation
3.5. Other Interventional Techniques
3.5.1. Transcatheter Edge-to-Edge Atrioventricular Valve Repair
3.5.2. Residual Ventriculo-Pulmonary Communication Transcatheter Closure
3.5.3. Thrombectomy in Acute Pulmonary Thromboembolic Disease
3.5.4. Aortic Coarctation Repair
3.5.5. Management of Intrapulmonary Shunt
3.5.6. Percutaneous Fontan Completion
4. Gaps in Knowledge and Future Directions
4.1. Diagnostic Catheterization
4.2. Interventional Catheterization
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CI | Cardiac index |
CO | Cardiac output |
CPET | Cardiopulmonary exercise test |
FALD | Fontan-associated liver disease |
HVPG | Hepatic venous pressure gradient |
IH-DCMRL | Intrahepatic dynamic contrast magnetic resonance lymphangiography |
IN-DCMRL | Intranodal dynamic contrast magnetic resonance lymphangiography |
IVC-SVC gradient | Inferior vena cava—superior vena cava gradient |
MAPCAs | Major aortopulmonary collateral arteries |
MR | Magnetic resonance |
PAVM | Pulmonary arteriovenous malformations |
PAWP | Pulmonary artery wedge pressure |
PVR | Pulmonary vascular resistance |
PVRI | Indexed pulmonary vascular resistance |
SPVCs | Systemic-to-pulmonary venous collaterals |
TEER | Transcatheter edge-to-edge repair |
TPG | Transpulmonary gradient |
VO2 | Oxygen consumption |
References
- Fontan, F.; Baudet, E. Surgical repair of tricuspid atresia. Thorax 1971, 26, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Rychik, J.; Atz, A.M.; Celermajer, D.S.; Deal, B.J.; Gatzoulis, M.A.; Gewillig, M.H.; Hsia, T.-Y.; Hsu, D.T.; Kovacs, A.H.; McCrindle, B.W.; et al. Evaluation and Management of the Child and Adult with Fontan Circulation: A Scientific Statement from the American Heart Association. Circulation 2019, 140, E234–E284. [Google Scholar] [CrossRef] [PubMed]
- Dennis, M.; Zannino, D.; du Plessis, K.; Bullock, A.; Disney, P.J.; Radford, D.J.; Hornung, T.; Grigg, L.; Cordina, R.; D’udekem, Y.; et al. Clinical Outcomes in Adolescents and Adults after the Fontan Procedure. J. Am. Coll. Cardiol. 2018, 71, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Akintoye, E.; Miranda, W.R.; Veldtman, G.R.; Connolly, H.M.; Egbe, A.C. National trends in Fontan operation and in-hospital outcomes in the USA. Heart 2019, 105, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Gewillig, M.; Brown, S.C. The Fontan circulation after 45 years: Update in physiology. Heart 2016, 102, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Egbe, A.C.; Reddy, Y.N.; Khan, A.R.; Al-Otaibi, M.; Akintoye, E.; Obokata, M.; Borlaug, B.A. Venous congestion and pulmonary vascular function in Fontan circulation: Implications for prognosis and treatment. Int. J. Cardiol. 2018, 271, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Rychik, J.; Goldberg, D.; Rand, E.; Semeao, E.; Russo, P.; Dori, Y.; Dodds, K. End-organ consequences of the Fontan operation: Liver fibrosis, protein-losing enteropathy and plastic bronchitis. Cardiol. Young- 2013, 23, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, U.K.; George, N.; Sankhyan, L.K.; Pradeep, D.; Chittimuri, C.; Chauhan, A.; Pandey, N.N.; Goja, S. Fontan failure: Phenotypes, evaluation, management, and future directions. Cardiol. Young 2022, 32, 1554–1563. [Google Scholar] [CrossRef]
- Franco, E.; Domingo, E.J.B.; del Val, V.A.; Silva, L.G.G.; Marín, M.J.d.C.; Ruiz, A.F.; Villagrá, F.; Aguado, F.G.-L. Percutaneous interventions in Fontan circulation. IJC Heart Vasc. 2015, 8, 138–146. [Google Scholar] [CrossRef]
- Baumgartner, H.; De Backer, J.; Babu-Narayan, S.V.; Budts, W.; Chessa, M.; Diller, G.-P.; Lung, B.; Kluin, J.; Lang, I.M.; Meijboom, F.; et al. 2020 ESC Guidelines for the Management of Adult Congenital Heart Disease. Eur. Heart J. 2021, 42, 563–645. [Google Scholar] [CrossRef]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef]
- Ohuchi, H.; Ono, S.; Tanabe, Y.; Fujimoto, K.; Yagi, H.; Sakaguchi, H.; Miyazaki, A.; Yamada, O. Long-Term Serial Aerobic Exercise Capacity and Hemodynamic Properties in Clinically and Hemodynamically Good, “Excellent”, Fontan Survivors. Circ. J. 2012, 76, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Navaratnam, D.; Fitzsimmons, S.; Grocott, M.; Rossiter, H.B.; Emmanuel, Y.; Diller, G.-P.; Gordon-Walker, T.; Jack, S.; Sheron, N.; Pappachan, J.; et al. Exercise-Induced Systemic Venous Hypertension in the Fontan Circulation. Am. J. Cardiol. 2016, 117, 1667–1671. [Google Scholar] [CrossRef]
