Validity of the Pneumonitor for Analysis of Short-Term Heart Rate Asymmetry Extended with Respiratory Data in Pediatric Cardiac Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Procedures and Measurement Conditions
2.3. RRi Data Acquisition Using an ECG and the Pneumonitor
2.4. Artifacts Identification and Correction
2.5. Heart Rate Asymmetry
2.6. RespRate
2.7. Statistical Analysis
3. Results
3.1. Participants Characteristics
3.2. Agreement of HRA Parameters
3.3. Correlation between HRA Parameters and RespRate
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aletti, F.; Ferrario, M.; de Jesus, T.B.; Stirbulov, R.; Silva, A.B.; Cerutti, S.; Sampaio, L.M. Heart rate variability in children with cyanotic and acyanotic congenital heart disease: Analysis by spectral and non linear indices. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012, 2012, 4189–4192. [Google Scholar] [CrossRef] [PubMed]
- Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [CrossRef]
- Guzik, P.; Piskorski, J.; Krauze, T.; Wykretowicz, A.; Wysocki, H. Heart rate asymmetry by Poincaré plots of RR intervals. Biomed. Tech. 2006, 51, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Piskorski, J.; Guzik, P. The structure of heart rate asymmetry: Deceleration and acceleration runs. Physiol. Meas. 2011, 32, 1011–1023. [Google Scholar] [CrossRef]
- Piskorski, J.; Guzik, P. Compensatory properties of heart rate asymmetry. J. Electrocardiol. 2012, 45, 220–224. [Google Scholar] [CrossRef]
- Piskorski, J.; Ellert, J.; Krauze, T.; Grabowski, W.; Wykretowicz, A.; Guzik, P. Testing heart rate asymmetry in long, nonstationary 24 hour RR-interval time series. Physiol. Meas. 2019, 40, 105001. [Google Scholar] [CrossRef]
- Porta, A.; Casali, K.R.; Casali, A.G.; Gnecchi-Ruscone, T.; Tobaldini, E.; Montano, N.; Lange, S.; Geue, D.; Cysarz, D.; Van Leeuwen, P. Temporal asymmetries of short-term heart period variability are linked to autonomic regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R550–R557. [Google Scholar] [CrossRef]
- Klintworth, A.; Ajtay, Z.; Paljunite, A.; Szabados, S.; Hejjel, L. Heart rate asymmetry follows the inspiration/expiration ratio in healthy volunteers. Physiol. Meas. 2012, 33, 1717–1731. [Google Scholar] [CrossRef]
- De Maria, B.; Dalla Vecchia, L.A.; Maestri, R.; Pinna, G.D.; Parati, M.; Perego, F.; Bari, V.; Cairo, B.; Gelpi, F.; La Rovere, M.T.; et al. Lack of association between heart period variability asymmetry and respiratory sinus arrhythmia in healthy and chronic heart failure individuals. PLoS ONE 2021, 16, e0247145. [Google Scholar] [CrossRef]
- Guzik, P.; Piskorski, J. Asymmetric properties of heart rate microstructure. JMS 2020, 89, e436. [Google Scholar] [CrossRef]
- Spatz, E.S.; Ginsburg, G.S.; Rumsfeld, J.S.; Turakhia, M.P. Wearable Digital Health Technologies for Monitoring in Cardiovascular Medicine. N. Engl. J. Med. 2024, 390, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Młyńczak, M.; Zylinski, M.; Niewiadomski, W.; Cybulski, G. Ambulatory devices measuring cardiorespiratory activity with motion. In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies, Porto, Portugal, 21–23 February 2017; pp. 91–97. [Google Scholar]
- Boris, J.R. Heart rate variability in congenital heart disease: Looking and learning. Eur. J. Cardiothorac. Surg. 2021, 61, 90–91. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Florido, A.; Sacha, J.; Alcantara, J.M.A. Short-term heart rate variability in resting conditions: Methodological considerations. Kardiol. Pol. 2021, 79, 745–755. [Google Scholar] [CrossRef]
- Kalidas, V.; Tamil, L. Real-time QRS detector using stationary wavelet transform for automated ECG analysis. In Proceedings of the IEEE 17th International Conference on Bioinformatics and Bioengineering, Washington, DC, USA, 23–25 October 2017; pp. 457–461. [Google Scholar] [CrossRef]