- Miranda, W.R.; Hagler, D.J.; Connolly, H.M.; Kamath, P.S.; Egbe, A.C. Invasive Hemodynamics in Asymptomatic Adult Fontan Patients and According to Different Clinical Phenotypes. J. Invasive Cardiol. 2022, 34, E374–E379. [Google Scholar] [CrossRef]
- Miranda, W.R.; Jain, C.C.; Burchill, L.J.; Cabalka, A.K.; Hagler, D.J.; Francois, C.J.; Connolly, H.M.; Egbe, A.C. Correlation Between Fontan Pathway Diameter and Inferior-Superior Vena Cava Gradients in Adults Undergoing Exercise Catheterization. Circ. Cardiovasc. Interv. 2023, 16, 303–305. [Google Scholar] [CrossRef]
- Alsaied, T.; Rathod, R.H.; Aboulhosn, J.A.; Budts, W.; Anderson, J.B.; Baumgartner, H.; Brown, D.W.; Cordina, R.; D’Udekem, Y.; Ginde, S.; et al. Reaching consensus for unified medical language in Fontan care. ESC Heart Fail. 2021, 8, 3894–3905. [Google Scholar] [CrossRef] [PubMed]
- Hansmann, G.; Koestenberger, M.; Alastalo, T.-P.; Apitz, C.; Austin, E.D.; Bonnet, D.; Budts, W.; D’Alto, M.; Gatzoulis, M.A.; Hasan, B.S.; et al. 2019 updated consensus statement on the diagnosis and treatment of pediatric pulmonary hypertension: The European Pediatric Pulmonary Vascular Disease Network (EPPVDN), endorsed by AEPC, ESPR and ISHLT. J. Heart Lung Transplant. 2019, 38, 879–901. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Uebing, A.; Hansen, J.H. Pulmonary vascular disease in Fontan circulation—Is there a rationale for pulmonary vasodilator therapies? Cardiovasc. Diagn. Ther. 2021, 11, 1111–1121. [Google Scholar] [CrossRef]
- Porras, D.; Brown, D.W.; Marshall, A.C.; del Nido, P.; Bacha, E.A.; McElhinney, D.B. Factors Associated with Subsequent Arch Reintervention after Initial Balloon Aortoplasty in Patients with Norwood Procedure and Arch Obstruction. J. Am. Coll. Cardiol. 2011, 58, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Greenway, S.C.; Crossland, D.S.; Hudson, M.; Martin, S.R.; Myers, R.P.; Prieur, T.; Hasan, A.; Kirk, R. Fontan-associated liver disease: Implications for heart transplantation. J. Heart Lung Transplant. 2016, 35, 26–33. [Google Scholar] [CrossRef]
- Krook, H. Estimation of Portal Venous Pressure by Occlusive Hepatic Vein Catheterization. Scand. J. Clin. Lab. Investig. 1953, 5, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Vorobioff, J.; Groszmann, R.; Picabea, E.; Gamen, M.; Villavicencio, R.; Bordato, J.; Morel, I.; Audano, M.; Tanno, H.; Lerner, E.; et al. Prognostic value of hepatic venous pressure gradient measurements in alcoholic cirrhosis: A 10-year prospective study. Gastroenterology 1996, 111, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, C.; Bañares, R.; Rincón, D.; Catalina, M.-V.; Iacono, O.L.; Salcedo, M.; Clemente, G.; Núñez, O.; Matilla, A.; Molinero, L.-M. Influence of hepatic venous pressure gradient on the prediction of survival of patients with cirrhosis in the MELD Era. Hepatology 2005, 42, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Egbe, A.C.; Miranda, W.R.; Veldtman, G.R.; Graham, R.P.; Kamath, P.S. Hepatic Venous Pressure Gradient in Fontan Physiology Has Limited Diagnostic and Prognostic Significance. CJC Open 2020, 2, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Stumper, O.; Penford, G. Catheter hemodynamic assessment of the univentricular circulation. Ann. Pediatr. Cardiol. 2017, 10, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Claessen, G.; La Gerche, A.; Van De Bruaene, A.; Claeys, M.; Willems, R.; Dymarkowski, S.; Bogaert, J.; Claus, P.; Budts, W.; Heidbuchel, H.; et al. Heart Rate Reserve in Fontan Patients: Chronotropic Incompetence or Hemodynamic Limitation? J. Am. Heart Assoc. 2019, 8, e012008. [Google Scholar] [CrossRef] [PubMed]
- Miranda, W.R.; Borlaug, B.A.; Hagler, D.J.; Connolly, H.M.; Egbe, A.C. Haemodynamic profiles in adult Fontan patients: Associated haemodynamics and prognosis. Eur. J. Heart Fail. 2019, 21, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Ohuchi, H.; Miyazaki, A.; Negishi, J.; Hayama, Y.; Nakai, M.; Nishimura, K.; Ichikawa, H.; Shiraishi, I.; Yamada, O. Hemodynamic determinants of mortality after Fontan operation. Am. Heart J. 2017, 189, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Groszmann, R.J. Hyperdynamic state in chronic liver diseases. J. Hepatol. 1993, 17, S38–S40. [Google Scholar] [CrossRef]
- Fick, A. Über die Messung des Blutquantums in der Herzventrikeln. Sitzungsberichte der physikalisch-medicinischen Gesellschaftzu Würzburg. 1870; Volume 2, pp. XVI–XVII. Available online: https://hdl.handle.net/2027/mdp.39015076673493?urlappend=%3Bseq=628 (accessed on 20 June 2024).
- Wolf, A.; Pollman, M.J.; Trindade, P.T.; Fowler, M.B.; Alderman, E.L. Use of assumed versus measured oxygen consumption for the determination of cardiac output using the Fick principle. Catheter. Cardiovasc. Diagn. 1998, 43, 372–380. [Google Scholar] [CrossRef]
- LaFarge, C.G.; Miettinen, O.S. The estimation of oxygen consumption. Cardiovasc. Res. 1970, 4, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.; D’Ambrosio, P.; Verrall, C.E.; Attard, C.; Briody, J.; D’Souza, M.; Singh, M.F.; Ayer, J.; D’Udekem, Y.; Twigg, S.; et al. Body Composition in Young Adults Living with a Fontan Circulation: The Myopenic Profile. J. Am. Heart Assoc. 2020, 9, e015639. [Google Scholar] [CrossRef] [PubMed]
- Miranda, W.R.; Aboulhosn, J.A.; Hagler, D.J. Catheterization in Adults with Congenital Heart Disease. JACC Cardiovasc. Interv. 2022, 15, 907–921. [Google Scholar] [CrossRef] [PubMed]
- Flamm, M.D.; Cohn, K.E.; Hancock, E.W. measurement of systemic cardiac output at rest and exercise in patients with atrial septal defect. Am. J. Cardiol. 1969, 23, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.H.; Qureshi, S.A.; Krasuski, R.A. Invasive Hemodynamic Evaluation of the Fontan Circulation: Current Day Practice and Limitations. Curr. Cardiol. Rep. 2022, 24, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, B.; Steendijk, P.; Ovroutski, S.; Lunze, K.; Rahmanzadeh, P.; Maarouf, N.; Ewert, P.; Berger, F.; Kuehne, T. Pulmonary Vascular Resistance, Collateral Flow, and Ventricular Function in Patients with a Fontan Circulation at Rest and During Dobutamine Stress. Circ. Cardiovasc. Imaging 2010, 3, 623–631. [Google Scholar] [CrossRef]
- Latus, H.; Hofmann, L.; Gummel, K.; Khalil, M.; Yerebakan, C.; Waschulzik, B.; Schranz, D.; Voges, I.; Jux, C.; Reich, B. Exercise-dependent changes in ventricular–arterial coupling and aortopulmonary collateral flow in Fontan patients: A real-time CMR study. Eur. Heart J. Cardiovasc. Imaging 2022, 24, 88–97. [Google Scholar] [CrossRef]
- Latus, H.; Lederle, A.; Khalil, M.; Kerst, G.; Schranz, D.; Apitz, C. Evaluation of pulmonary endothelial function in Fontan patients. J. Thorac. Cardiovasc. Surg. 2019, 158, 523–531.e1. [Google Scholar] [CrossRef]
- Ridderbos, F.-J.S.; Wolff, D.; Timmer, A.; van Melle, J.P.; Ebels, T.; Dickinson, M.G.; Timens, W.; Berger, R.M. Adverse pulmonary vascular remodeling in the Fontan circulation. J. Heart Lung Transplant. 2015, 34, 404–413. [Google Scholar] [CrossRef]
- Egbe, A.C.; Connolly, H.M.; Miranda, W.R.; Ammash, N.M.; Hagler, D.J.; Veldtman, G.R.; Borlaug, B.A. Hemodynamics of Fontan Failure: The Role of Pulmonary Vascular Disease. Circ. Heart Fail. 2017, 10, e004515. [Google Scholar] [CrossRef]
- Mitchell, M.B.; Campbell, D.N.; Ivy, D.; Boucek, M.M.; Sondheimer, H.M.; Pietra, B.; Das, B.B.; Coll, J.R. Evidence of pulmonary vascular disease after heart transplantation for Fontan circulation failure. J. Thorac. Cardiovasc. Surg. 2004, 128, 693–702. [Google Scholar] [CrossRef]
- Egbe, A.C.; Miranda, W.R.; Anderson, J.H.; Borlaug, B.A. Hemodynamic and Clinical Implications of Impaired Pulmonary Vascular Reserve in the Fontan Circulation. J. Am. Coll. Cardiol. 2020, 76, 2755–2763. [Google Scholar] [CrossRef]
- Miranda, W.R.; Jain, C.C.; Borlaug, B.A.; Connolly, H.M.; Burchill, L.J.; Van De Bruaene, A.; Egbe, A.C. Exercise catheterization in adults post-Fontan with normal and abnormal haemodynamic criteria: Insights into normal Fontan physiology. Eur. J. Heart Fail. 2024, 26, 314–323. [Google Scholar] [CrossRef]
- Robbins, I.M.; Hemnes, A.R.; Pugh, M.E.; Brittain, E.L.; Zhao, D.X.; Piana, R.N.; Fong, P.P.; Newman, J.H. High Prevalence of Occult Pulmonary Venous Hypertension Revealed by Fluid Challenge in Pulmonary Hypertension. Circ. Heart Fail. 2014, 7, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, B.A. Invasive Assessment of Pulmonary Hypertension: Time for a more fluid approach? Circ. Heart Fail. 2014, 7, 2–4. [Google Scholar] [CrossRef]
- Van de Bovenkamp, A.A.; Wijkstra, N.; Oosterveer, F.P.; Noordegraaf, A.V.; Bogaard, H.J.; van Rossum, A.C.; de Man, F.S.; Borlaug, B.A.; Handoko, M.L. The Value of Passive Leg Raise During Right Heart Catheterization in Diagnosing Heart Failure With Preserved Ejection Fraction. Circ. Heart Fail. 2022, 15, 321–330. [Google Scholar] [CrossRef]
- Averin, K.; Hirsch, R.; Seckeler, M.D.; Whiteside, W.; Beekman, R.H.; Goldstein, B.H. Diagnosis of occult diastolic dysfunction late after the Fontan procedure using a rapid volume expansion technique. Heart 2016, 102, 1109–1114. [Google Scholar] [CrossRef]