- Seppä, V.P.; Hyttinen, J.; Uitto, M.; Chrapek, W.; Viik, J. Novel electrode configuration for highly linear impedance pneumography. Biomed. Tech. 2013, 58, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Cilhoroz, B.; Giles, D.; Zaleski, A.; Taylor, B.; Fernhall, B.; Pescatello, L. Validation of the Polar V800 heart rate monitor and comparison of artifact correction methods among adults with hypertension. PLoS ONE 2020, 15, e0240220. [Google Scholar] [CrossRef] [PubMed]
- Porta, A.; Faes, L.; Masé, M.; D’Addio, G.; Pinna, G.D.; Maestri, R.; Montano, N.; Furlan, R.; Guzzetti, S.; Nollo, G.; et al. An integrated approach based on uniform quantization for the evaluation of complexity of shortterm heart period variability: Application to 24 h holter recordings in healthy and heart failure humans. Chaos 2007, 17, 015117. [Google Scholar] [CrossRef] [PubMed]
- Gąsior, J.S.; Gąsienica-Józkowy, M.; Młyńczak, M.; Rosoł, M.; Makuch, R.; Baranowski, R.; Werner, B. Heart rate dynamics and asymmetry during sympathetic activity stimulation and post-stimulation recovery in ski mountaineers-a pilot exploratory study. Front. Sports Act. Living 2024, 6, 1336034. [Google Scholar] [CrossRef] [PubMed]
- Pawłowski, R.; Zalewski, P.; Newton, J.; Piątkowska, A.; Koźluk, E.; Opolski, G.; Buszko, K. An assessment of heart rate and blood pressure asymmetry in the diagnosis of vasovagal syncope in females. Front. Physiol. 2023, 13, 1087837. [Google Scholar] [CrossRef]
- Młyńczak, M.; Cybulski, G. Decomposition of the Cardiac and Respiratory Components from Impedance Pneumography Signals. In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies, Porto, Portugal, 21–23 February 2017; Volume 4, pp. 26–33. [Google Scholar] [CrossRef]
- Młyńczak, M.; Krysztofiak, H. Cardiorespiratory Temporal Causal Links and the Differences by Sport or Lack Thereof. Front. Physiol. 2019, 10, 45. [Google Scholar] [CrossRef]
- Abu-Arafeh, A.; Jordan, H.; Drummond, G. Reporting of method comparison studies: A review of advice, an assessment of current practice, and specific suggestions for future reports. Br. J. Anaesth. 2016, 117, 569–575. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Koh, D.; Ong, C.N. Statistical evaluation of agreement between two methods for measuring a quantitative variable. Comput. Biol. Med. 1989, 19, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef] [PubMed]
- Sibrecht, G.; Piskorski, J.; Krauze, T.; Guzik, P. Asymmetric Properties of the Heart Rate Microstructure in Healthy Adults during 48 h ECG Recordings. J. Clin. Med. 2023, 12, 7472. [Google Scholar] [CrossRef] [PubMed]
- Eckberg, D.L. Human sinus arrhythmia as an index of vagal cardiac outflow. J. Appl. Physiol. 1983, 54, 961–966. [Google Scholar] [CrossRef] [PubMed]
- Eckberg, D.L. The human respiratory gate. J. Physiol. 2003, 548, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Piskorski, J.; Guzik, P. Asymmetric properties of long-term and total heart rate variability. Med. Biol. Eng. Comput. 2011, 49, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Kuo, T.B.; Lai, C.T.; Chu, J.W.; Yang, C.C. Effects of respiratory time ratio on heart rate variability and spontaneous baroreflex sensitivity. J. Appl. Physiol. 2013, 115, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Kuo, T.B.J.; Wang, G.Z.; Yang, C.C. Different effects of inspiratory duration and expiratory duration on heart rate deceleration capacity and heart rate asymmetry. Eur. J. Appl. Physiol. 2024, 124, 2101–2110. [Google Scholar] [CrossRef]
- Wang, Y.P.; Wang, G.Z.; Yang, C.C.H. Percent duration of heart rate acceleration within the respiratory cycle: A novel approach to assess heart rate asymmetry. Am. J. Physiol. Heart Circ. Physiol. 2024, 327, H255–H260. [Google Scholar] [CrossRef]
- Perez-Gaido, M.; Lalanza, J.F.; Parrado, E.; Capdevila, L. Can HRV Biofeedback Improve Short-Term Effort Recovery? Implications for Intermittent Load Sports. Appl. Psychophysiol. Biofeedback 2021, 46, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Peltola, M.A. Role of editing of R-R intervals in the analysis of heart rate variability. Front. Physiol. 2012, 3, 148. [Google Scholar] [CrossRef] [PubMed]