- Berry, N.C.; Manyoo, A.; Oldham, W.M.; Stephens, T.E.; Goldstein, R.H.; Waxman, A.B.; Tracy, J.A.; Leary, P.J.; Leopold, J.A.; Kinlay, S.; et al. Protocol for Exercise Hemodynamic Assessment: Performing an Invasive Cardiopulmonary Exercise Test in Clinical Practice. Pulm. Circ. 2015, 5, 610–618. [Google Scholar] [CrossRef]
- Miranda, W.R.; Borlaug, B.A.; Jain, C.C.; Anderson, J.H.; Hagler, D.J.; Connolly, H.M.; Egbe, A.C. Exercise-induced changes in pulmonary artery wedge pressure in adults post-Fontan versus heart failure with preserved ejection fraction and non-cardiac dyspnoea. Eur. J. Heart Fail. 2023, 25, 17–25. [Google Scholar] [CrossRef]
- Borlaug, B.A.; Nishimura, R.A.; Sorajja, P.; Lam, C.S.; Redfield, M.M. Exercise Hemodynamics Enhance Diagnosis of Early Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2010, 3, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Wernhart, S.; Goertz, A.; Hedderich, J.; Papathanasiou, M.; Hoffmann, J.; Rassaf, T.; Luedike, P. Diastolic exercise stress testing in heart failure with preserved ejection fraction: The DEST-HF study. Eur. J. Heart Fail. 2023, 25, 1768–1780. [Google Scholar] [CrossRef]
- Ciliberti, P.; Ciancarella, P.; Bruno, P.; Curione, D.; Bordonaro, V.; Lisignoli, V.; Panebianco, M.; Chinali, M.; Secinaro, A.; Galletti, L.; et al. Cardiac Imaging in Patients after Fontan Palliation: Which Test and When? Front. Pediatr. 2022, 10, 876742. [Google Scholar] [CrossRef]
- Ohuchi, H.; Mori, A.; Nakai, M.; Fujimoto, K.; Iwasa, T.; Sakaguchi, H.; Kurosaki, K.; Shiraishi, I. Pulmonary Arteriovenous Fistulae after Fontan Operation: Incidence, Clinical Characteristics, and Impact on All-Cause Mortality. Front. Pediatr. 2022, 10, 713219. [Google Scholar] [CrossRef]
- Jalal, Z.; Gewillig, M.; Boudjemline, Y.; Guérin, P.; Pilati, M.; Butera, G.; Malekzadeh-Milani, S.; Avesani, M.; Thambo, J.-B. Transcatheter interventions in patients with a Fontan circulation: Current practice and future developments. Front. Pediatr. 2022, 10, 965989. [Google Scholar] [CrossRef]
- Restrepo, M.; Tang, E.; Haggerty, C.M.; Khiabani, R.H.; Mirabella, L.; Bethel, J.; Valente, A.M.; Whitehead, K.K.; McElhinney, D.B.; Fogel, M.A.; et al. Energetic Implications of Vessel Growth and Flow Changes Over Time in Fontan Patients. Ann. Thorac. Surg. 2015, 99, 163–170. [Google Scholar] [CrossRef]
- Ovroutski, S.; Ewert, P.; Alexi-Meskishvili, V.; Hölscher, K.; Miera, O.; Peters, B.; Hetzer, R.; Berger, F. Absence of Pulmonary Artery Growth after Fontan Operation and Its Possible Impact on Late Outcome. Ann. Thorac. Surg. 2009, 87, 826–831. [Google Scholar] [CrossRef]
- Hauser, J.A.; Taylor, A.M.; Pandya, B. How to Image the Adult Patient With Fontan Circulation. Circ. Cardiovasc. Imaging 2017, 10, e004273. [Google Scholar] [CrossRef]
- Hagler, D.J.; Miranda, W.R.; Haggerty, B.J.; Anderson, J.H.; Johnson, J.N.; Cetta, F.; Said, S.M.; Taggart, N.W. Fate of the Fontan connection: Mechanisms of stenosis and management. Congenit. Heart Dis. 2019, 14, 571–581. [Google Scholar] [CrossRef]
- Noonan, P.; Kudumula, V.; Anderson, B.; Ramchandani, B.; Miller, P.; Dhillon, R.; Mehta, C.; Stumper, O. Stenting of the left pulmonary artery after palliation of hypoplastic left heart syndrome. Catheter. Cardiovasc. Interv. 2016, 88, 225–232. [Google Scholar] [CrossRef]
- Daley, M.; Buratto, E.; King, G.; Grigg, L.; Iyengar, A.; Alphonso, N.; Bullock, A.; Celermajer, D.S.; Ayer, J.; Robertson, T.; et al. Impact of Fontan Fenestration on Long-Term Outcomes: A Propensity Score-Matched Analysis. J. Am. Heart Assoc. 2022, 11, e026087. [Google Scholar] [CrossRef]
- Uhm, J.-S.; Kim, N.K.; Yu, H.T.; Yang, P.-S.; Kim, J.O.; Kim, T.-H.; Song, M.K.; Lee, S.-Y.; Joung, B.; Pak, H.-N.; et al. A stepwise approach to conduit puncture for electrophysiological procedures in patients with Fontan circulation. Eurospace 2017, 20, 1043–1049. [Google Scholar] [CrossRef]
- Nagatomo, Y.; Nagata, H.; Fukuoka, S.; Hirata, Y.; Yamamura, K.; Ohga, S. Usefulness of a Radiofrequency Transseptal Needle in the Second Puncture of Fontan Extracardiac Conduit. World J. Pediatr. Congenit. Heart Surg. 2022, 13, 106–108. [Google Scholar] [CrossRef]
- Casadonte, J.R.; Wax, D.F.; Gossett, J.G. Extracardiac Fontan fenestration using the SafeSept transseptal guidewire and snare-controlled diabolo-shaped covered-stent placement. Catheter. Cardiovasc. Interv. 2016, 87, 426–431. [Google Scholar] [CrossRef]
- Lehner, A.; Schulze-Neick, I.; Haas, N.A. Creation of a defined and stable Fontan fenestration with the new Occlutech Atrial Flow Regulator (AFR®). Cardiol. Young 2018, 28, 1062–1066. [Google Scholar] [CrossRef]
- McCrossan, B.; Walsh, K. Fontan fenestration closure with Amplatzer Duct Occluder II device. Catheter. Cardiovasc. Interv. 2015, 85, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Webb, M.K.; Hunter, L.E.; Kremer, T.R.; Huddleston, C.B.; Fiore, A.C.; Danon, S. Extracardiac Fontan Fenestration Device Closure with Amplatzer Vascular Plug II and Septal Occluder: Procedure Results and Medium-Term Follow-Up. Pediatr. Cardiol. 2020, 41, 703–708. [Google Scholar] [CrossRef]
- Devanagondi, R.; Leonard, G. Transcatheter Fontan Fenestration Closure: Sustained Improvements in Oxygen Saturation with Minimal Morbidity and Mortality. Pediatr. Cardiol. 2023, 44, 922–926. [Google Scholar] [CrossRef]
- Marini, D.; Boudjemline, Y.; Agnoletti, G. Closure of extracardiac Fontan fenestration by using the covered Cheatham Platinum stent. Catheter. Cardiovasc. Interv. 2007, 69, 1002–1006. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Sasaki, T.; Forbes, T.J.; Ross, R.D.; Kobayashi, D. Optimal criteria for transcatheter closure of Fontan fenestration: A single-center experience with a review of literature. Heart Vessel. 2021, 36, 1246–1255. [Google Scholar] [CrossRef] [PubMed]
- Triedman, J.K.; Bridges, N.D.; Mayer, J.E.; Lock, J.E. Prevalence and risk factors for aortopulmonary collateral vessels after Fontan and bidirectional Glenn procedures. J. Am. Coll. Cardiol. 1993, 22, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Lluri, G.; Levi, D.S.; Aboulhosn, J. Systemic to pulmonary venous collaterals in adults with single ventricle physiology after cavopulmonary palliation. Int. J. Cardiol. 2015, 189, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Spearman, A.D.; Ginde, S. Pulmonary Vascular Sequelae of Palliated Single Ventricle Circulation: Arteriovenous Malformations and Aortopulmonary Collaterals. J. Cardiovasc. Dev. Dis. 2022, 9, 309. [Google Scholar] [CrossRef] [PubMed]
- McElhinney, D.B.; Reddy, V.; Hanley, F.L.; Moore, P. Systemic Venous Collateral Channels Causing Desaturation after Bidirectional Cavopulmonary Anastomosis: Evaluation and Management. J. Am. Coll. Cardiol. 1997, 30, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Young, S.; Rostambeigi, N.; Golzarian, J. The Common but Complicated Tool: Review of Embolic Materials for the Interventional Radiologist. Semin. Interv. Radiol. 2021, 38, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Hematti, H.; Mehran, R.J. Anatomy of the Thoracic Duct. Thorac. Surg. Clin. 2011, 21, 229–238. [Google Scholar] [CrossRef]
- Witte, M.H.; Dumont, A.E.; Clauss, R.H.; Rader, B.; Levine, N.; Breed, E.S. Lymph Circulation in Congestive Heart Failure: Effect of external thoracic duct drainage. Circulation 1969, 39, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Dori, Y.; Smith, C.L. Lymphatic Disorders in Patients With Single Ventricle Heart Disease. Front. Pediatr. 2022, 10, 828107. [Google Scholar] [CrossRef] [PubMed]
- Dori, Y.; Keller, M.S.; Fogel, M.A.; Rome, J.J.; Whitehead, K.K.; Harris, M.A.; Itkin, M. MRI of Lymphatic Abnormalities after Functional Single-Ventricle Palliation Surgery. Am. J. Roentgenol. 2014, 203, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Dori, Y.; Keller, M.S.; Rychik, J.; Itkin, M. Successful Treatment of Plastic Bronchitis by Selective Lymphatic Embolization in a Fontan Patient. Pediatrics 2014, 134, e590–e595. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, R.; Hernandez, A.; Kavuk, S.; Annam, A.; Pimpalwar, S. Imaging the Central Conducting Lymphatics: Initial Experience with Dynamic MR Lymphangiography. Radiology 2015, 274, 871–878. [Google Scholar] [CrossRef]
- Biko, D.M.; Smith, C.L.; Otero, H.J.; Saul, D.; White, A.M.; DeWitt, A.; Glatz, A.C.; Piccoli, D.A.; Mamula, P.; Rome, J.J.; et al. Intrahepatic dynamic contrast MR lymphangiography: Initial experience with a new technique for the assessment of liver lymphatics. Eur. Radiol. 2019, 29, 5190–5196. [Google Scholar] [CrossRef] [PubMed]
- Lemley, B.A.; Biko, D.M.; Dewitt, A.G.; Glatz, A.C.; Goldberg, D.J.; Saravanan, M.; O’byrne, M.L.; Pinto, E.; Ravishankar, C.; Rome, J.J.; et al. Intrahepatic Dynamic Contrast-Enhanced Magnetic Resonance Lymphangiography: Potential Imaging Signature for Protein-Losing Enteropathy in Congenital Heart Disease. J. Am. Heart Assoc. 2021, 10, e021542. [Google Scholar] [CrossRef] [PubMed]
- Mejia, E.J.; Otero, H.J.; Smith, C.L.; Shipman, M.; Liu, M.; Pinto, E.; DeWitt, A.; Rome, J.J.; Dori, Y.; Biko, D.M. Use of Contrast-Enhanced Ultrasound to Determine Thoracic Duct Patency. J. Vasc. Interv. Radiol. 2020, 31, 1670–1674. [Google Scholar] [CrossRef] [PubMed]