- Gąsior, J.S.; Młyńczak, M.; Rosoł, M.; Wieniawski, P.; Walecka, I.; Cybulski, G.; Werner, B. Validity of the Pneumonitor for RR intervals acquisition for short-term heart rate variability analysis extended with respiratory data in pediatric cardiac patients. Kardiol. Pol. 2023, 81, 491–500. [Google Scholar] [CrossRef]
- Yan, C.; Li, P.; Ji, L.; Yao, L.; Karmakar, C.; Liu, C. Area asymmetry of heart rate variability signal. Biomed. Eng. Online 2017, 16, 112. [Google Scholar] [CrossRef]
- Karmakar, C.K.; Khandoker, A.H.; Palaniswami, M. Phase asymmetry of heart rate variability signal. Physiol. Meas. 2015, 36, 303–314. [Google Scholar] [CrossRef] [PubMed]
Parameter | Mean ± SD ECG | Mean ± SD Pneumonitor | Bias (LoA) | ICC (Lower 95% CI) |
---|---|---|---|---|
SD1d [ms] | 27 ± 13 | 29 ± 12 | −2 (−5–2) | 0.98 (0.86) |
SD1a [ms] | 25 ± 11 | 27 ± 10 | −2 (−7–2) | 0.96 (0.74) |
SD2d [ms] | 45 ± 15 | 47 ± 15 | −2 (−7–2) | 0.98 (0.92) |
SD2a [ms] | 50 ± 18 | 52 ± 18 | −2 (−7–3) | 0.98 (0.90) |
C1d or GI | 0.54 ± 0.04 | 0.53 ± 0.04 | 0.01 (−0.03–0.06) | 0.80 (0.50) |
C2d | 0.46 ± 0.05 | 0.46 ± 0.05 | 0.00 (−0.03–0.03) | 0.96 (0.88) |
PI [%] | 47 ± 4 | 46 ± 3 | 1 (−2–4) | 0.88 (0.52) |
DR1 [no] | 44 ± 17 | 46 ± 18 | −2 (−17–13) | 0.91 (0.77) |
DR2 [no] | 37 ± 11 | 36 ± 11 | 1 (−7–9) | 0.94 (0.83) |
DR3 [no] | 8 ± 7 | 7 ± 6 | 1 (−3–5) | 0.94 (0.78) |
DR4 [no] | 3 ± 2 | 2 ± 2 | 1 (−3–3) | 0.75 (0.43) |
DR5 [no] | 1 ± 1 | 1 ± 1 | 0 (−2–2) | 0.48 (0.12) |
AR1 [no] | 39 ± 19 | 42 ± 18 | −3 (−14–7) | 0.95 (0.81) |
AR2 [no] | 37 ± 13 | 34 ± 11 | 3 (−6–12) | 0.90 (0.67) |
AR3 [no] | 12 ± 7 | 10 ± 7 | 2 (−5–7) | 0.90 (0.73) |
AR4 [no] | 4 ± 4 | 4 ± 3 | 0 (−2–3) | 0.93 (0.81) |
AR5 [no] | 2 ± 3 | 2 ± 3 | 0 (−2–3) | 0.92 (0.79) |
NR1 [no] | 4 ± 4 | 12 ± 7 | −8 (−17–1) *** | 0.34 (0.10) |
NR2 [no] | 0 ± 0 | 1 ± 2 | −1 (−3–2) * | 0.15 (0.23) |
Parameter | ECG | PM |
---|---|---|
C1d or GI | −0.63, p = 0.009 | −0.32, p = 0.230 |
C2d | 0.53, p = 0.034 | 0.43, p = 0.095 |
PI [%] | 0.78, p < 0.001 | 0.69, p = 0.003 |
DR1 [no] | 0.87, p < 0.001 | 0.87, p < 0.001 |
DR2 [no] | 0.44, p = 0.088 | 0.41, p = 0.111 |
DR3 [no] | −0.33, p = 0.215 | −0.44, p = 0.091 |
DR4 [no] | −0.15, p = 0.586 | −0.23, p = 0.392 |
DR5 [no] | −0.15, p = 0.570 | −0.04, p = 0.897 |
AR1 [no] | 0.89, p < 0.001 | 0.85, p < 0.001 |
AR2 [no] | 0.65, p = 0.007 | 0.77, p < 0.001 |
AR3 [no] | −0.25, p = 0.346 | −0.39, p = 0.137 |
AR4 [no] | −0.55, p = 0.027 | −0.65, p = 0.006 |
AR5 [no] | −0.62, p = 0.010 | −0.58, p = 0.018 |
NR1 [no] | 0.16, p = 0.548 | 0.26, p = 0.336 |
NR2 [no] | −0.39, p = 0.128 | 0.07, p = 0.807 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gąsior, J.S.; Młyńczak, M.; Rosoł, M.; Wieniawski, P.; Pietrzak, R.; Werner, B. Validity of the Pneumonitor for Analysis of Short-Term Heart Rate Asymmetry Extended with Respiratory Data in Pediatric Cardiac Patients. J. Clin. Med. 2024, 13, 4654. https://doi.org/10.3390/jcm13164654
Gąsior JS, Młyńczak M, Rosoł M, Wieniawski P, Pietrzak R, Werner B. Validity of the Pneumonitor for Analysis of Short-Term Heart Rate Asymmetry Extended with Respiratory Data in Pediatric Cardiac Patients. Journal of Clinical Medicine. 2024; 13(16):4654. https://doi.org/10.3390/jcm13164654
Chicago/Turabian StyleGąsior, Jakub S., Marcel Młyńczak, Maciej Rosoł, Piotr Wieniawski, Radosław Pietrzak, and Bożena Werner. 2024. "Validity of the Pneumonitor for Analysis of Short-Term Heart Rate Asymmetry Extended with Respiratory Data in Pediatric Cardiac Patients" Journal of Clinical Medicine 13, no. 16: 4654. https://doi.org/10.3390/jcm13164654
APA StyleGąsior, J. S., Młyńczak, M., Rosoł, M., Wieniawski, P., Pietrzak, R., & Werner, B. (2024). Validity of the Pneumonitor for Analysis of Short-Term Heart Rate Asymmetry Extended with Respiratory Data in Pediatric Cardiac Patients. Journal of Clinical Medicine, 13(16), 4654. https://doi.org/10.3390/jcm13164654