- Dori, Y.; Keller, M.S.; Rome, J.J.; Gillespie, M.J.; Glatz, A.C.; Dodds, K.; Goldberg, D.J.; Goldfarb, S.; Rychik, J.; Itkin, M. Percutaneous Lymphatic Embolization of Abnormal Pulmonary Lymphatic Flow as Treatment of Plastic Bronchitis in Patients with Congenital Heart Disease. Circulation 2016, 133, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Maleux, G.; Storme, E.; Cools, B.; Heying, R.; Boshoff, D.; Louw, J.J.; Frerich, S.; Malekzadeh-Milanii, S.; Hubrechts, J.; Brown, S.C.; et al. Percutaneous embolization of lymphatic fistulae as treatment for protein-losing enteropathy and plastic bronchitis in patients with failing Fontan circulation. Catheter. Cardiovasc. Interv. 2019, 94, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.L.; Hoffman, T.M.; Dori, Y.; Rome, J.J. Decompression of the thoracic duct: A novel transcatheter approach. Catheter. Cardiovasc. Interv. 2020, 95, E56–E61. [Google Scholar] [CrossRef] [PubMed]
- King, G.; Ayer, J.; Celermajer, D.; Zentner, D.; Justo, R.; Disney, P.; Zannino, D.; D’udekem, Y. Atrioventricular Valve Failure in Fontan Palliation. J. Am. Coll. Cardiol. 2019, 73, 810–822. [Google Scholar] [CrossRef]
- Guerin, P.; Jalal, Z.; Le Ruz, R.; Cueff, C.; Hascoet, S.; Bouvaist, H.; Ladouceur, M.; Levy, F.; Hugues, N.; Malekzadeh-Milani, S.; et al. Percutaneous Edge-to-Edge Repair for Systemic Atrioventricular Valve Regurgitation in Patients with Congenital Heart Disease: The First Descriptive Cohort. J. Am. Heart Assoc. 2022, 11, e025628. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.P.; Gallotti, R.G.; Tran, E.; Perens, G.S.; Shannon, K.M. Ten-year outcomes of transcaval cardiac puncture for catheter ablation after extracardiac Fontan surgery. Heart Rhythm. 2020, 17, 1752–1758. [Google Scholar] [CrossRef]
- Haeffele, C.L.; Lui, G.K.; Peng, L.; Chan, F.; Sharma, R.P. First described mitral clip in an adult extracardiac Fontan patient: A case report. Eur. Heart J. Case Rep. 2022, 7, ytac479. [Google Scholar] [CrossRef]
- Kumar, P.; Gordon, B.M.; Kheiwa, A.; Abudayyeh, I. A case report of percutaneous MitraClip implantation in an adult with a double-outlet right ventricle. Eur. Heart J. Case Rep. 2023, 7, ytad247. [Google Scholar] [CrossRef] [PubMed]
- Mainwaring, R.D.; Lamberti, J.J.; Uzark, K.; Spicer, R.L.; Cocalis, M.W.; Moore, J.W. Effect of Accessory Pulmonary Blood Flow on Survival after the Bidirectional Glenn Procedure. Circulation 1999, 100 (Suppl. 2), II-151–II-156. [Google Scholar] [CrossRef]
- Desai, T.; Wright, J.; Dhillon, R.; Stumper, O. Transcatheter closure of ventriculopulmonary artery communications in staged Fontan procedures. Heart 2007, 93, 510–513. [Google Scholar] [CrossRef] [PubMed]
- Deshaies, C.; Hamilton, R.M.; Shohoudi, A.; Trottier, H.; Poirier, N.; Aboulhosn, J.; Broberg, C.S.; Cohen, S.; Cook, S.; Dore, A.; et al. Thromboembolic Risk after Atriopulmonary, Lateral Tunnel, and Extracardiac Conduit Fontan Surgery. J. Am. Coll. Cardiol. 2019, 74, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Egbe, A.C.; Connolly, H.M.; McLeod, C.J.; Ammash, N.M.; Niaz, T.; Yogeswaran, V.; Poterucha, J.T.; Qureshi, M.Y.; Driscoll, D.J. Thrombotic and Embolic Complications Associated With Atrial Arrhythmia after Fontan Operation: Role of Prophylactic Therapy. J. Am. Coll. Cardiol. 2016, 68, 1312–1319. [Google Scholar] [CrossRef]
- Boggs, R.; Dibert, T.; Co-Vu, J.; DeGroff, C.; Quinn, N.; Chandran, A. Optimized Computed Tomography Angiography Protocol for the Evaluation of Thrombus in Patients with Fontan Anatomy. Pediatr. Cardiol. 2020, 41, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
- Mahani, M.G.; Agarwal, P.P.; Rigsby, C.K.; Lu, J.C.; Dehkordy, S.F.; Wright, R.A.; Dorfman, A.L.; Krishnamurthy, R. CT for Assessment of Thrombosis and Pulmonary Embolism in Multiple Stages of Single-Ventricle Palliation: Challenges and Suggested Protocols. RadioGraphics 2016, 36, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Carroll, B.J.; Larnard, E.A.; Pinto, D.S.; Giri, J.; Secemsky, E.A. Percutaneous Management of High-Risk Pulmonary Embolism. Circ. Cardiovasc. Interv. 2023, 16, e012166. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, C.; Franklin, W.J.; Garn, B.; Awerbach, J.D. Transcatheter Thrombectomy of Acute Pulmonary Embolism in an Adult Fontan Patient: A Case Report. Eur. Heart J. Case Rep. 2023, 7, ytad401. [Google Scholar] [CrossRef]
- McCrossan, B.; Nolke, L.; Kenny, D.; Oslizlok, P.; Crispino, G.; Walsh, K.P.; McMahon, C.J. Experience of stent implantation for recurrent aortic arch obstruction following Norwood or Damus–Kaye–Stansel operation over the last decade. Cardiol. Young- 2019, 29, 1137–1142. [Google Scholar] [CrossRef]
- Spearman, A.D.; Gupta, A.; Pan, A.Y.; Gronseth, E.I.; Thirugnanam, K.; Gudausky, T.M.; Foerster, S.R.; Ramchandran, R. Hepatic Vein Blood Increases Lung Microvascular Angiogenesis and Endothelial Cell Survival-Toward an Understanding of Univentricular Circulation. Semin. Thorac. Cardiovasc. Surg. 2020, 32, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, S.K.; Fineman, J.R. Pulmonary Arteriovenous Malformations and the Hepatic “Black Box”: Are We Emerging from the Darkness. JACC: Basic Transl. Sci. 2021, 6, 236–238. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Lee, W.; Cheon, J.-E.; Kim, W.S.; Kim, I.-O.; Park, J.H.; Yeon, K.M. CT findings in unilateral hepatopulmonary syndrome after the Fontan operation. Pediatr. Radiol. 2009, 39, 336–342. [Google Scholar] [CrossRef] [PubMed]
- McElhinney, D.B.; Marshall, A.C.; Lang, P.; Lock, J.E.; Mayer, J.E. Creation of a Brachial Arteriovenous Fistula for Treatment of Pulmonary Arteriovenous Malformations after Cavopulmonary Anastomosis. Ann. Thorac. Surg. 2005, 80, 1604–1609. [Google Scholar] [CrossRef]
- Ratnayaka, K.; Wei, Z.A.; Ryan, J.R.; Heyden, C.M.; Narayan, H.K.; Slesnick, T.C.; Lederman, R.J.; Moore, J.W.; Yoganathan, A.P.; El-Said, H.G. Transcatheter Hepatic Conduit-Azygous Vein Connection Reduces Pulmonary Arteriovenous Malformations in a Cyanotic Fontan Patient. JACC Case Rep. 2023, 10, 101760. [Google Scholar] [CrossRef] [PubMed]
- Sidiropoulos, A.; Ritter, J.; Schneider, M.; Konertz, W. Fontan modification for subsequent non-surgical Fontan completion. Eur. J. Cardio-Thoracic Surg. 1998, 13, 509–513, discussion 512–513. [Google Scholar] [CrossRef] [PubMed]
- Konstantinov, I.E.; Benson, L.N.; Caldarone, C.A.; Li, J.; Shimizu, M.; Coles, J.G.; Van Arsdell, G.S.; Williams, W.G. A simple surgical technique for interventional transcatheter completion of the total cavopulmonary connection. J. Thorac. Cardiovasc. Surg. 2005, 129, 210–212. [Google Scholar] [CrossRef]
- Alsoufi, B.; Alfadley, F.; Al-Omrani, A.; Awan, A.; Al-Ahmadi, M.; Al-Fayyadh, M.; Al-Halees, Z.; Canver, C.C. Hybrid Management Strategy for Percutaneous Fontan Completion Without Surgery: Early Results. Ann. Thorac. Surg. 2011, 91, 566–573, discussion 572–573. [Google Scholar] [CrossRef]
- Boudjemline, Y.; Gerelli, S.; Van Steenberghe, M.; Patel, M.; Malekzadeh-Milani, S.; Bonnet, D. Feasibility of transcatheter techniques for intracardiac and extracardiac cavocaval connection in principle for Fontan completion in chronic animal models. Eur. J. Cardio-Thoracic Surg. 2013, 43, 856–860. [Google Scholar] [CrossRef]
- Prabhu, S.; Maiya, S.; Shetty, R.; Murthy, K.; Ramachandra, P.; Karl, T.R. Improved Technique for Interventional Extracardiac Fontan. World J. Pediatr. Congenit. Heart Surg. 2020, 11, 488–492. [Google Scholar] [CrossRef]
- Adachi, I.; Ueno, T.; Hori, Y.; Sawa, Y. Alterations in the medial layer of the main pulmonary artery in a patient with longstanding Fontan circulation. Interact. Cardiovasc. Thorac. Surg. 2010, 11, 682–684. [Google Scholar] [CrossRef] [PubMed]
- Chaix, M.-A.; Ibrahim, R.; Tardif, J.-C.; Roy, C.; Mongeon, F.-P.; Dore, A.; Mondésert, B.; Khairy, P. Pulmonary vascular disease and optical coherence tomography imaging in patients with Fontan palliation. Expert Rev. Cardiovasc. Ther. 2024, 22, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhou, X.; An, Q.; Feng, Y. Pulmonary vasodilator therapy after the Fontan procedure: A meta-analysis. Heart Fail. Rev. 2021, 26, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Budts, W.; Ravekes, W.J.; Danford, D.A.; Kutty, S. Diastolic Heart Failure in Patients with the Fontan Circulation: A Review. JAMA Cardiol. 2020, 5, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Gao, G.; Plunkett, M.; Zhao, G.; Topaz, S.; Ballard-Croft, C.; Zwischenberger, J.B. A paired membrane umbrella double-lumen cannula ensures consistent cavopulmonary assistance in a Fontan sheep model. J. Thorac. Cardiovasc. Surg. 2014, 148, 1041–1047, discussion 1047. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gandolfo, F.; Brancaccio, G.; Donatiello, S.; Filippelli, S.; Perri, G.; Iannace, E.; D’Amario, D.; Testa, G.; D’Avenio, G.; Grigioni, M.; et al. Mechanically Assisted Total Cavopulmonary Connection with an Axial Flow Pump: Computational and In Vivo Study. Artif. Organs 2016, 40, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Cheng, X.; Liu, X.; Zhang, H.; Wang, S. Study on the optimal elastic modulus of flexible blades for right heart assist device supporting patients with single-ventricle physiologies. Front. Cardiovasc. Med. 2024, 11, 1377765. [Google Scholar] [CrossRef]
Diagnostic Tool | Description |
---|---|
RHC | Assessment of pressures, cardiac output, and vascular resistance to establish a hemodynamic profile at rest. |
Fluid challenge | A test involving the rapid infusion of saline to evaluate the response of ventricular filling pressures and uncover potential hidden diastolic dysfunction. |
Passive leg lifting | A maneuver that induces a moderate increase in cardiac output and can reveal potential hidden diastolic dysfunction. |
CPET combined with RHC | It combines right heart catheterization with a cardiopulmonary exercise test using a supine cycling protocol to identify hemodynamic patterns such as hidden diastolic dysfunction, pulmonary vascular impairment, inability to increase cardiac output, and Fontan pathway obstruction. |
Angio MR combined with RHC | Specific protocols combine angio MR and cardiac catheterization to determine flows dependent on large MAPCAs and accurately calculate segmental resistances. |
Angiographies | Administration of iodinated contrast to anatomically evaluate the Fontan pathway and rule out potential obstructions, as well as SPVCs, fenestrations, and MAPCAs. |
Bubbles contrast | Selective administration of agitated saline into the pulmonary branches, combined with echocardiography, to detect bubble passage into the cardiac chambers in the presence of PAVMs. |
At Rest | |
---|---|
Fontan pressure (central venous pressure) | >15 mmHg |
PAWP | >12 mmHg |
IVC-SVC gradient pressure | ≥2 mmHg |
Transpulmonary gradient pressure | ≥7 mmHg |
Cardiac index | <2.5 L/min/m2 |
Pulmonary vascular resistance index | >2 WU*m2 |
Transaortic arch gradient pressure | >10 mmHg |
At Exercise | |
Fontan pressure (central venous pressure) | >25 mmHg |
PWAP | >20 mmHg |
IVC-SVC gradient | ≥5 mmHg |
Slope mPAP/CO pulmonary | >3 mmHg/L/min |
Slope PAWP/CO systemic | >2 mmHg/L/min |
Percutaneous Interventions | Description |
---|---|
Fontan Pathway Obstructions | Balloon angioplasty, and especially stenting, are commonly used to treat obstructions in the Fontan pathway and pulmonary branch stenosis. |
Fenestrations | Fenestration can be created by puncture, usually with subsequent stent implantation, or more commonly, closed percutaneously using transcatheter occlusion devices. |
Collaterals | MAPCAs and SPVCs can be treated by embolization (using coils, microspheres, or liquid embolic systems), or occluded with vascular plug devices. |
Lymphatic Circulation | Selective lymphatic embolization and percutaneous thoracic duct decompression can be used to manage lymphatic disorders. |
AV regurgitation | TEER therapy using MitraClip® device can be useful in treating selected cases of atrioventricular valve insufficiency. |
Ventriculo-pulmonary Communication | Residual antegrade connections between the ventricle and pulmonary circulation can be closed percutaneously using occlusion devices. |
Acute Pulmonary Thromboembolic Disease | Mechanical thrombectomy and aspiration thrombectomy may be useful for treating pulmonary embolism in selected cases of Fontan patients. |
Aortic Coarctation | Balloon angioplasty and, more frequently, stent implantation can be used to repair aortic arch and aortic coarctations, which can compromise Fontan circulation. |
Intrapulmonary Shunt | Different techniques for redirecting hepatic flow to the pulmonary circulation could be useful in selected patients with severe intrapulmonary shunt in the context of diffuse PAVMs. |
Percutaneous Fontan Completion | Hybrid strategies for completing the Fontan circulation percutaneously, primarily intracardiac, have been described with the goal of reducing the number of surgeries. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belahnech, Y.; Martí Aguasca, G.; Dos Subirà, L. Advances in Diagnostic and Interventional Catheterization in Adults with Fontan Circulation. J. Clin. Med. 2024, 13, 4633. https://doi.org/10.3390/jcm13164633
Belahnech Y, Martí Aguasca G, Dos Subirà L. Advances in Diagnostic and Interventional Catheterization in Adults with Fontan Circulation. Journal of Clinical Medicine. 2024; 13(16):4633. https://doi.org/10.3390/jcm13164633
Chicago/Turabian StyleBelahnech, Yassin, Gerard Martí Aguasca, and Laura Dos Subirà. 2024. "Advances in Diagnostic and Interventional Catheterization in Adults with Fontan Circulation" Journal of Clinical Medicine 13, no. 16: 4633. https://doi.org/10.3390/jcm13164633
APA StyleBelahnech, Y., Martí Aguasca, G., & Dos Subirà, L. (2024). Advances in Diagnostic and Interventional Catheterization in Adults with Fontan Circulation. Journal of Clinical Medicine, 13(16), 4633. https://doi.org/10.3390/jcm13164633